JPS60218336A - Liquid-phase hydrogenation of 3c fraction - Google Patents

Liquid-phase hydrogenation of 3c fraction

Info

Publication number
JPS60218336A
JPS60218336A JP7291684A JP7291684A JPS60218336A JP S60218336 A JPS60218336 A JP S60218336A JP 7291684 A JP7291684 A JP 7291684A JP 7291684 A JP7291684 A JP 7291684A JP S60218336 A JPS60218336 A JP S60218336A
Authority
JP
Japan
Prior art keywords
hydrogen
fraction
propylene
reaction
methylacetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7291684A
Other languages
Japanese (ja)
Inventor
Takashi Shimizu
清水 俊
Saburo Takahashi
三郎 高橋
Yoshihiro Sezaki
瀬崎 義広
Kozo Yamamoto
耕三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SEKIYU KAGAKU KK
Original Assignee
OSAKA SEKIYU KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SEKIYU KAGAKU KK filed Critical OSAKA SEKIYU KAGAKU KK
Priority to JP7291684A priority Critical patent/JPS60218336A/en
Publication of JPS60218336A publication Critical patent/JPS60218336A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The feed of hydrogen is divided into 3 or more stages to effect the liquid-phase hydrogenation of the 3C fraction in the presence of a catalyst by staircase reactions to increase the efficiency of the reaction. CONSTITUTION:The liquid-phase hydrogenation of the 3C fraction containing, as major components, propylene and propane and, as trace components, propadiene and methylacetylene is carried out by dividing the hydrogen feed into 3 or more stages at 0-100 deg.C under a pressure of 5-20 atmospheric pressure to give propylene free from propadiene and methylacetylene. The hydrogen feed at the first stage is adjusted in molar ratio calculated as pure hydrogen, to less than 1.0 to the total amounts of propadiene and methylacetylene in the 3C fraction. EFFECT:The process can inhibit propylene from being converted into propane by side-reactions, when a trace amount of propadiene and methylacetylene is converted into propylene with hydrogen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発8Aは、プロピレンとプロノくンを主成分とするい
わゆるCs 留分中の微量成分であるプロ1、パジエン
及びメチルアセチレンを除去するため・該Os 留分を
液相状態で、触媒の存在下に外部より供給される水素と
反応でせるいわゆるCs留分の液相水龜法、更に詳しく
は、Cs 留分に対して必要な水素量を3以上の多段階
に供給して遂次反応させることにより、グロパジエン及
びメチルアセチレンが水素と反応してプロピレンに変換
する際に副反応によシグロビフンがプロパンに変換する
のを抑制する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention 8A is used to remove pro-1, padiene, and methylacetylene, which are trace components in the so-called Cs fraction, which mainly consists of propylene and prono-kun.・So-called liquid-phase water vapor method for Cs fraction, in which the Os fraction is reacted with externally supplied hydrogen in the presence of a catalyst in the liquid phase, more specifically, the hydrogen necessary for the Cs fraction. This invention relates to a method for suppressing the conversion of siglobifune to propane due to a side reaction when glopadiene and methylacetylene react with hydrogen to convert into propylene, by supplying amounts in three or more stages and causing the reactions to occur sequentially. It is something.

〔技術的背景〕[Technical background]

石油化学基幹製品の一つであるプロピレンの製造法は種
々知られているが、生産量の過半を占めるものは、ナフ
サ等の石油留分の水蒸気分解法によるエチレンを代表と
する種々の産品の一つとして得る方法、即ち、いわゆる
エチレンプラントにより製造される場合が多い。
Various methods are known for producing propylene, which is one of the key petrochemical products, but the majority of the production is based on the steam cracking of petroleum fractions such as naphtha, which produces various products such as ethylene. It is often produced in one way, ie in a so-called ethylene plant.

