JPS60217774A - High-definition television receiver - Google Patents
High-definition television receiverInfo
- Publication number
- JPS60217774A JPS60217774A JP59072796A JP7279684A JPS60217774A JP S60217774 A JPS60217774 A JP S60217774A JP 59072796 A JP59072796 A JP 59072796A JP 7279684 A JP7279684 A JP 7279684A JP S60217774 A JPS60217774 A JP S60217774A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- converter
- reference voltage
- circuit
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/015—High-definition television systems
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Picture Signal Circuits (AREA)
- Color Television Systems (AREA)
- Television Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は高品位テレビ受信機に係り、特にエネルギー拡
散用低周波信号が重畳された高品位テレビ信号を受信す
るのに好適な高品位テレビ受信機に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a high-definition television receiver, and particularly to a high-definition television receiver suitable for receiving a high-definition television signal superimposed with a low-frequency signal for energy diffusion. Regarding machines.
高品位テレビ信号を120H)帯の衛星放送で放送Wl
能ニt ルM U S B (MuLtipLa 5
ubJ1yquiztU〒LirL!IMacmcLi
nl )方式が提案されている(文献:二宮、他2、゛
高品位テレビの衛星1チャンネル伝送方式(MUSIC
)’、テレビジョン学会技術報告TKBs95−2)。Broadcasting high-definition TV signals via 120H) band satellite broadcasting Wl
Noh Nit LeMUS B (MuLtipLa 5
ubJ1yquiztU〒LirL! IMacmcLi
nl ) system has been proposed (Reference: Ninomiya et al.
)', Television Society Technical Report TKBs95-2).
しかし、この12GH)帯衛星放送ではエネルギー拡散
が銭務づけられており(文献:日本放送協会編、゛放送
衛星技術1日本数送出版協会刊、P46)、7レ一ム周
期に同期した三角波の拡散信号が重畳される。従来NT
SO方式では水平ブランキング期間をクランプする方法
で比較的容易にこの拡散信号を除去することができる。However, in this 12 GH) band satellite broadcasting, energy dispersion is required (Reference: Japan Broadcasting Corporation, ``Broadcasting Satellite Technology 1, Published by Japan Publishing Association, p. 46), and triangular waves synchronized with 7-rem period. spread signals are superimposed. Conventional NT
In the SO system, this spread signal can be removed relatively easily by clamping the horizontal blanking period.
ところが、MUSKはストレートTO工(’]’L麿Q
6m−yrgsztd IrLtayation )と
呼ばれる輝度信号と色差信号を時分割多重する信号形式
が用いられている。これは水平帰線期間に時間軸圧縮し
た色差信号を線順次で多重するものである。したがって
、従来の1iT80と興なり、無信号平坦部が第1図に
示すように4サンプル分(1サンプル間隔は約60nS
なので約0.24μs)しか無い。したがって、ケーブ
ルのミスマツチなどによる波形歪、雑音などの点から、
この期間でクテンプを行なうのは困難である。However, MUSK is a straight TO engineering(']'LmaroQ
A signal format called 6m-yrgsztdIrLtation) in which a luminance signal and a color difference signal are time-division multiplexed is used. This multiplexes time-base compressed color difference signals line-sequentially during the horizontal retrace period. Therefore, unlike the conventional 1iT80, the no-signal flat area is equal to 4 samples (1 sample interval is approximately 60 nS) as shown in Figure 1.
Therefore, it is only about 0.24 μs). Therefore, in terms of waveform distortion and noise caused by mismatched cables,
It is difficult to perform kutemp during this period.
本発明の目的はエネルギー拡散信号の重畳された高品位
テレビ信号から水平周期の情報を利用せずエネルギー拡
散信号を除去して基準直流レベルを正しく再生し、良好
な画像を得る高品位テレビ受信機を提供することにある
。An object of the present invention is to provide a high-definition television receiver that correctly reproduces a reference DC level by removing the energy diffusion signal from a high-definition television signal on which the energy diffusion signal is superimposed without using horizontal period information, thereby obtaining a good image. Our goal is to provide the following.
