JPS60218424A - Production of steel pipe having high collapsing strength - Google Patents

Production of steel pipe having high collapsing strength

Info

Publication number
JPS60218424A
JPS60218424A JP7559184A JP7559184A JPS60218424A JP S60218424 A JPS60218424 A JP S60218424A JP 7559184 A JP7559184 A JP 7559184A JP 7559184 A JP7559184 A JP 7559184A JP S60218424 A JPS60218424 A JP S60218424A
Authority
JP
Japan
Prior art keywords
pipe
tube
load
deformation
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7559184A
Other languages
Japanese (ja)
Inventor
Kenichi Tanaka
健一 田中
Katsuyuki Tokimasa
時政 勝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7559184A priority Critical patent/JPS60218424A/en
Publication of JPS60218424A publication Critical patent/JPS60218424A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel pipe having extremely high collapsing strength in a method for heating the hardened and tempered steel pipe to a prescribed temp. and working the pipe by using 4 pieces a set of specific rolls in place of a strainer in specific working of said pipe. CONSTITUTION:A hardened and tempered steel pipe 1 is applied with compressive load P at 4 points on the outside circumference thereof by means of 4 pieces a set of parallel rolls 21, 22, 31, 32 in the >=3 positions apart from each other in the axial direction of the pipe under the temp. conditions of >=300 deg.C and below the tempering temp. The pipe 1 is thus acted with bending force and is subjected to the working to generate required deformation in the specific diametral direction of the pipe and to rotate at least half the pipe around the axis of the pipe while maintaining the deformation. The roll load is thereafter gradually removed under rotation of the pipe by maintaining the specified change rate of the above-described deformation with respect to said rotation and setting the rotating amt. of the pipe in the process of removing the load at >=1 rotations. Such operation is subjected to the overall length of the pipe. The yield strength, out of roundness and the residual stress distribution in the inside surface of the pipe are thus respectively improved and the collapsing strength is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明は、とくに油井管向けで重視される7717強
度(外圧による圧潰に対する強度)にすぐれた高コヲプ
ス強度鋼管の製造法に関する。 〈従来技術〉 近時、石油事情の逼迫から油井の深井戸化の傾向が著る
しく、これに伴いコツプ“ヌ強度の亮い油井管の要求が
高まってきたが、かかる要求に対処するためには、鋼管
製造の過程で形状の教養、強度材質の強化等を図って綜
合的にコツプ“ス強度を高めるという方法が必要であシ
、現在この種の方法としては次の2方法が知られている
。 の まず鋼管の真円度および曲りの矯正方法としては一
般には、数対のつづみ形傾斜ロールの間を冷間で通すヌ
トレートナ加工によυ曲Vの矯正とある程度の真円度の
矯正を行った後、これに水平垂直交互に配置した絞シロ
ールによる外径絞シ加工を施して真円度の一層の向上を
図るという方法が実施される。そこでとの冷間ストレー
トナ加工が管内面における周方向の圧縮残留応力の発生
および降伏強度の低下を伴いコツプ”7強度の低下につ
ながるという考え方から、焼入れ焼戻し済の鋼管′fI
:800℃以上焼戻し温度以下に加熱して温間でストレ
ートナ加工に通すことによって上記圧縮残留応力の発生
を抑制するとともに降伏強度の低下を阻止してコラフ”
ス強度の向上を図るという方法がある。しかしこの方法
では、降伏強度の向上は得らえるが、確保できる真円度
はせいぜい0.4%が限度でそれ以上、は望めずまた残
留応力分布に関しても十分でなく、満足し得る高コツブ
ース強度鋼管は得られない。 ■ 上記■のストレートナ加工に供給する焼入れ焼戻し
済の鋼管の温度条件を450℃以上という高温に設定し
て、よシ一層の残留応力分布の改善を図って高コヲフ”
ス強度鋼管を得る方法がある。 しかしこの方法は高温加工のために費用が嵩んでコスト
高となシ経済面からの制約を受けるはかシでなく、45
0℃よシ低い温度条件で焼戻しを行う鋼管には適用でき
ないという問題がある。 このように3717強度を高める方法として従来知られ
ているものはいずれも突用土十分といえるものではなか
った。 〈発明の目的〉 本発明は、コヲブス強度に対する影響因子である管の真
円度、降伏強度および管内面における周方向の残留応力
分布を一挙に改善して従来法に較べてよシ高度のコラプ
ヌ強度を得ることかでき、同時に曲シの矯正をも達せら
れる高コヲフ゛ス強度鋼管の製造法を提供しようとする
ものである。 〈発明の構成〉 すなわち本発明は、焼入れ焼戻し済の鋼管を用い、30
0℃以上焼戻し温度以下の温度条件で、互いに管軸方向
に離れた3ケ所以上の位置において4本1組の平行ロー
ルによシ外周上の4ケ所に圧縮荷重をロール負荷して管
に曲げ力を働かせるとともに特定の管径方向に所要の変
形を生せしめこの変形を保ちつつ管軸廻りに少なくとも
半回転させる加工を行い、しかる後このロール負荷の除
去を、管回転下でその回転に対する前記変形量の変化率
を一定にしかつ除荷過程における管回転量を1回転以上
に設定して漸進的に行い、この操作を前記ロールによる
圧縮荷重の負荷が管の全長に亘るように実施することを
特徴とする高コツブー強度鋼管の製造法を要旨とする。 本発明の方法は、コヲフ゛ス強度の影響因子である管の
降伏強度、真円度および管内面の残留応力分布をそれぞ
れ改善し、その効果の総合によシコヲプヌ強度の向上を
図ろうとするものである。 以下、本発明法を、降伏強度、真円度および管内面の残
留応力分布に分けて各項目毎の改善理由ならびに各要件
の限定理由等を折シまぜながら詳細に説明する。 ■ 降伏強度 降伏強度については、本発明者ら陽数々の笑験によシ、
管外周上の4点の対向位置で圧縮荷車をロール負荷する
本発明方法による加工でも、従来法と同様に温間加工に
よって降伏強度の向上を図ることが可能であることを確
認した。なお本発明において温間加工の温度条件を上記
の如く限定したのは、300℃未満では降伏強度の向上
が十分に得られずコヲフ”ヌ強度の改善は期待できない
からである。なお、降伏強度と加工の温度との関係の一