エチレンプラントでは、ナフサ等の石油留分を分解して
得られる多種類の炭化水素化合物を含む粗ガスを、精製
の第1段階で加圧蒸留法により炭素数別に分離する。こ
うして得られた炭素数6の化合物を含む留分をCs 留
分と呼ぶ。
In ethylene plants, crude gas containing many types of hydrocarbon compounds obtained by cracking petroleum fractions such as naphtha is separated according to carbon number by pressurized distillation in the first stage of purification. The fraction containing the compound having 6 carbon atoms thus obtained is called a Cs fraction.

この03 留分は更に精製工程を経てプロピレンを製品
として得ている。
This 03 fraction is further purified to obtain propylene as a product.

このCs 留分中には重量で90パ一セント以上を占め
るプロピレンのほかに[L5乃至2パーセントのグロパ
ジエン、はぼ同量のメチルアセチレン、及び残る大部分
を占めるプロパンが含まれる。
In addition to propylene, which accounts for more than 90 percent by weight, this Cs fraction also contains glopadiene, which accounts for 5 to 2 percent by weight, methylacetylene, which accounts for about the same amount, and propane, which accounts for the remaining majority.

グロバジエン及びメチルアセチレンを除去する方法とし
ては、これらを単離する方法もあるが、水素と反応でせ
るいわゆる選択的水添反応でプロピレンに変換する方法
が主流である。Cs留分の水添反応には触媒を用いるの
が一般的である。この場合には、アルミナ又はシリカア
ルミナの担体上に、パラジウム又は白金等を担持したも
のを用いることができる。使用する触媒は市販のもので
も良いし、特別に調製したものでも良い。これら触媒の
性能の特徴はグロバジエン等と水素の反応を、併存する
プロピレンと水素の反応に対して選択的に促進するもの
であり、それ故に選択水添触媒と呼ばれている。反応の
選択性が重要な理由は、プロピレンと水素の反応はプロ
ピレンの消滅及びそれと同モル量のプロパンの生成を意
味し、プロピレンがプロパンよりも高価である市況を考
えれば明らかである。
Although there is a method of isolating globadiene and methylacetylene, the mainstream method is to convert them into propylene through a so-called selective hydrogenation reaction in which they are reacted with hydrogen. A catalyst is generally used in the hydrogenation reaction of the Cs fraction. In this case, an alumina or silica-alumina carrier supported with palladium, platinum, or the like can be used. The catalyst used may be a commercially available one or a specially prepared one. The performance characteristics of these catalysts are such that they selectively promote the reaction between globadiene and the like and hydrogen over the coexisting reaction between propylene and hydrogen, and are therefore called selective hydrogenation catalysts. The reason why the selectivity of the reaction is important is obvious considering that the reaction of propylene with hydrogen means the disappearance of propylene and the production of the same molar amount of propane, and considering the market situation where propylene is more expensive than propane.

次に反応方法としては、反応時のCs 留分の相の違い
により、液相法と気相法がある。この反応は発熱反応で
あるので反応器の分類では、除熱装置を具備した等温反
応器と、特に除熱装置を具備しない断熱反応器がある。
Next, as a reaction method, there are a liquid phase method and a gas phase method depending on the phase of the Cs fraction during the reaction. Since this reaction is an exothermic reaction, there are two types of reactors: isothermal reactors equipped with a heat removal device and adiabatic reactors not particularly equipped with a heat removal device.

反応条件は、5乃至20気圧の圧力下に0乃至100℃
の温度範囲内で行うのが一般的である。温度及び圧力の
組合わせは、Cs 留分の気液平衡条件も考慮して決め
られる。
The reaction conditions are 0 to 100°C under a pressure of 5 to 20 atm.
It is generally carried out within the temperature range of . The combination of temperature and pressure is determined by also taking into consideration the gas-liquid equilibrium conditions of the Cs fraction.