上記目的を達成するため、垂直帰線期間に基準電圧(例
えば色差信号の零レベルを示す)・−7グレーレベル)
が挿入されている事を利用し、フィ°−ルド(又はフレ
ーム)間でこの基準電圧の直流電圧差をデジタル的にめ
、この電圧差に応じて平坦部分の時間が変化する階段波
をデジタル的に発生させることにより、水平周期の情報
を用いずに高精度に拡散信号を打消するようにするもの
である。To achieve the above purpose, a reference voltage (for example, indicating the zero level of the color difference signal, -7 gray level) is applied during the vertical retrace period.
is inserted, digitally measure the DC voltage difference of this reference voltage between fields (or frames), and digitally generate a staircase wave whose time in the flat part changes according to this voltage difference. By generating this signal, the spread signal can be canceled with high precision without using horizontal period information.
本発明の高品位テレビ受信機の一実施例を第2図に示す
第2図において、1は第1の入力端子、2は第2の入力
端子、6は第3の入力端子、4は第4の入力端子、5は
第1のAD変換器、6は第1のゲート回路、7は第1の
積分回路、8は第1のスイッチ、9は第2の積分回路、
10は第3の積分回路、11は第1の引算回路、12は
第1のプログラマブルカウンタ、13はアップダウンカ
ウンタ、14は第2のプログラマブルカウンタ、15は
第2のゲート回路、16は第2の引算回路、17は出力
端子である。An embodiment of the high-definition television receiver of the present invention is shown in FIG. 2. In FIG. 2, 1 is a first input terminal, 2 is a second input terminal, 6 is a third input terminal, and 4 is a third input terminal. 4 input terminal, 5 a first AD converter, 6 a first gate circuit, 7 a first integration circuit, 8 a first switch, 9 a second integration circuit,
10 is a third integration circuit, 11 is a first subtraction circuit, 12 is a first programmable counter, 13 is an up/down counter, 14 is a second programmable counter, 15 is a second gate circuit, and 16 is a second gate circuit. 2 is a subtraction circuit, and 17 is an output terminal.
第1の入力端子1からFM復調されてベースバンドの信
号になった高品位テレビ信号が入力される。この信号に
は拡散信号が重畳されている。この拡散信号は例えば第
3図に示すような2フレーム繰返しくしたがって約15
H7)の三角波である。12GH,i帯の衛星放送では
600KH,)p−pのエネルギー拡散を行なう必要が
ある。駒井−カーソン則を満足し無理なく伝送するため
には主搬送波の周波数偏移は10MH,)P−P程度に
なる。映像信号にはプリエンファシスをかけているので
低周波の拡散信号は10dBの減衰を受けている。した
がって、600kH) P−Pの拡散を行なうためには
、映像信号1vp−pに対し約0.2vp−pの拡散信
号を重畳する必要がある。A high-definition television signal that has been FM demodulated into a baseband signal is input from a first input terminal 1 . A spread signal is superimposed on this signal. This spread signal, for example, repeats 2 frames as shown in FIG.
H7) is a triangular wave. For 12GH, i-band satellite broadcasting, it is necessary to perform energy diffusion of 600KH, )pp. In order to satisfy the Komai-Carson law and transmit data without difficulty, the frequency deviation of the main carrier wave should be approximately 10 MH, )PP. Since pre-emphasis is applied to the video signal, the low frequency spread signal is attenuated by 10 dB. Therefore, in order to perform PP spreading of 600 kHz, it is necessary to superimpose a spreading signal of approximately 0.2 vp-p on a video signal of 1 vp-p.