例を第1図に示す。図に見る通9300℃未満の温度で
は降伏強度が低くて不十分である。 ■ 真円度 本発明者らは、従来法による管外周上の対向位置2点で
のロール圧縮加工に代えて、次のような方法を実施すれ
ば、真円度の効果的な向上がもたらされることを見い出
した。すなわち、鋼管の同一断面において、4本1組の
平行ロールによシ外周面上の4ケ所に圧縮荷重をロール
負荷して特定の管径方向に所要の変形を生せしめこの変
形量を保ちつつ管軸廻υに少なくとも半回転嘔せる加工
を行い、しかる後このロール荷重の除去を、管回転下で
その回転に対する前記変形量の変化率r 一定にしかつ
除荷過程における管回転量を1回転以上に設定して漸進
的に行う方法、である。 この方法における圧縮加工およびそれに続く除荷の条件
について次に説明する。 第2図に示す如く鋼管(1)に4本の平行ロール(21
)(2コ)(8/)(8J)によシ管外周上4点の対向
位置で圧線荷重(7)をロール負荷すると、管の応力分
布は管内面のA点は引張応力、B点は圧縮応力となシ、
管外面のAは圧縮、B′点は引張応力となる。 そこで、管(1)が矢印れ)方向に回転した場合、その
回転に伴う管内面A点の応力←)は第8図の曲線(Qで
示すように1回転の期間(財)に引張(JE)、圧縮(
負)に正負開動し、この応力変動の周期斡)は上記(財
)の棒となる。この場合の前記A点の応力(σ)〜ひす
み(ε)ヒステリシスは第4図に示すようになる〇とこ
ろで、管材料は加工によシ硬化あるいは軟化するため荷
重振幅が一定となるように制御して負荷するとヒステリ
シスは不安定とな9、ある点では第5図(a)に示すよ
うに塑性ひずみが引張側に移動し、また他の点では第5
図(局に示すように圧縮側に移動するという現象を生じ
、管の形状は応力の繰返しに伴ない(すなわち管の回転
に伴な′い)悪化することとなる。一方荷重による変形
量を一定に保つように制御して負荷すると、各部のひず
みの最大値と最小値は略々一定となシ、管材料の硬化あ
るいは軟化に拘らずヒステリシスは第6図し)するいは
(1))に示すように安定となシ、平均ひずみは略々0
となるため、応力の繰返しに伴ない管の形状が悪化する
ことはない。 また前記圧縮荷重を管回転下で除去するにあたっては、
作業能率上除荷速度はできるだけ速いことが望ましいが
、除荷期間の管の回転数が1回転の場合を例にとると、
荷重減少量一定で除荷すると第7図(a)に示すように
正あるいは負の残留ひずみ0が管周上のいずれかの位置
に必ず生じる。これに対し、荷重による変形量の変化率
を一定にして除荷すると第7図(1))に示すように生
じる残留ひずみ(R′)は前記残留ひずみ0に比較して
絶対値が大巾に小さくなる。つまシ管の真円度を良好に
ししかも短期間で加工するには前記の如く変形量の変化
率を一定にして除荷することが必要となるのである。 上記圧縮加工の過程における管の回kJiiが半回転以
上ないと管全周に亘る圧縮加工が行われず、真円度矯正
効果が不十分となる。また除荷過程における管回転量と
しては1回転以上でないと、真円度改善の度合いが低く
、従来のストレートナ加工と大差ない結果しか得られな
い。 第8図は、突測によシ得た上記除荷過程における管回転
数と管真円度の関係を示す図である。図の関係から、除
荷過程における管回転数が1回転未満では十分でなく、
従来の限度
<Industrial Application Field> The present invention relates to a method for manufacturing high-column strength steel pipes with excellent 7717 strength (strength against crushing due to external pressure), which is particularly important for oil country tubular products. <Prior art> In recent years, there has been a remarkable trend toward deeper oil wells due to the tight oil situation, and this has led to an increased demand for oil country tubular goods with high strength. To achieve this, a method is needed to comprehensively increase the strength of the steel pipe by improving the shape, strengthening the material, etc. during the manufacturing process of steel pipes.Currently, the following two methods are known as methods of this type. It is being First of all, as a method for straightening the roundness and bending of steel pipes, the general method is to straighten the υ curve V and to a certain degree of roundness by passing the pipe cold between several pairs of slanted rolls. After this, a method is carried out in which the outer diameter drawing process is performed using drawing rolls arranged horizontally and vertically alternately to further improve the roundness. Therefore, based on the idea that cold straightener processing leads to the generation of compressive residual stress in the circumferential direction on the inner surface of the tube and a decrease in yield strength, the strength of the quenched and tempered steel tube'fI is reduced.
: By heating to a temperature above 800℃ and below the tempering temperature and passing it through warm straightener processing, the generation of the compressive residual stress is suppressed and the decrease in yield strength is prevented, resulting in a corrugated shape.
There is a method to improve the strength of the base. However, although this method can improve the yield strength, the roundness that can be secured is limited to 0.4% at most, and it cannot be expected to achieve more than that, and the residual stress distribution is not sufficient. Strong steel pipes cannot be obtained. ■ The temperature condition of the quenched and tempered steel pipe supplied to the straightener processing in (■) above is set to a high temperature of 450°C or higher to further improve the residual stress distribution and achieve a high co-efficiency.
There is a way to obtain high-strength steel pipes. However, this method is expensive due to high-temperature processing, and is subject to constraints from the economical point of view of high cost.