液相法か気相法かの選定は、水添設備の前後を含めたプ
ロピレンn製工程全体の事情からなされる。水添設備の
前後を液相とするのが有利の場合は技術的問題を考慮し
なければ液相法が有利となる。この場合、気相法では気
化設備と凝縮設備が余分に必要になり、その運転費用も
かさむからでるる。
The choice between the liquid phase method and the gas phase method is made based on the overall circumstances of the propylene n manufacturing process, including before and after the hydrogenation equipment. If it is advantageous to use a liquid phase before and after the hydrogenation equipment, the liquid phase method is advantageous unless technical problems are taken into consideration. In this case, the vapor phase method requires extra vaporization equipment and condensation equipment, which increases operating costs.

液相法における技術上の問題のひとつは選択性の高い触
媒及びその運転法の開発である。気相法の運転温度は既
存の触媒では40乃至100℃の範囲が通常であるが、
液相法はこの温度範囲では選択性が著しく低下し、プロ
ピレンの消減量が増大する。このため液相法では反応温
度を10℃以下で行なっている場合が多い。
One of the technical issues in the liquid phase process is the development of a highly selective catalyst and its operating method. The operating temperature of the gas phase method is usually in the range of 40 to 100°C for existing catalysts, but
In this temperature range, the liquid phase method exhibits a significant decrease in selectivity and an increase in the amount of propylene consumed. For this reason, in the liquid phase method, the reaction temperature is often carried out at 10° C. or lower.

この温度範囲で反応を行なうためには、反応による発熱
の除去及び供給原料の条件によっては予備冷却のだめの
冷却装置が必要であり、かつそれに用いる冷媒も、汎用
の冷却水以外のより低温用のものが必要になる。したが
って、その冷媒を供給するための冷凍設備が必要になり
、その運転費用は汎用の冷却水供給システムと比較して
はるかにかさむことになる。
In order to carry out the reaction in this temperature range, it is necessary to remove the heat generated by the reaction and, depending on the conditions of the feedstock, use a cooling device for preliminary cooling. You will need something. Therefore, refrigeration equipment is required to supply the refrigerant, and its operating cost is much higher than that of a general-purpose cooling water supply system.

〔発明の目的〕[Purpose of the invention]

本発明は前記現状に鑑みてなされたもので、その目的は
改良されたCs 留分の液相水添法を提供するにある。
The present invention has been made in view of the above-mentioned current situation, and its purpose is to provide an improved liquid phase hydrogenation method for Cs fraction.

〔発明の構成〕[Structure of the invention]

本発明はCs 留分を液相で、触媒の存在下に水添させ
る当たり、水素を5段階以上の多段に分割供給すること
を特徴とするCs 留分の液相水添法である。
The present invention is a liquid phase hydrogenation method for a Cs fraction, which is characterized in that when hydrogenating a Cs fraction in the liquid phase in the presence of a catalyst, hydrogen is supplied in multiple stages of five or more stages.

本発明者らは、Cs 留分の液相水添法に関して、汎用
の冷却水を用いる冷却によって達成出来る程度の温度範
囲、具体的には20乃至100℃の範囲の反応温度で選
択性の高い触媒とその運転法の開発のため、種々の探索
研究を行なった結果、本発明の完成に至ったものである
。即ち、従来使用されている水添用触媒を使用し、水素
を5段階以上の多段に供給することにより副反応が少な
く、効率よ< Os 留分を液相で選択的に水添しうろ
ことを見出だした。
Regarding the liquid phase hydrogenation method of Cs fraction, the present inventors have found that high selectivity can be achieved within a temperature range that can be achieved by cooling using general-purpose cooling water, specifically, at a reaction temperature in the range of 20 to 100°C. The present invention was completed as a result of various exploratory research conducted in order to develop a catalyst and its operating method. In other words, by using a conventionally used hydrogenation catalyst and supplying hydrogen in multiple stages of five or more stages, side reactions are reduced and the efficiency is increased by selectively hydrogenating the <Os fraction in the liquid phase. I found out.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず、反応条件の説明のための変数として「水素比」に
ついて説明する。反応に関与するCs 留分と粗製水素
ガスについて、それらの流。
First, "hydrogen ratio" will be explained as a variable for explaining reaction conditions. For the Cs fraction and crude hydrogen gas involved in the reaction, their streams.