ところで−、MUSRiは高度に帯域圧縮された信号で
、受信側でデジタル信号処理よりもとの高品位テレビ信
号に戻す必要がある。このため、第1のA ’D変換器
5により入力信号を標本、量子化する。この第1のAD
変換器5の標本化周波数はM U S Eのサンプル点
の繰返し1列波数(16,2MHJ)に選べば良い。ま
た量子化ビット数は8ビツトで良い。この第1のAD変
換器50入力部のダイナミックレンジとして、映像信号
振幅I V p−pと拡散信号0.2V1)−pと、振
幅ばらつきなどを考慮して1.4Vp−1)とれば十分
である。この時の拡散信号のダイナミックレンジに占め
る割合は約14%で、256ステツプのうち、約36ス
テツプを占めることになる。By the way, MUSRi is a highly band-compressed signal, which requires digital signal processing to be restored to the original high-definition television signal on the receiving side. Therefore, the first A'D converter 5 samples and quantizes the input signal. This first AD
The sampling frequency of the converter 5 may be selected to be the number of repetition waves of one row of sample points of MUSE (16.2 MHJ). Further, the number of quantization bits may be 8 bits. As the dynamic range of the input section of the first AD converter 50, it is sufficient to set the video signal amplitude I V p-p, the spread signal 0.2V1)-p, and 1.4Vp-1) in consideration of amplitude variations, etc. It is. At this time, the spread signal occupies about 14% of the dynamic range, and occupies about 36 steps out of 256 steps.
この第1のAp変換器5の出力は第1のゲート回路乙に
供給される。ここで、入力信号から分離されたフレーム
パルス、水平同期信号を用いて作られた基準電圧期間を
ゲートするための、第2の入力端子2から入力されたゲ
ートパルスにより、基準電圧期間のデジタル値が抜取ら
れる。この抽出された基準電圧期間のデジタル値は、第
1の積分回路7で、この基準電圧期間ごとに加算、平均
値がめられる。The output of this first Ap converter 5 is supplied to the first gate circuit B. Here, the frame pulse separated from the input signal and the gate pulse input from the second input terminal 2 for gating the reference voltage period created using the horizontal synchronization signal are used to generate the digital value of the reference voltage period. is extracted. The extracted digital values of the reference voltage period are added and averaged in the first integration circuit 7 for each reference voltage period.
第3の入力端子3から入力信号から分離されたフレーム
パルスが入力され、第6図に示した拡散信号の立上りス
タート近傍の基準電圧期間の平均値と、立下りスタート
近傍の基準電圧期間の平均値が、第1のスイッチ8で分
離されて、2つの出力にそれぞれ出力される。A frame pulse separated from the input signal is input from the third input terminal 3, and the average value of the reference voltage period near the rising start and the average value of the reference voltage period near the falling start of the spread signal shown in FIG. The values are separated by the first switch 8 and output to two outputs respectively.
この2つの平均値は、それぞれ第2の積分回路9と第6
の積分回路10で別々に複数フレームにわたって加算、
平均される。このようにして、第3図に示した拡散信号
の最小値と最大値がデジタル的に精度良く検出できる。These two average values are calculated by the second integrating circuit 9 and the sixth integrating circuit, respectively.
The integration circuit 10 separately adds over multiple frames,
averaged. In this way, the minimum and maximum values of the spread signal shown in FIG. 3 can be detected digitally and accurately.
この第2の積分回路9と第3の積分回路10の差を第1
の引算回路11でめ、拡散信号の振幅をめる。この振幅
がNスフフジ分あるとすると、アップダウンカウンタ1
3のカウンタ値を1フレームの間にNステップ変化させ
て補正用の階段波を得るわけである。この時、カウンタ
値をアップさせるかダウンさせるフレームの判別は第1
の引算回路11の出力の符号で容易に行なえる。The difference between the second integrating circuit 9 and the third integrating circuit 10 is calculated as the first
The subtraction circuit 11 calculates the amplitude of the spread signal. Assuming that this amplitude is equal to N times, the up/down counter 1
The counter value of 3 is changed by N steps during one frame to obtain a staircase wave for correction. At this time, the first step is to determine which frame should increase or decrease the counter value.