There is a problem in that it cannot be applied to steel pipes that are tempered at temperatures lower than 0°C. As described above, none of the conventionally known methods for increasing the strength of 3717 can be said to be sufficient as an earthwork. <Object of the Invention> The present invention improves the roundness of the pipe, the yield strength, and the residual stress distribution in the circumferential direction on the inner surface of the pipe all at once, which are factors that influence the Cobbus strength, and achieves a higher degree of collapse than conventional methods. The object of the present invention is to provide a method for manufacturing a high-coherence-strength steel pipe that can increase strength and at the same time straighten curvature. <Structure of the invention> That is, the present invention uses a quenched and tempered steel pipe, and
At a temperature of 0°C or higher and lower than the tempering temperature, a compressive load is applied to four locations on the outer circumference by a set of four parallel rolls at three or more locations apart from each other in the tube axis direction to bend the tube. A force is applied to the pipe to produce the required deformation in a specific pipe diameter direction, and while this deformation is maintained, the roll is rotated at least half a turn around the pipe axis, and then this roll load is removed while the pipe is rotating. The rate of change in the amount of deformation is kept constant, and the amount of rotation of the pipe during the unloading process is set to one revolution or more, and this operation is carried out gradually so that the compressive load applied by the rolls extends over the entire length of the pipe. The main subject of this paper is a method for manufacturing high-strength steel pipes that are characterized by The method of the present invention aims to improve the pipe yield strength, roundness, and residual stress distribution on the inner surface of the pipe, which are factors that influence the core strength, and to improve the steel strength by combining these effects. . Hereinafter, the method of the present invention will be explained in detail by dividing it into yield strength, roundness, and residual stress distribution on the inner surface of the tube, and including reasons for improvement in each item and reasons for limiting each requirement. ■ Yield strength The yield strength has been determined by the inventors' numerous experiments.
It was confirmed that even in the process of the present invention, in which a compressed cart is roll-loaded at four opposing positions on the outer periphery of the tube, it is possible to improve the yield strength through warm working, similar to the conventional method. In the present invention, the temperature conditions for warm working are limited as described above because if the yield strength is lower than 300°C, sufficient improvement in yield strength cannot be obtained and improvement in coffee strength cannot be expected. An example of the relationship between and processing temperature is shown in Figure 1.As seen in the figure, yield strength is low and insufficient at temperatures below 9300°C. It has been found that the roundness can be effectively improved by implementing the following method instead of roll compression processing at two opposing positions on the outer circumference.In other words, in the same cross section of the steel pipe, A set of four parallel rolls applies a compressive load to four locations on the outer circumferential surface of the pipe to produce the required deformation in a specific pipe diameter direction, and while maintaining this amount of deformation, the roll is rotated at least half a turn around the pipe axis υ. After that, the roll load is gradually removed by keeping the rate of change of the amount of deformation constant with respect to the rotation while the tube is rotating, and by setting the amount of tube rotation in the unloading process to one rotation or more. This is a method of carrying out the compression process and the conditions for the subsequent unloading in this method.As shown in Fig. 2, four parallel rolls (21
) (2 pieces) (8/) (8J) When a pressure wire load (7) is applied by roll at four opposing positions on the outer circumference of the pipe, the stress distribution of the pipe is as follows: tensile stress at point A on the inner surface of the pipe, tensile stress at point B The point is compressive stress,
Point A on the outer surface of the tube is compressive stress, and point B' is tensile stress. Therefore, when the tube (1) rotates in the direction indicated by the arrow, the stress at point A on the inner surface of the tube (←) due to the rotation is tensile ( JE), compression (
The period of this stress fluctuation is the bar of the above (goods). In this case, the stress (σ) to strain (ε) hysteresis at the point A is as shown in Figure 4. By the way, since the pipe material hardens or softens during processing, the load amplitude remains constant. When the load is controlled, the hysteresis becomes unstable9, and at some points the plastic strain shifts to the tensile side, as shown in Figure 5(a), and at other points, the hysteresis becomes unstable.
As shown in the figure (Figure 1), a phenomenon of movement toward the compression side occurs, and the shape of the tube deteriorates as the stress is repeated (that is, as the tube rotates).On the other hand, the amount of deformation due to the load If the load is controlled to keep it constant, the maximum and minimum values of strain in each part will be approximately constant, and hysteresis will occur regardless of whether the pipe material hardens or softens (see Figure 6) or (1). ), the average strain is approximately 0.
Therefore, the shape of the tube does not deteriorate due to repeated stress. In addition, in removing the compressive load while rotating the tube,
In terms of work efficiency, it is desirable that the unloading speed be as fast as possible, but for example, if the number of revolutions of the pipe during the unloading period is 1 revolution,
If the load is unloaded with a constant load reduction amount, a positive or negative residual strain of 0 will always occur at some position on the tube circumference, as shown in FIG. 7(a). On the other hand, when the load is unloaded while keeping the rate of change in the amount of deformation due to the load constant, the residual strain (R') that occurs as shown in Figure 7 (1)) has a large absolute value compared to the residual strain 0. becomes smaller. In order to improve the roundness of the pick tube and process it in a short period of time, it is necessary to unload the tube while keeping the rate of change in deformation constant as described above. If the rotation kJii of the tube in the above-mentioned compression process is not more than half a turn, the compression process will not be performed over the entire circumference of the tube, and the roundness correction effect will be insufficient. Furthermore, unless the amount of tube rotation during the unloading process is one rotation or more, the degree of improvement in roundness will be low, and the result will be the same as that of conventional straightener processing. FIG. 8 is a diagram showing the relationship between the tube rotation speed and the tube roundness in the above-mentioned unloading process, which was obtained by surprise. From the relationship in the figure, it is not sufficient if the tube rotation speed during the unloading process is less than 1 rotation.