盆及び組成から計算して、グロバジエン及びメチルアセ
チレンのモル流量の合計に対する純水素換算のモル流量
の比を水素比と定義する。定義から水素比が1.0未満
ではプロパジエン等の全量は反応しないで必ずそのいく
らかは残留することになる。このことを反応式で示すと
次の様になる。
Calculated from the basin and composition, the ratio of the molar flow rate in terms of pure hydrogen to the sum of the molar flow rates of globadiene and methylacetylene is defined as the hydrogen ratio. From the definition, if the hydrogen ratio is less than 1.0, the entire amount of propadiene etc. will not react and some of it will necessarily remain. This reaction can be expressed as follows.

03H4+ xH,−+ xcHH6+ (1−x) 
(1!3H4ただし 0 (x (1 水素比が1.0のときは副反応が起らなければフロハシ
エン等は全量反応し等モルのプロピレンを生成し、水素
は全量消費される。これを反応式で示すと次のようにな
る。
03H4+ xH, -+ xcHH6+ (1-x)
(1!3H4 However, 0 (x (1) When the hydrogen ratio is 1.0, if no side reactions occur, the entire amount of fluoracienes, etc. will react to produce equimolar propylene, and the entire amount of hydrogen will be consumed. Expressed as a formula, it is as follows.

0sH4+ xa、 →x03H。0sH4+xa, →x03H.

ただし x = 1 水素比が1.0を越える場合には、フロハシエン等が全
量反応したとしても、必ず水素が金気余剰の水素140
x 留分中のプロピレンと反応して該プロピレンをプロ
パンに変換する。水素比が更に増大すれば、この余剰氷
菓も増大し、プロピレンの変換量が増大する。このこと
を反応式で示すと次の様になる。
However, if the x = 1 hydrogen ratio exceeds 1.0, even if the entire amount of fluoraciene etc. reacts, the hydrogen will always be hydrogen with a metal surplus of 140
Reacts with propylene in the x fraction to convert the propylene to propane. If the hydrogen ratio is further increased, this excess frozen confection will also increase and the amount of propylene conversion will increase. This reaction can be expressed as follows.

03H4+xH1+(:+c−1)03H,1−+xo
3H@+(x−1)Hl−+(x−1) CIIHII
 +03H,ただし !>1以上から、フロハシエン等
を完全に除去するためには、反応率等を考慮した場合、
反応条件のうち水素比については1.0以上で運転する
必要があるが、1.0に近いほどプロピレン収量が大と
なると言える。
03H4+xH1+(:+c-1)03H,1-+xo
3H@+(x-1)Hl-+(x-1) CIIHII
+03H, however! >1 or more, in order to completely remove fluoracienes, etc., considering the reaction rate, etc.
Among the reaction conditions, it is necessary to operate at a hydrogen ratio of 1.0 or more, but it can be said that the closer it is to 1.0, the higher the propylene yield.

次に、本発明者等が行なった実験の経過を説明する。実
験に用いた反応器は内径s、ocPn、高さ2.Omの
円筒2重管で、外管に冷却水を通せる構造のものを用い
た。実験装置の略図を第1図に示す。触媒については、
担体の活性アルミナに対して重量パーセントで0.05
乃至α45のパラジウムを担持させたものヲ調製して用
いた。
Next, the progress of the experiment conducted by the present inventors will be explained. The reactor used in the experiment had an inner diameter of s, ocPn, and a height of 2. A double Om cylindrical tube with a structure that allows cooling water to pass through the outer tube was used. A schematic diagram of the experimental setup is shown in FIG. Regarding the catalyst,
0.05 in weight percent relative to the activated alumina of the support.
Palladium of α45 to α45 was prepared and used.