This can be easily done using the sign of the output of the subtraction circuit 11.
また、アップダウンカウンタ13の1フレームのステッ
プ数変化は以下のようにして実行できる。Further, the change in the number of steps for one frame of the up/down counter 13 can be executed as follows.
第1の引算回路11でめられたステップ数をNとすると
、高品位テレビ信号の走査線は1125本なので、1ス
テツプあたりの長さLはL=(1125÷N)XH(S
)
(但し、H:1水平走査期間で約227μs)となる。If the number of steps determined by the first subtraction circuit 11 is N, the number of scanning lines of a high-definition television signal is 1125, so the length L per step is L=(1125÷N)XH(S
) (However, H: 1 horizontal scanning period is about 227 μs).
このステップ数と、1ステツプあたりの長さの関係の例
を第4図に示す。例えばステップ数が36の時、1段当
りの長さは約31.3Hとなる。したがって、第1のプ
ログラマブルカウンタ12の分局数を31にし、第2の
プログラマブルカウンタ14の分周数を3にし・第4の
入力端)4から入力される入力信号から分離された水平
同期信号、またはそれに同期した水平同期信号と同一周
波数の信号を、第2のプログラマブルカウンタで、第1
のプログラマブルカウンタ12の出力の6パルスに1回
の割合で1パルスデートする。このようにすると、第1
のプログラマブルカウンタは、3回のうち2回ハ3′1
分周、1回は62分周動作を行なうことになる。したが
って、平均して31.3分周動作を行なったことになり
、1ステツプあたりの長さを31.3Hとする事が可能
となる。このように、第1のグログランタの入力信号を
ゲートすることで、端数も処理する事が可能になるわけ
である。勿論、精度を若干犠牲にすれば、第2のプログ
ラマブルカウンタ14と第2のゲート15は削除しても
さしつかえは無い。An example of the relationship between the number of steps and the length per step is shown in FIG. For example, when the number of steps is 36, the length of one step is approximately 31.3H. Therefore, the number of divisions of the first programmable counter 12 is set to 31, and the number of divisions of the second programmable counter 14 is set to 3. Or, a signal of the same frequency as the horizontal synchronization signal synchronized therewith is sent to the first counter using the second programmable counter.
One pulse is dated once every six pulses of the output of the programmable counter 12. In this way, the first
The programmable counter of is 3'1 2 out of 3 times.
Frequency division is performed once by 62 frequency division operations. Therefore, 31.3 frequency division operations are performed on average, and the length per step can be set to 31.3H. In this way, by gating the input signal of the first gross grantor, it becomes possible to process even fractions. Of course, the second programmable counter 14 and the second gate 15 may be omitted if the accuracy is sacrificed a little.
このようにして三角波状の拡散信号を補正するため階段
波状にデジタルで発生した信号を第1のAD変換器5の
出力信号から第2の引算面−46’dB以下の値にする
ことができる。フリッカの検知限は一4oa:s程度な
ので全く問題無い値にすることが可能なわけである◇
以上の説明では映像信号は拡散信号が重畳した形でAD
変換するとしたが、この形では拡散信号の振幅分だけ量
子化精度が悪くなる。低速で動作するAD変換器、DA
変換器を付加すれば、この量子化精度の劣化を防ぐこと
が可能である。この場合の実施例を第5図に示す。第5
図において、18はLP?、19は第2のAD変換器、
20はDA変換器、21は第3の引算回路、22は第2
のスイッチ、23は第4の積分回路、24は第5の積分
回路、25は第4の引算回路である。In this way, in order to correct the triangular wave-like spread signal, the digitally generated step-wave signal can be reduced to a value of -46'dB or less in the second subtraction plane from the output signal of the first AD converter 5. can. The detection limit for flicker is about -4 oa:s, so it is possible to set it to a value that is completely acceptable.◇ In the above explanation, the video signal is AD in the form of a diffuse signal superimposed.