Conventional limits

【0.4%】以下の0.8%以下のすぐれた
真円度を得るためには1回転以上を必要とすることが分
る。 ■ 管内面の残留応力分布 本発明者らは従来よシコヲフ゛ヌ強度向上について種々
の突稜研究を重ねているがその中で管内面の周方向の残
留応力とコラプス強度との間に存在する有用な関係を見
い出した。すなわち、管内面における残留応力分布が圧
縮側ではなく若干引張側を示すところでコラフ゛ヌ強度
の向上に大きく寄与することが確認された。 そしてさらにこのコヲフ゛ヌ強度にとって好ましい管内
面の周方向の残留応力分布状態を得るには、鋼管の同一
断面において管外周上の4ケ所に圧縮荷重を負荷して特
定の管径方向に変形を生ぜしめる圧縮加工を、管径の全
方位について行う方法が有効であることを知見した。 すなわち本発明法に基いて管の加工除荷の操作を行うな
らば、管内面に発生した周方向の圧縮残留応力を引張側
に転ぜしめることが可能であり、管内面に所望の周方向
の引張残留応力が付与式れコラプス強度の向上が得られ
るのである。 第9図は従来法の冷間ストレートナ加工を施して管内面
に−20〜−40にの省の圧縮残留応力を発生させた鋼
管を供試材として、本発明方法により加工ff (’−
’X 100%、但しDは元の外径dは加工後の外径)
を種々に変えて前記供試材に圧縮加工を行った後、除荷
過程における管回転数を1.25回転として除荷を行っ
た一例における加工度と管内面の残留応力との関係を示
すグラフである。 図に見る通り、供試材に発生した−20〜−40に9f
/ydの圧縮残留応力は、加工度の増大とともに次第に
縮少腰加工度を1.5%で前記圧縮残留応力が引張側に
転じ、1.5%以上で残留応力分布は引張に安定的に保
つようになったととが分る。 〈笑施例〉 以下、図面に基いて本発明法を具体的に説明する。 第10図は本発明法を模式的に示した工程図で、図示の
如く焼戻し炉(4)を出た鋼!(1)は保温炉(5)で
300υ以上焼戻し温度以下の温度条件に保持されて次
の加工装置(6)に送給でれる。 第11図(イ)(ロ)は本発明法の加工を笑施する一例
の装置を示す正面図および側面図でおる。 図において、(6/ )(6コX6J)は各々4本の平
行ロー lL/(2/)(2コ)(8/)(8コ)を備
える同じ構造の加工装置(以下スタンドと云えばその1
つを指す)で、平行ロールの軸方向に所定の間隔でタン
デム配置しである。(6/)(6J)(6J)のスタン
ドナンバーは各記号の添字に対応する。 1つのスタンド構造を、第1ヌタンド(61)を例にと
って以下に説明する。 スII :/ F (6/)において、(7)はハウジ
ングで、左右両側において適当間隔をとって2水死立設
した立柱(8/)(8コ)と(8JX8g)と、これら
の頭部に水平に横架した頭部部材αOとから成っている
。 頭部部材α1は上記立柱(8/)(8,2)(87X8
ダ)の外側に設けた計4本の油圧シリンダαυによって
支持されておシ、その高さ位置を調節できる構造になっ
ている。 このようなハウジング(7)には2本1組の上側の平行
ロー/I/(2/)(2コ)と同じく2本1組の下側の
平行ロー1 (8/)(8,2)との2組の平行ローI
L/が設けられている。上側の平行ロール(2/)(2
J)はハウジング(7)の4本柱に上下移動可能に横架
する上部水平部材(6)にブロックa3を介して上方か
ら支持でれ、下側の平行ローIL/ (8/)(8コ)
は同様にハウジング(7)の4本柱に上下移動可能に横
架する下部水平部材α4にブロックα0を介して下方か
ら支持てれている。 そしてこozmo平行c2−/I/(2/)(2J)と
(8/)(8,2)は互いに対向する形の配置をなし、
矯正しようとする鋼管(1)をその配置の中央に前記ロ
ールと平行的に保持して前記平行ロールで両側から挾む
ようにして管外面上の4ケ所へ圧縮荷重をロール負荷し
得るよう設けている。 前記上部水平部材(2)は荷重検出計αQを介してハウ
ジング(7)の頭部部材QOに取伺けられておシ、頭部
部材αOの動きに伴って上下にその位置を変える。 前記荷重検出計aoIIi管(1)へのロール負荷荷重
を検出するものである。また下部水平部材α4はハウジ
ング(7)のベースαηに打上機構、例えば油圧ラム装
置θ枠を介して支持されておシ、その油圧ラム装置のロ
ッドα呻の伸縮にょシハウジング(7)の4不柱沿いに
上下に移動し得る。 (20/)は上側の平行ローtL7(2/)(2コ)と
下側の平行ロー/’ (8/)(8J)との間隔を検出
する変位検出計である。これはアンフ゛12υを介して
前記油圧ラム装置(至)の制御器に接続されている。 (20コ)は下部水平部材a4とベーヌa力との間隔の
変位を検出する変位検出計である。 スタンド一つ一つの構造は以上のとおシであるが、この
ような構造の3つのスタンド(67X 6コ)(6J)
の間でu、スタンドのw4管保持位置(6)(管軸の位
置で示す)を、第1スタンド(6/)と第3スタンド(
63〕とは一致させ、この位置に対し、中間の第2スタ
ンド(6コ)のそれを平行ロー/’ (2/X2JX8
/)(8コ)の対向方向、つまり図では上下方向に所要
量位置ずれさせるようにする。これは鋼管(1)に曲シ
爲正のための曲げ力を作用させるためで、このような管
保持位置(Nの設定は、油圧シリンダαυ、油圧ラム装
置Qlによる上側および下側の平行ロール(2/〕(2
コ)(8/)(8コ)の置場位置(変位検出計(20コ
)で検出)の調節で行われる。すなわち、本発明法を笑
施する装置において管保持位置(8)は、平行ロール対
向方向にスタンド単位で交互にずらせて設定される。 また図示していないが本発明法を笑施する装置には管(
1)の移送および管軸廻シの回転を行うため常用の移送
装置および回転装置が併用される。 上記構成になる本発明の加工装置を用いて行われる降伏
強度の向上、真円度、曲りの矯正ならびに管内面残留応
力分布の改善の操作は次に示す通シである。 すなわち、保温炉(5)で所定の温度条件に保持された
鋼管(1)を、8つのスタンド(6/)(6コX6J)
間にまたがシかつその各スタンドでは上側平行ロール(
2/)(2J)と下側平行ロール(8/)(8λ)の間
に平行的に位置するようにセットし、油圧ラム装置(ト
)のロンドa呻を伸長させて下部水平部材α弔とともに
下側平行ロー/’ (8/)(8J)を押し上げて管(
1)に圧縮荷重をロール負荷する。このロール負荷は荷
重検出計α・を見ながら圧縮荷重が設定荷重になるよう
に行い、管(1)に所要の変形を生ぜしめた後、変位検
出計(20/)の検出値に基いてその変形量を保つよう
にフィードバック制御を行いつつ少なくとも管(1)を
半回転以上管軸廻シに回転印せる。しかる後上記ロール
荷重の除荷操作に移るが、との除荷は同じく変位検出計
(20/)の検出値に基いて管回転下でその回転に対す
る前記変形量の変化率を一定にするようにフィードバッ
ク制御をしながら、除荷過程における菅回転量を1回転
以上に設定して行われる。 上記加工、除荷工程が終了した後、ロール長さより稍々