反応装置の運転法を第1図によって説明する。The operating method of the reactor will be explained with reference to FIG.

触媒を充填、たあ応益IK弁、より。3 留ゎ 1を供
給する。粗製水素は弁5を通り、更に分割され、弁4、
弁5、弁6、弁7、弁8を通って反応器へ供給される。
Filled with catalyst, Taaoki IK valve, and more. 3 Supply 1. The crude hydrogen passes through valve 5 and is further divided into valves 4,
It is fed to the reactor through valves 5, 6, 7 and 8.

反応液は弁97に−通って排出される。反応器の外管1
0には20乃至35℃の冷却水を常時流しておく。反応
液の分析はサンプル弁11.12.15.14.15エ
ク少量の反応液を採取し、ガスクロマトグラフ法により
、その組成を分析した。反応器内の温度測定は各部に温
度測定端を設置しておき自動記録した。
The reaction liquid is discharged through valve 97. Reactor outer tube 1
Cooling water at a temperature of 20 to 35° C. is kept flowing through the 0 at all times. For analysis of the reaction solution, a small amount of the reaction solution was sampled using sample valves 11, 12, 15, 14, and 15, and its composition was analyzed by gas chromatography. Temperature measurement inside the reactor was automatically recorded by installing temperature measurement terminals in each part.

実施例1 第1図に示す実験装置に0.50重量パーセントのパラ
ジウムを担持した触媒五〇kgを充填しこの装置にC3
留分25ゆ7時(595f−mol/時)と純度94.
5モルパーセントの粗製水素(水素94.5モルチ、メ
タン5.5モル%)全供給し圧力19.0 XZ/cr
n”Gで反応させた。水素供給の分割方法を、供給C3
留分中のフロハシエン等のモル流量を基準とする水素比
で示すと、第1段目がα9、第2段目が[L2、第3段
目がQ、15となる様にした。この時、各段までの供給
水素累計量は水素比で、各々、[19−1,1−1,2
5となる。なお冷却水の入口温度は29℃、出口温度は
30℃であった。
Example 1 The experimental apparatus shown in Figure 1 was filled with 50 kg of catalyst supported with 0.50 weight percent palladium, and the apparatus was charged with C3.
Distillation 25.7 hours (595 f-mol/hour) and purity 94.
5 mol percent of crude hydrogen (94.5 mol of hydrogen, 5.5 mol % of methane) was fully supplied and the pressure was 19.0 XZ/cr.
n''G.The hydrogen supply division method was changed to supply C3.
When expressed as a hydrogen ratio based on the molar flow rate of fluoracienes, etc. in the fraction, the first stage was α9, the second stage was [L2], and the third stage was Q, 15. At this time, the cumulative amount of hydrogen supplied to each stage is the hydrogen ratio, [19-1, 1-1, 2
It becomes 5. Note that the inlet temperature of the cooling water was 29°C, and the outlet temperature was 30°C.

その他の実験条件及び結果を表−1に示す。Other experimental conditions and results are shown in Table-1.

実施例2 実施例1と同一の装置、触媒、同一組成のC3留分及び
粗製水素を用いて実験した。水素供給の分割方法を実施
例1と同基準の水素比で示すと、第1段目がα7、第2
段目が0.2、第3段目0.2、第4段目11L1、第
5段目0.05となる様にした。即ち、各段までの供給
水素累計量は水素比で、各々、α7− (L 9−1.
1−1.2−1.25となる条件下で、表−2に示す条
件以外は同じ条件で試験を行った結果を表−2に示す。
Example 2 An experiment was conducted using the same equipment, catalyst, C3 fraction of the same composition, and crude hydrogen as in Example 1. When the hydrogen supply division method is shown using the same standard hydrogen ratio as in Example 1, the first stage is α7, the second stage is α7, and the second stage is α7.
The number of rows was set to 0.2, the third row 0.2, the fourth row 11L1, and the fifth row 0.05. That is, the cumulative amount of hydrogen supplied to each stage is the hydrogen ratio, α7- (L 9-1.
Table 2 shows the results of a test conducted under the same conditions as 1-1.2-1.25 except for the conditions shown in Table 2.