However, in this form, the quantization accuracy deteriorates by the amplitude of the spread signal. AD converter, DA that operates at low speed
By adding a converter, it is possible to prevent this deterioration of quantization accuracy. An example in this case is shown in FIG. Fifth
In the figure, 18 is LP? , 19 is a second AD converter,
20 is a DA converter, 21 is a third subtraction circuit, 22 is a second
23 is a fourth integration circuit, 24 is a fifth integration circuit, and 25 is a fourth subtraction circuit.
第1の入力端子1から入力された入力信号は、LP71
8で高周波雑音を除去したのち、第2のAD変換器19
で、垂直帰線期間内の基準電圧を標本量子化する。この
第2のAD変換器19のビット数は6ビツトあれば良く
、動作速度も1水平走査期間の数分の1程度、すなわち
100KHJ程度の変換速度が得られれば良い。以下の
処理は第2図の場合と同様にして、アップダウンカウン
タ13の動作が制御される。第5図の場合、このアップ
ダウンカウンタ16の出力をDA変換器20でアナログ
信号に変換する。この変換すしたアナログ信号が入力信
号から第3の引算回路21で引算される。このようにし
て補正波形は純粋にデジタル的に生成されるが、引算処
理はアナログ的に行なわれるわけである。このDA変換
器20のビット数も6ビツトで良く、動作速度も10K
H,)程度で良い。The input signal input from the first input terminal 1 is
After removing high frequency noise in step 8, the second AD converter 19
The reference voltage within the vertical retrace period is sampled and quantized. The number of bits of this second AD converter 19 should be 6 bits, and the operating speed should be about a fraction of one horizontal scanning period, that is, a conversion speed of about 100 KHJ. In the following processing, the operation of the up/down counter 13 is controlled in the same manner as in the case of FIG. In the case of FIG. 5, the output of this up/down counter 16 is converted into an analog signal by a DA converter 20. This converted analog signal is subtracted from the input signal by a third subtraction circuit 21. In this way, the correction waveform is generated purely digitally, but the subtraction process is performed analogously. The number of bits of this DA converter 20 is only 6 bits, and the operating speed is 10K.
H, ) is sufficient.
このようにしてアナログ信号のまま拡散信号が補正され
るので、信号処理のために使用される第1のAD変換器
5の入力ダイナミックレンジを映像信号だけに利用でき
るわけである。この時、DA変換器20の変換感度は、
回路素子の影響などでばらつきを生じ、補正波形の振幅
に、ごくわずかであるが誤差を生じる可能性がある。In this way, since the spread signal is corrected as an analog signal, the input dynamic range of the first AD converter 5 used for signal processing can be used only for the video signal. At this time, the conversion sensitivity of the DA converter 20 is
Variations may occur due to the influence of circuit elements, and there is a possibility that a very small error may occur in the amplitude of the correction waveform.
これを完全に補正するため、第1のAD変換器5の出力
から、この垂直帰線期間の基準電圧のフレーム間のレベ
ル差、すなわち、補正誤差を同様の手順でめ、この補正
誤差が無くなるようにDA変換器の変換感度を制御して
やれば良い。この時、第1のスイッチ8と第2のスイッ
チ22の極性も含めて同期して制御してやれば、第1の
引算回路11の符号により、第4のd[算回路25の符
号の正負に応じてDA変換器20の変換感度を増加させ
るか減少させるかを正しく制御することができる。勿論
、拡散信号の除去は完全である必要は無く、映像信号I
VT)−1) に対し一40dB以下になっていれば
良いわけで、こうしたDA変換器20の変換感度のフィ
ードバック制御は必ずしも必要では無い。In order to completely correct this, the frame-to-frame level difference of the reference voltage during this vertical retrace period, that is, the correction error, is determined from the output of the first AD converter 5 using the same procedure, and this correction error is eliminated. The conversion sensitivity of the DA converter can be controlled as follows. At this time, if the polarities of the first switch 8 and the second switch 22 are controlled in synchronization, the sign of the first subtraction circuit 11 will change the sign of the fourth d[sign of the subtraction circuit 25]. Accordingly, it is possible to correctly control whether to increase or decrease the conversion sensitivity of the DA converter 20. Of course, it is not necessary to remove the spread signal completely, and the video signal I
VT)-1), it is sufficient that it is -40 dB or less, and such feedback control of the conversion sensitivity of the DA converter 20 is not necessarily necessary.