短かい間隔を1ピツチとして管(1)を軸方向に送り同
様の矯正操作を行い、かかる手+111の繰返しで管全
長の矯正を行う。このようにして本発明法によシ加工、
除荷を行えば後記する妬くに降伏強度、真円度、管内面
残留応力の改善が得られる。またこの場合、8ヌタンド
(6/X6コ)(63)間にまたがる管(1)は回転せ
しめられつつ、前記ヌタンド間の管保持位置(A)のず
れによシ所要の曲げ力を受ける形となり、その結果的シ
矯正の点でも十分な効果が期待できるものである。 〈発明の効果〉 次に、本発明の実施例について述べる。 第1表の化学成分を有する外径177.8”I、肉厚9
.2麿の焼入れ焼戻し済の鋼管を用い、300℃以上焼
戻し温度以下の温度条件で、数対のつづみ形傾斜ロール
によるストV−)す加工を行った後ひきつづいて垂直水
平交互に配置された絞クロールによる外径絞シ加工を行
って各種の温間ストレートナ加工による強度向上をはか
った従来例の供試管を得た。 第 1 表 次いで上記供試管を素材として本発明法によp高コラプ
ス強度鋼管の製造を行った。すなわち、前記素材を焼入
れ焼戻しした後300℃以上焼戻し温度以下の温度条件
で、各平行ロールの長さ850Mの第11図に示した加
工装置に送シ、種々の加工度で管を1回転させる圧縮加
工を行い、しかる後管の回転数を1.255回転して管
斐形倉の変化率一定の除荷を行った。 次いで管をaooxのピッチで管軸方向に移送して同じ
圧縮加工、除荷の操作を行うという手順の繰返しで管全
長に亘る加工操作を行い、本発明例の供試管を得た。 前記従来例と本発明例の各供試管について、降伏強度、
真円度、管内面の残留応力および曲シの測定を行った。 以下に各測定結果を説明する。 降伏強度については、−従来例の平均値が86.4#ル
ーであったのに対し、本発明例の平均値は89、2 t
4f/−となシ、本発明法笑施によυ従来の温間ヌトレ
ートナ加工管と同程度の降伏強度が得られた。 第12図は真円度の測定結果を示すグラフである。図に
おいて、○印は従来例、e印は本発明例の真円度を示し
、従来例がいずれも略々0.4%程度であるのに対し、
本発明例は加工度0.6先、1.0%、1.4%のいず
れのものも0.2%以下の極めて高水準の真円度になっ
ている。 管内面残留応力分布については従来例においてはいずれ
も圧縮残留応力の発生が見られ略々−20〜−40kg
f/wIO値となったが、本発明例においては加工度1
.5%以上で引張の残留応力が得られ飢 上記の降伏強度、真円度の向上、管内面残留応力分布の
改善によるコラツース強度の向上は、最高15%であっ
た。 また曲シについてはAPI規格に規定された方法で測定
したところ、従来例と本発明例とは略々同様の値4’ 
B wVmを示した。 以上の説明から明らかなように本発明の方法は、従来法
では到底望み得々いきわめて高いコラフ゛ヌ強度を有す
る鋼管を製造することが可能であり、また鋼管の真円度
と曲シの矯正を一工程内で同時に行うことを可能とする
ので従来法に較べて経済的に極めて有利であるとともに
、特に真円度に対しては従来法に較べ格段に有効であシ
、したがって本発明の方法は特に深井戸向けの油井管の
製造法として実用性が極めて高いものと云える。
0.4%] It can be seen that one or more revolutions are required to obtain excellent roundness of 0.8% or less. ■ Residual stress distribution on the inner surface of the tube The present inventors have previously conducted various studies on ridges to improve the strength of the tube. found a relationship. In other words, it was confirmed that the residual stress distribution on the inner surface of the tube, which is not on the compression side but slightly on the tensile side, greatly contributes to improving the strength of the tube. Furthermore, in order to obtain a residual stress distribution state in the circumferential direction on the inner surface of the tube that is preferable for the strength of the steel tube, compressive loads are applied to four locations on the outer circumference of the steel tube in the same cross section to cause deformation in a specific tube radial direction. We found that it is effective to perform compression processing in all directions of the pipe diameter. In other words, if the pipe processing and unloading operation is performed based on the method of the present invention, it is possible to turn the compressive residual stress in the circumferential direction generated on the inner surface of the tube into the tensile side, and the desired circumferential direction can be applied to the inner surface of the tube. By applying tensile residual stress, the collapse strength can be improved. FIG. 9 shows a steel pipe that has been subjected to cold straightener processing using the conventional method to generate a compressive residual stress of -20 to -40 on the inner surface of the pipe.