比較例 実施例−1と同一の装置、触媒、同一組成の03 留分
及び粗製水素を用いて実験した。水素供給の分割方法を
実施例1と同基準の水素比で示すと第1段目1.0、第
2段目0.25となる様にした。即ち、各段での供給水
素累計量は水素比で各々、1.0.1.25となる条件
下で、i−2に示す条件以外は同じ条件で試験を行った
Comparative Example An experiment was conducted using the same equipment, catalyst, 03 fraction of the same composition, and crude hydrogen as in Example-1. The method of dividing the hydrogen supply was such that the hydrogen ratio was 1.0 in the first stage and 0.25 in the second stage based on the same standard hydrogen ratio as in Example 1. That is, the test was conducted under the same conditions except for the conditions shown in i-2, under the conditions that the cumulative amount of hydrogen supplied at each stage was 1.0.1.25 in terms of hydrogen ratio.

実験条件及び結果を表−5に示した。The experimental conditions and results are shown in Table-5.

実施例と比較例の結果を示す表−1、表−2と表−3か
られかるように反応温度は20乃至50℃の範囲でC3
留分の液相水添を行った場合 (1) 水素の分割供給において、水素比を第1段目で
1.0未満、好ましくはa、8以下にすると、反応選択
性を高く保つことができる。すなわち、グロパジエン等
の除去効率が良く、プロピレンのプロパンへの変換が少
ない。
As can be seen from Table 1, Table 2 and Table 3 showing the results of Examples and Comparative Examples, the reaction temperature was in the range of 20 to 50°C.
When carrying out liquid phase hydrogenation of a fraction (1) In the partial supply of hydrogen, it is possible to maintain high reaction selectivity by setting the hydrogen ratio in the first stage to less than 1.0, preferably less than a, 8. can. That is, the removal efficiency of glopadiene and the like is high, and the conversion of propylene to propane is small.

(2)2段目以降の水素の供給についても、少量ずつに
分割し多段に供給するほど反応選択性を工p高く保つこ
とかできる。
(2) Regarding the supply of hydrogen to the second and subsequent stages, the reaction selectivity can be kept higher as the hydrogen is divided into smaller portions and supplied in multiple stages.

(3)第1段目の水素供給を水素比1.0以上にすると
反応選択性がかなりの程度低下する。
(3) When hydrogen is supplied in the first stage at a hydrogen ratio of 1.0 or more, the reaction selectivity decreases to a considerable extent.

(4J 2分割以下の水素フィードでグロパジエン等を
除去する場合、除去効率が低下し、プロピレンのプロパ
ンへの変換が著しく増加する。
(4J When removing glopadiene, etc. with a hydrogen feed divided into two parts or less, the removal efficiency decreases and the conversion of propylene to propane increases significantly.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明における液相水添実験装置の概略図である
。 1・・反応器、2・・原料供給弁、3.4.5.6.7
.8・・水素供給弁、9・・反応液排出弁、10・・反
応器外管、11.12.13.14・・サンプル採取弁 特許出願人 大阪石油化学株式会社 代理人 中 本 宏 同 井 上 昭 同 。 領 桂 ヰ
The drawing is a schematic diagram of a liquid phase hydrogenation experimental apparatus in the present invention. 1. Reactor, 2. Raw material supply valve, 3.4.5.6.7
.. 8.Hydrogen supply valve, 9.Reaction liquid discharge valve, 10.Reactor outer tube, 11.12.13.14.Sample collection valve Patent applicant: Osaka Petrochemical Co., Ltd. Agent Hirodo Nakamoto Shodo Kami. Ryo Katsui

Claims (1)

