JPS60217605A - Manufacture of rigid magnetic film - Google Patents
Manufacture of rigid magnetic filmInfo
- Publication number
- JPS60217605A JPS60217605A JP59074538A JP7453884A JPS60217605A JP S60217605 A JPS60217605 A JP S60217605A JP 59074538 A JP59074538 A JP 59074538A JP 7453884 A JP7453884 A JP 7453884A JP S60217605 A JPS60217605 A JP S60217605A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- particles
- magnetic
- electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、プラスチック磁石膜よりも耐熱性に優れ、レ
ーザ照射による微細着磁パターンも形成可能な硬質磁性
膜の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a hard magnetic film that has better heat resistance than a plastic magnet film and can also form a fine magnetized pattern by laser irradiation.
硬質磁性膜を製造する場合、鋳造や焼結法で作製したバ
ルク材を切削する方法では磁石自体が脆く割れ易いこと
から、通常は磁性粒子を樹脂と混合した液を塗布したり
プラスチック磁石のように樹脂をバインダーとして膜状
に成型することが行なわ塾でいる。When manufacturing a hard magnetic film, the magnet itself is brittle and easily cracked when cutting bulk materials made by casting or sintering, so it is usually done by applying a liquid mixture of magnetic particles and resin, or by cutting a bulk material made by casting or sintering. At the same time, molding into a film using resin as a binder was carried out at the school.
しかしながら、このような成型法による磁性膜の特性は
、成分に樹脂を含んでいるため耐熱性が弱いという欠点
があり、高温度下で適用することができない。However, the characteristics of the magnetic film produced by such a molding method have the drawback of low heat resistance because it contains resin as a component, and cannot be applied at high temperatures.
例えば、磁気エンコーダの微細着磁パターンの形成法と
して円筒側面や円板上に形成した磁性膜を一括着磁した
後、レーザ光を照射して局部加熱を行ない、微小部分の
消磁と着磁を同時に行なう方法がある。この方法では4
00℃以上に加熱する必要があるが、樹脂をバインダー
とした従来の磁性膜では上記のように耐熱性が100か
ら200℃しかないため、このようなレーザ微細着磁に
は全く使用できないという問題がある。For example, as a method for forming a fine magnetized pattern in a magnetic encoder, a magnetic film formed on the side surface of a cylinder or a disk is magnetized all at once, and then laser light is irradiated to locally heat the part to demagnetize and magnetize the minute part. There is a way to do both at the same time. In this method, 4
The problem is that conventional magnetic films using resin as a binder have a heat resistance of only 100 to 200°C, so they cannot be used at all for such fine laser magnetization. There is.
本発明の目的は、磁性粒子を電気めっきによる金属によ
って結合することにより、磁性膜を実質的にめっき金属
の融点付近まで安定化させ、レーザ照射による微細着磁
パターンの形成にも十分耐える硬質磁性膜の製造方法を
提供することにある。The purpose of the present invention is to stabilize the magnetic film substantially to near the melting point of the plated metal by bonding magnetic particles with metal by electroplating, and to create a hard magnetic film that can sufficiently withstand the formation of fine magnetized patterns by laser irradiation. An object of the present invention is to provide a method for manufacturing a membrane.
本発明の方法は、基板の背面より磁石を接触させγ−F
e20B 、 Baフェライト、 SmI Co5 +
Sm2 Co17 、Nd−Fe等の硬質磁性粒子を基
板に付着させた後、Nil Cu、 Ag+ Au+
Co、 Cr等の融点の高い金属のめっき液中に浸漬し
、基板を陰極として電解することによりめっき金属によ
って固着された磁性粒子を含む磁性膜を基板上に得るも
のである。The method of the present invention involves contacting the magnet from the back side of the substrate to generate γ-F
e20B, Ba ferrite, SmI Co5 +
After attaching hard magnetic particles such as Sm2Co17 and Nd-Fe to the substrate, NilCu, Ag+Au+
A magnetic film containing magnetic particles fixed by the plating metal is obtained on the substrate by immersing it in a plating solution of a metal with a high melting point, such as Co or Cr, and electrolyzing the substrate with the substrate as a cathode.
また、本発明の方法では耐熱性の良い磁性膜が得られる
ことの他に、基板に磁性粒子を先に付着させておいてか
らめっきを行うため、磁性粒子をめっき液中に分散させ
てめっきする従来の方法よりも磁性膜の形成速度が速い
という特長もある。Furthermore, in addition to being able to obtain a magnetic film with good heat resistance, the method of the present invention also allows plating to be carried out after magnetic particles are first attached to the substrate, so the magnetic particles are dispersed in the plating solution. Another advantage is that the magnetic film can be formed at a faster rate than conventional methods.
ここで、硬質磁性粒子の中でNd−FeやSmI Co
5あるいは5l112 C017系の微粒子は大気中に
放電すると酸化しやすく、また水溶液へそのまま浸漬す
るとNdやSmなどの活性な希土類金属成分が水と反応
して水素ガスを発生する。このため本発明を実施する場
合には表面に保護膜を形成させる必要がある。また、B
aフェライトやr−Fe20g粒子のように電気伝導性
のない磁性粒子を使用する場合には本発明の方法ではめ
っき液中に浸漬しても通電できないので、このような磁
性粒子には導電性皮膜を形成させる必要がある。同じ理
由からNd−FeやSm−Co系硬質磁性粒子の保護膜
も導電性でなければならない。Here, among the hard magnetic particles, Nd-Fe and SmI Co
5 or 5l112 C017-based fine particles are easily oxidized when discharged into the atmosphere, and when immersed directly in an aqueous solution, active rare earth metal components such as Nd and Sm react with water to generate hydrogen gas. Therefore, when carrying out the present invention, it is necessary to form a protective film on the surface. Also, B
When using magnetic particles that do not have electrical conductivity, such as a-ferrite or r-Fe20g particles, the method of the present invention cannot conduct electricity even if immersed in a plating solution, so such magnetic particles are coated with a conductive film. need to be formed. For the same reason, the protective film of Nd-Fe or Sm-Co hard magnetic particles must also be electrically conductive.