'X 100%, however, D is the original outer diameter d is the outer diameter after processing)
The relationship between the degree of working and the residual stress on the inner surface of the tube is shown in an example in which the sample material was compressed with various changes, and then unloaded at a tube rotation speed of 1.25 rotations during the unloading process. It is a graph. As shown in the figure, -20 to -40 occurred in the sample material by 9f.
The compressive residual stress of /yd gradually decreases as the workability increases.At a workability of 1.5%, the compressive residual stress turns to the tensile side, and at 1.5% or more, the residual stress distribution becomes stable in tension. I can see that I started to keep it. <Example> The method of the present invention will be specifically explained below based on the drawings. FIG. 10 is a process diagram schematically showing the method of the present invention, and as shown, the steel leaves the tempering furnace (4)! The material (1) is maintained at a temperature of 300υ or more and less than the tempering temperature in a heat insulating furnace (5), and then sent to the next processing device (6). FIGS. 11(a) and 11(b) are a front view and a side view showing an example of an apparatus for carrying out the processing according to the present invention. In the figure, (6 / Part 1
The rolls are arranged in tandem at predetermined intervals in the axial direction of the parallel rolls. The stand number of (6/) (6J) (6J) corresponds to the subscript of each symbol. One stand structure will be described below, taking the first nutand (61) as an example. Ⅱ:/F In (6/), (7) is the housing, and there are two standing pillars (8/) (8 pieces) (8J x 8g) and their heads set up at appropriate intervals on both the left and right sides. It consists of a head member αO that is horizontally suspended between the parts. The head member α1 is the above-mentioned standing pillar (8/) (8,2) (87X8
It is supported by a total of four hydraulic cylinders αυ installed on the outside of the casing, and its height can be adjusted. In such a housing (7), there are a set of two upper parallel rows /I/(2/) (2 pieces) and a set of two lower parallel rows 1 (8/) (8, 2). ) with two sets of parallel row I
L/ is provided. Upper parallel roll (2/) (2
J) is supported from above via a block a3 by an upper horizontal member (6) horizontally suspended vertically movably on the four pillars of the housing (7), and the lower parallel row IL/(8/)(8 Ko)
is similarly supported from below via a block α0 by a lower horizontal member α4 which is vertically movably suspended horizontally on the four pillars of the housing (7). And the ozmo parallel c2-/I/(2/)(2J) and (8/)(8,2) are arranged opposite each other,
The steel pipe (1) to be straightened is held in the center of its arrangement in parallel with the rolls and sandwiched between the parallel rolls from both sides so that compressive loads can be applied to four locations on the outer surface of the pipe. The upper horizontal member (2) is approached by the head member QO of the housing (7) via the load detector αQ, and changes its position up and down as the head member αO moves. The load detector detects the roll load applied to the aoIIi tube (1). Further, the lower horizontal member α4 is supported by the base αη of the housing (7) via a launch mechanism, for example, a hydraulic ram device θ frame, and the rod α of the hydraulic ram device is extended and retracted by the housing (7). It can move up and down along the pillar. (20/) is a displacement detector that detects the distance between the upper parallel row tL7 (2/) (2 pieces) and the lower parallel row /' (8/) (8J). This is connected to the controller of the hydraulic ram system via an amplifier 12υ. (20 pieces) is a displacement detector that detects the displacement of the interval between the lower horizontal member a4 and the Bene force. The structure of each stand is as described above, but three stands with this structure (67X 6 pieces) (6J)
between u and w4 tube holding position (6) of the stand (indicated by the position of the tube axis) between the first stand (6/) and the third stand (
63] and parallel low/' (2/X2JX8
) (8) in the opposite direction, that is, in the vertical direction in the figure, by a required amount. This is to apply a bending force to the steel pipe (1) for straightening the bend, and the setting of the pipe holding position (N) is based on the upper and lower parallel rolls by the hydraulic cylinder αυ and the hydraulic ram device Ql. (2/) (2
j) (8/) This is done by adjusting the storage position of (8 pieces) (detected by displacement detectors (20 pieces)). That is, in the apparatus for carrying out the method of the present invention, the tube holding positions (8) are set so as to be alternately shifted in units of stands in the direction facing the parallel rolls. Although not shown, the apparatus for carrying out the method of the present invention includes a tube (
In order to carry out the transfer and rotation of the tube axis in step 1), a conventional transfer device and a rotation device are used together. The operations for improving yield strength, roundness, straightening bends, and improving residual stress distribution on the inner surface of a tube performed using the processing apparatus of the present invention configured as described above are as follows. In other words, the steel pipe (1) maintained at a predetermined temperature condition in the insulating furnace (5) is placed in eight stands (6/) (6 x 6 J).