さらに〜第2のAD変換器18と同程度のAD変換器を
設け、補正誤差検出を行なわせ、帯域圧縮信号をもとの
高品位テレビ信号に戻す信号処理とを独立させる事も装
置の単純化から有効な手段と言える。Furthermore, it is also possible to simplify the device by providing an AD converter of the same level as the second AD converter 18, performing correction error detection, and making signal processing to return the band compression signal to the original high-definition television signal independent. It can be said that it is an effective method.
以上説明したように、本発明による高品位テレビ受信機
はエネルギー拡散信号を補正するための補正波形をデジ
タル的に発生するため、精度良く安定にエネルギー拡散
信号を補正でき、高品質の映像信号を得ることが可能に
なり、12GH7帯衛星放送用受信機として好適である
。As explained above, since the high-definition television receiver according to the present invention digitally generates a correction waveform for correcting the energy diffusion signal, it is possible to accurately and stably correct the energy diffusion signal, thereby producing a high-quality video signal. Therefore, it is suitable as a 12GH7 band satellite broadcasting receiver.
第1図はMUS Eの水平同期期間の波形を示す図、第
2図は本発明の高品位テレビ受信機の一実施例を示す図
、第3図はエネルギー拡散信号波形例を示す図、第4図
は階段波のステップ数と1ステツプあたりの長さの関係
を示す図、第5図は本発明の高品位テレビ受信機の第2
の実施例を示す図である。
1.2,3.4・・・入力端子
5.18・・・AD変換器
6.15・・・ゲート回路
7.9.10.23.24・・・積分回路8.22・・
・スイッチ回路
11.16,21.25・・・引算回路12.14・・
・プログラマブルカウンタ13・・・アップダウンカウ
ンタ
20・・・DA変換器
訛1図
いでル
ヒHD裸→
手続補正書(方式)
補正をする者
・譜との関係 特許出願人
名 称 L5101株式会ト[日 立 製 作 所代
理 人FIG. 1 is a diagram showing the waveform of the horizontal synchronization period of MUSE, FIG. 2 is a diagram showing an embodiment of the high-definition television receiver of the present invention, FIG. Figure 4 is a diagram showing the relationship between the number of steps of the staircase wave and the length per step, and Figure 5 is a diagram showing the relationship between the number of steps of the staircase wave and the length per step.
It is a figure showing an example of. 1.2, 3.4... Input terminal 5.18... AD converter 6.15... Gate circuit 7.9.10.23.24... Integrating circuit 8.22...
・Switch circuit 11.16, 21.25...Subtraction circuit 12.14...