【特許請求の範囲】 1、Cs 留分を液相で触媒の存在下に水添反応させる
に当たり、水素を3段階以上の多段に分割供給すること
を特徴とする、Cs 留分の液相水添法。 2 第1段目の水素供給its Cs 留分中のグロバ
ジエンとメチルアセチレンの合計量に対して純水素換算
゛でモル比1.0未満とする、特許請求の範囲第1項記
載の方法。
[Claims] 1. Liquid-phase water of a Cs fraction, characterized in that hydrogen is supplied in multiple stages of three or more stages during hydrogenation reaction of the Cs fraction in the liquid phase in the presence of a catalyst. Addition method. 2. The method according to claim 1, wherein the hydrogen supply in the first stage is at a molar ratio of less than 1.0 in terms of pure hydrogen with respect to the total amount of globadiene and methylacetylene in the Cs fraction.
JP7291684A 1984-04-13 1984-04-13 Liquid-phase hydrogenation of 3c fraction Pending JPS60218336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7291684A JPS60218336A (en) 1984-04-13 1984-04-13 Liquid-phase hydrogenation of 3c fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7291684A JPS60218336A (en) 1984-04-13 1984-04-13 Liquid-phase hydrogenation of 3c fraction

Publications (1)

Publication Number Publication Date
JPS60218336A true JPS60218336A (en) 1985-11-01

Family

ID=13503149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7291684A Pending JPS60218336A (en) 1984-04-13 1984-04-13 Liquid-phase hydrogenation of 3c fraction

Country Status (1)

Country Link
JP (1) JPS60218336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436748A (en) * 2020-11-03 2022-05-06 中国石油化工股份有限公司 Control method, control system and reaction system in liquid-phase selective hydrogenation reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149987A (en) * 1982-03-02 1983-09-06 Sumitomo Chem Co Ltd Selective hydrogenation of hydrocarbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149987A (en) * 1982-03-02 1983-09-06 Sumitomo Chem Co Ltd Selective hydrogenation of hydrocarbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436748A (en) * 2020-11-03 2022-05-06 中国石油化工股份有限公司 Control method, control system and reaction system in liquid-phase selective hydrogenation reaction

Similar Documents

Publication Publication Date Title
Belgued et al. Low temperature catalytic homologation of methane on platinum, ruthenium and cobalt
Dry The Fischer-Tropsch process-commercial aspects
EP2253585B1 (en) Process for producing liquid hydrocarbons from natural gas
NO169709B (en) The hydrogenation process.
US2423180A (en) Process for the reduction of nitronaphthenes
EP1098865B1 (en) Process for the preparation of styrene and propylene oxide
JPH0581635B2 (en)
JPS6327393B2 (en)
EA008283B1 (en) Integrated process for making acetic acid and methanol
CN103627427B (en) Two-stage hydrogenation system, and hydrogenation method
NO314697B1 (en) A process for converting a synthesis gas into a liquid phase
SG174748A1 (en) Integrated processing of methanol to olefins
CN101279881B (en) Method for preparing ethylene and propylene by benzin naphtha catalytic pyrolysis
WO2016111203A1 (en) Method for producing 1,3-butadiene
JPS60218336A (en) Liquid-phase hydrogenation of 3c fraction
US1826974A (en) Process of producing hydrogen
RU2224784C2 (en) Method for generation of hydrogen and hydrofined product from hydrocarbon feedstock
JP2011084528A (en) Method for producing propylene
WO2014078226A1 (en) Process scheme for catalytic production of renewable hydrogen from oxygenate feedstocks
Yarlagadda et al. Direct catalytic conversion of methane to higher hydrocarbons
AU2013226169B2 (en) Methods for improving higher alcohol yields from syngas by altering flow regimes within a reactor
JP2003160515A (en) Method for producing decalin from naphthalene by two stage hydrogeneration reaction
US3769358A (en) Hydrogenation process start-up method
CN113784913A (en) Production of synthesis gas and methanol
US5370786A (en) Method for operating a continuous conversion process employing solid catalyst particles