In between and each stand there is an upper parallel roll (
2/) (2J) and the lower parallel roll (8/) (8λ), and extend the end of the hydraulic ram device (g) to lower the lower horizontal member α. At the same time, push up the lower parallel row /' (8/) (8J) and remove the pipe (
1) Apply a compressive load by rolling. This roll load is carried out so that the compressive load becomes the set load while watching the load detector α・. After causing the required deformation in the pipe (1), the load is applied based on the detected value of the displacement detector (20/). While performing feedback control to maintain the amount of deformation, the tube (1) can be rotated around the tube axis by at least half a turn or more. After that, the unloading operation of the roll load is carried out, and the unloading operation is also carried out in such a way that the rate of change in the amount of deformation with respect to the rotation of the pipe is kept constant based on the detected value of the displacement detector (20/). This is done by setting the amount of tube rotation during the unloading process to one rotation or more while performing feedback control. After the above-mentioned processing and unloading steps are completed, the pipe (1) is sent in the axial direction with one pitch being slightly shorter than the length of the rolls, and the same straightening operation is performed, and by repeating the steps +111, the entire length of the pipe is straightened. conduct. In this way, processing according to the method of the present invention,
If unloading is performed, yield strength, roundness, and residual stress inside the tube can be improved as will be described later. In this case, the tube (1) spanning between 8 nuts (6/x6 pieces) (63) is rotated and receives the required bending force due to the displacement of the tube holding position (A) between the nuts. As a result, a sufficient effect can be expected in terms of correction of wrinkles. <Effects of the Invention> Next, examples of the present invention will be described. Outer diameter 177.8”I, wall thickness 9 with chemical composition shown in Table 1
.. Using two-dimensional quenched and tempered steel pipes, they were subjected to a rolling process using several pairs of slanted rolls under a temperature condition of 300°C or higher and lower than the tempering temperature, and then placed vertically and horizontally alternately. Conventional test tubes were obtained by drawing the outside diameter by drawing crawl and improving the strength by various types of warm straightener processing. Table 1 Next, a high collapse strength steel pipe was manufactured by the method of the present invention using the above test pipe as a raw material. That is, after the material is quenched and tempered, it is sent to a processing device shown in FIG. 11 with each parallel roll having a length of 850M under a temperature condition of 300° C. or higher and lower than the tempering temperature, and the tube is rotated once at various processing degrees. Compression processing was performed, and after that, the number of revolutions of the tube was increased to 1.255 revolutions, and unloading was performed at a constant rate of change of the tube-shaped hold. Next, the pipe was transferred in the pipe axial direction at a pitch of aoox, and the same compression processing and unloading operations were repeated.The processing operation was performed over the entire length of the pipe to obtain a test pipe according to an example of the present invention. For each test tube of the conventional example and the present invention example, the yield strength,
Roundness, residual stress on the inner surface of the tube, and bending were measured. Each measurement result will be explained below. Regarding the yield strength, - the average value of the conventional example was 86.4 # ru, while the average value of the example of the present invention was 89.2 t
By applying the method of the present invention, a yield strength comparable to that of a conventional warm nutretona-processed pipe was obtained. FIG. 12 is a graph showing the results of measuring roundness. In the figure, the circle mark indicates the roundness of the conventional example, and the mark e indicates the roundness of the present invention example.While the conventional example is approximately 0.4%,
In the examples of the present invention, the roundness is at an extremely high level of 0.2% or less for all of the working ratios of 0.6, 1.0%, and 1.4%. Regarding the residual stress distribution on the inner surface of the tube, in all conventional examples compressive residual stress was observed, approximately -20 to -40 kg.
f/wIO value, but in the example of the present invention, the processing degree is 1
.. When tensile residual stress was obtained at 5% or more, the yield strength and roundness were improved, and the collatooth strength was improved by a maximum of 15% due to the improvement in the residual stress distribution on the inner surface of the tube. In addition, when measuring the curvature using the method specified in the API standard, the conventional example and the present invention example had approximately the same value of 4'.
B wVm was shown. As is clear from the above description, the method of the present invention makes it possible to produce steel pipes with extremely high collar strength, which is impossible to achieve with conventional methods, and also makes it possible to improve the roundness and straighten curvature of steel pipes at the same time. The method of the present invention is economically advantageous compared to the conventional method because it can be carried out at the same time in the process, and it is also much more effective than the conventional method especially in terms of roundness. It can be said that this method is extremely practical, especially as a manufacturing method for oil country tubular goods for deep wells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加工温度と降伏強度の関係を示すグラフ、第2
図は本発明法により管に圧縮荷重をロー/し負荷した状
態を示す断面図、第3図は圧縮荷重による変形量を保ち
つつ管を1回転させた場合の第2図の管内面A点の応力
の変動状態を示す図、第4図は前記A点の応力〜ひすみ
ヒステリシスを示した図、第5図(a)(b)は荷重振
幅を一定にして負荷した場合の前記A点の応力〜ひずみ
ヒステリシスを示した図、第6図(a)(b)は荷重に
よる度形量を一定に保って負荷した場合の前記A点の応
力〜ひすみヒステリシスを示す図、第7図(a)は荷重
減少量一定で除荷した場合に生じる残留ひずみを示した
図、第7図中)は荷重による変形量の変化率を一定にし
て除荷した場合に生じる残留ひずみを示した図、第8図
は除荷過程における管回転数と真円度の関係を示したグ
ラフ、第9図は加工度と管内面残留応力の関係を示した
グラフ、第10図は本発明法の工程図、第11図(イ)
(ロ)は本発明法を笑施する一例の加工装置を示した説
明図で((イ)は正面図(ロ)は側面図、第12図は従
来例本発明例の真円度の測定結果を示したグラフである
。 l:鋼管、2t、2w、Bl+8.2:ローイビ、4:
焼戻し炬、5:保温炉、6.6/、6.2,67 :加
工装置、7:ハウジング、81,8コ、8J、8グ:立
柱、IO=頭部部材、11:油圧シリンダ、12:上部
水平部材、1B、15 ニブロック、14:下部水平部
材、16:荷重検出計、17:ベーク、18:油圧ラム
装置、19:ロッド、20/、20J :変位検出計、
zl:yンy−出願人 住友金属工業株式会社 代理人弁理士 生・形 元 重 箪 1 図 第 4 図 第 5 図 (CI)(b) (Q) ” 1′21(b)
Figure 1 is a graph showing the relationship between processing temperature and yield strength, Figure 2 is a graph showing the relationship between processing temperature and yield strength.