・Programmable counter 13... Up/down counter 20... DA converter accent Ruhi HD naked → Procedural amendment (method) Person making the amendment/Relationship with the score Patent applicant name Name L5101 Co., Ltd. Standing production fee
person
Claims (1)
本、量子化するAD変換器と、該AD変換器出力を互い
に異なる該基準電圧期間を速度が変調される計数回路を
有することを特徴とする高品位テレビ受信機。It is characterized by having an AD converter that samples and quantizes a reference voltage period inserted into a vertical retrace period of an input signal, and a counting circuit whose speed is modulated using the different reference voltage periods of the output of the AD converter. A high-definition television receiver.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59072796A JPS60217774A (en) | 1984-04-13 | 1984-04-13 | High-definition television receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59072796A JPS60217774A (en) | 1984-04-13 | 1984-04-13 | High-definition television receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60217774A true JPS60217774A (en) | 1985-10-31 |
JPH0480593B2 JPH0480593B2 (en) | 1992-12-18 |
Family
ID=13499708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59072796A Granted JPS60217774A (en) | 1984-04-13 | 1984-04-13 | High-definition television receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60217774A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62147981U (en) * | 1986-03-13 | 1987-09-18 | ||
JPH02294121A (en) * | 1989-05-09 | 1990-12-05 | Nippon Hoso Kyokai <Nhk> | Transmission system for parallel/serial conversion coding information signal |
JPH04319870A (en) * | 1991-04-18 | 1992-11-10 | Fujitsu General Ltd | Dc level detecting circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140816A (en) * | 1978-04-24 | 1979-11-01 | Nippon Hoso Kyokai <Nhk> | Frequency-modulated television signal trnasmission system of energy-diffusion type |
JPS592490A (en) * | 1982-06-28 | 1984-01-09 | Hitachi Ltd | Receiving circuit of fm television signal |
-
1984
- 1984-04-13 JP JP59072796A patent/JPS60217774A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140816A (en) * | 1978-04-24 | 1979-11-01 | Nippon Hoso Kyokai <Nhk> | Frequency-modulated television signal trnasmission system of energy-diffusion type |
JPS592490A (en) * | 1982-06-28 | 1984-01-09 | Hitachi Ltd | Receiving circuit of fm television signal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62147981U (en) * | 1986-03-13 | 1987-09-18 | ||
JPH02294121A (en) * | 1989-05-09 | 1990-12-05 | Nippon Hoso Kyokai <Nhk> | Transmission system for parallel/serial conversion coding information signal |
JPH04319870A (en) * | 1991-04-18 | 1992-11-10 | Fujitsu General Ltd | Dc level detecting circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH0480593B2 (en) | 1992-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4745461A (en) | R,G,B level control in a liquid crystal TV using average of composite video signal | |
US6195133B1 (en) | Digital automatic gain control (AGC) circuit | |
JPH02223869A (en) | Noise measuring apparatus | |
US4360830A (en) | Method for horizontal and vertical contour correction of a digitized analogue signal | |
JPS60217774A (en) | High-definition television receiver | |
CA1233567A (en) | Analog-to-digital conversion apparatus | |
US4335396A (en) | Automatic equalization system for television receiver | |
JP2568425B2 (en) | Timing corrector for component television | |
US5008749A (en) | Method and apparatus for generating an auxiliary timing signal in the horizontal blanking interval of a video signal | |
US6967691B2 (en) | Color difference signal processing | |
US4829366A (en) | Method and apparatus for measuring delay and/or gain difference using two different frequency sources | |
JP3510640B2 (en) | Television camera equipment | |
US4305090A (en) | Method and system for contrast correction of color television signals | |
KR850008086A (en) | Beam current reduction device | |
KR900015559A (en) | Exercise compensation method | |
US4977460A (en) | Video signal reproducing apparatus having setup level elimination | |
JPH0683434B2 (en) | Automatic gain control device | |
US5387932A (en) | Video camera capable of adding, transmitting, and extracting a reference signal indicative of the position of a reference pixel | |
KR950005599B1 (en) | Signal offset circuitry for digital deghosting system | |
JP2870135B2 (en) | Dispersal removal device | |
JPH07203485A (en) | A/d converter for video signal | |
KR100291345B1 (en) | High definition television compatible clamp signal generation circuit | |
KR100287158B1 (en) | Apparatus for generating the composite synchronizing signal | |
KR100281385B1 (en) | Video system of high definition television | |
JP2754935B2 (en) | Clamping device |