The figure is a cross-sectional view showing a state in which a compressive load is applied to the tube by the method of the present invention, and Figure 3 is a point A on the inner surface of the tube in Figure 2 when the tube is rotated once while maintaining the amount of deformation due to the compressive load. Figure 4 is a diagram showing the stress-strain hysteresis at the point A, and Figures 5 (a) and (b) are the changes at the point A when the load amplitude is constant. Figures 6(a) and (b) are diagrams showing the stress-strain hysteresis at point A when the load is maintained constant. Figure 7 shows the stress-strain hysteresis at point A. (a) shows the residual strain that occurs when unloading with a constant load reduction amount, and Figure 7 (in Figure 7) shows the residual strain that occurs when unloading with a constant rate of change in deformation due to load. Figure 8 is a graph showing the relationship between tube rotation speed and roundness during the unloading process, Figure 9 is a graph showing the relationship between working degree and residual stress on the tube inner surface, and Figure 10 is a graph showing the relationship between tube rotation speed and roundness during the unloading process. Process diagram, Figure 11 (a)
(B) is an explanatory diagram showing an example of a processing device that performs the method of the present invention ((A) is a front view, (B) is a side view, and FIG. 12 is a measurement of roundness of conventional example and the example of the present invention. This is a graph showing the results. l: Steel pipe, 2t, 2w, Bl+8.2: Low Ibi, 4:
Tempering kettle, 5: Heat retention furnace, 6.6/, 6.2, 67: Processing equipment, 7: Housing, 81, 8, 8J, 8g: Vertical column, IO = head member, 11: Hydraulic cylinder, 12 : Upper horizontal member, 1B, 15 Niblock, 14: Lower horizontal member, 16: Load detector, 17: Bake, 18: Hydraulic ram device, 19: Rod, 20/, 20J: Displacement detector,
zl: yin y - Applicant Sumitomo Metal Industries Co., Ltd. Representative Patent Attorney Shigeru Katamoto 1 Figure 4 Figure 5 (CI) (b) (Q) ” 1'21 (b)

Claims (1)

【特許請求の範囲】[Claims] (1〕 焼入れ焼戻し済の鋼管を用い、ao’ot;以
上焼戻し温度以下の温度条件で、互いに管軸方向に離れ
た3ケ所以上の位置において4本IMの平行ロールによ
り外周上の4ケ所に圧縮荷重をロール負荷して、管に曲
げ力を作用さ〜せるとともに特定の管径方向に所要の変
形を生ぜしめこの変形量を保ちつつ管軸廻シに少なくと
も半回転させる加工を行い、しかる後このロール荷重の
除去を、管回転下でその回転に対する前記変形量の灰化
率を一定にしかつ除荷過程における管回転量を1回転以
上に設定して漸進的に行い、この操作をロールによる圧
縮荷重の負荷が管の全長に亘るように実施することを特
徴とする高コラフ“ス強度鋼管の製造法。
(1) Using a steel pipe that has been quenched and tempered, it is rolled at four locations on the outer periphery using four IM parallel rolls at three or more locations spaced apart from each other in the tube axis direction under a temperature condition of at least ao'ot; and below the tempering temperature. A compressive load is applied to the tube by a roll to apply a bending force to the tube, and the required deformation is caused in a specific tube diameter direction, and while this amount of deformation is maintained, the tube is rotated at least half a turn around the tube axis, and then After that, the roll load is gradually removed by keeping the ashing rate of the deformation constant with respect to the rotation while the tube is rotating, and by setting the tube rotation amount in the unloading process to one rotation or more. A method for manufacturing high-collapse strength steel pipes, characterized in that compressive loads are applied over the entire length of the pipes.
JP7559184A 1984-04-14 1984-04-14 Production of steel pipe having high collapsing strength Pending JPS60218424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7559184A JPS60218424A (en) 1984-04-14 1984-04-14 Production of steel pipe having high collapsing strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7559184A JPS60218424A (en) 1984-04-14 1984-04-14 Production of steel pipe having high collapsing strength

Publications (1)

Publication Number Publication Date
JPS60218424A true JPS60218424A (en) 1985-11-01

Family

ID=13580591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7559184A Pending JPS60218424A (en) 1984-04-14 1984-04-14 Production of steel pipe having high collapsing strength

Country Status (1)

Country Link
JP (1) JPS60218424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance

Similar Documents

Publication Publication Date Title
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
US3535484A (en) Method of improving physical properties of electric resistance welded steel pipe
JPS60218424A (en) Production of steel pipe having high collapsing strength
JP2009285711A (en) Manufacturing method of electric resistance welded tube excellent in buckling resistance
US2361318A (en) Tube product
CN111088419B (en) Manufacturing method of large-caliber thick-wall seamless hot-pressing elbow of 630 ℃ ultra-supercritical unit G115 and elbow
JPS60221129A (en) Device for straightening steel pipe
JP4487847B2 (en) A method for hot production of seamless metal tubes by drawing and rolling.
RU2631574C1 (en) Method of producing bar iron of magnesium alloys of mg-al system
US4061008A (en) Rolls of a skewed-roll machine for trueing cylindrical metal articles
JP2506604B2 (en) Method for manufacturing cold drawn steel pipe with improved ductility
JPH093545A (en) Production of large diameter welded steel tube
US2275801A (en) Manufacture of tubes
JP3004875B2 (en) Elongator rolling method
JPS60221128A (en) Method of correcting roundness of steel tube
JPH0261854B2 (en)
JPS60221130A (en) Device for regulating residual stress of pipe
JP2711129B2 (en) Manufacturing method of titanium seamless pipe
JP6835118B2 (en) Steel pipe and its manufacturing method
JP5298645B2 (en) A method for manufacturing ERW line pipes with excellent buckling resistance
JP3308848B2 (en) Seamless rectangular steel pipe and method of manufacturing the same
JPH10258303A (en) Manufacture of square seamless steel tube
JPH0547603B2 (en)
Mjaku Calculation of stresses and strain with the analytical method of pipes in high frequency longitudinal welded pipes: Calculation of stresses and strain with the analytical method of pipes in high frequency longitudinal welded pipes
JP3328795B2 (en) Manufacturing method of tapered steel pipe