導電性皮膜の種類としては水と反応しにくく、表面に水
酸化皮膜等が生成しに(いCu+ Ni+^g。The type of conductive film is difficult to react with water and does not form a hydroxide film on the surface (Cu+Ni+^g).
Cr、 Co+ Au等の金属膜あるいはTi+ Zr
+ Nb、 Taの窒化物膜が適している。硬質磁性粒
子表面上へのこれらの皮膜の形成方法としては真空蒸着
法、イオンブレーティング法、CVD法、ARE法およ
びスパッタ法のようなドライブレーティング法が適切で
ある。Baフェライトやγ−Fe208のような酸化物
粒子では金属皮膜の被覆方法としてNilCu、 Ag
の無電解めっき法も適用できる。Metal film such as Cr, Co+Au or Ti+Zr
+Nb, Ta nitride films are suitable. Suitable methods for forming these films on the surfaces of hard magnetic particles include dry brating methods such as vacuum evaporation, ion blating, CVD, ARE, and sputtering. For oxide particles such as Ba ferrite and γ-Fe208, NilCu, Ag
Electroless plating method can also be applied.
さらに、磁気エンh−ダの微細着磁パターン形成用の硬
質磁性膜を本発明の方法によって作製する場合には、磁
性膜中の硬質磁性粒子の含有率は70から95容量%(
以下特記しない場合には%は容量%である。)でなけれ
ばならない。これは硬質磁性粒子の含有率が70%未満
では磁石としての特性が十分に現れず、逆に95%を超
えると磁性粒子間の結合力が弱く、外力によって容易に
粒子がはがれてしまうからである。Furthermore, when a hard magnetic film for forming a fine magnetized pattern of a magnetic encoder is produced by the method of the present invention, the content of hard magnetic particles in the magnetic film is 70 to 95% by volume (
Unless otherwise specified below, % is volume %. )Must. This is because if the content of hard magnetic particles is less than 70%, the characteristics as a magnet will not be fully exhibited, whereas if the content exceeds 95%, the binding force between the magnetic particles will be weak, and the particles will easily peel off due to external force. be.
以下、本発明の方法を実施例に基いて説明する。 Hereinafter, the method of the present invention will be explained based on Examples.
〔実施例1〕
銅の基板の背面に電磁石を接触させ、基板の表面におけ
る磁束密度を1000ガウスになるように電磁石を調整
し、基板表面に0.3μmの導電性のNi無電解めっき
を被覆したBaフェライト粒子(平均′粒径0.8μm
)を付着させた。Baフェライト粒子の付着膜厚が60
μmになるように十分な粒子を取り除いた後、基板を硫
酸ニッケル240g/C塩化ニッケル45g/β、はう
r!&30g/lから成るニッケルめっき液中に浸漬し
、液温40’C,電流密度I A/dm2でNiめっき
膜厚が5μmとなるまで基板を陰極として電解した。こ
れによりBaフェライト粒子の含有率が92%で磁気特
性の良好な磁性膜が得られた。[Example 1] An electromagnet was brought into contact with the back surface of a copper substrate, the electromagnet was adjusted so that the magnetic flux density on the surface of the substrate was 1000 Gauss, and the surface of the substrate was coated with 0.3 μm conductive Ni electroless plating. Ba ferrite particles (average particle size 0.8 μm
) was attached. Adhesive film thickness of Ba ferrite particles is 60
After removing enough particles to make it μm, the substrate was coated with nickel sulfate 240g/C nickel chloride 45g/β. The substrate was immersed in a nickel plating solution of &30 g/l, and electrolyzed with the substrate as a cathode at a solution temperature of 40'C and a current density of I A/dm2 until the Ni plating film thickness reached 5 μm. As a result, a magnetic film with a Ba ferrite particle content of 92% and good magnetic properties was obtained.
この磁性膜を着磁後、YAGレーザを照射して微細着磁
パターンを形成したところ良好な着磁パターンが得られ
た。After this magnetic film was magnetized, a fine magnetization pattern was formed by irradiation with a YAG laser, and a good magnetization pattern was obtained.
また、電磁石の代わりに永久磁石を用いて基板表面の磁
束密度が1000ガウスとなるように基板との距離を調
整した。この基板を上記の磁性粒子およびめっき液を用
いて同一条件でNiめっきしたところ、この場合も電磁
石を使用した場合と同じ結果が得られた。Further, a permanent magnet was used instead of an electromagnet, and the distance to the substrate was adjusted so that the magnetic flux density on the surface of the substrate was 1000 Gauss. When this substrate was plated with Ni using the above magnetic particles and plating solution under the same conditions, the same results as when using an electromagnet were obtained in this case as well.
〔実施例2〕
鉄の基板の背面に電磁石を接触させ、基板表面における
磁束密度を500ガウスに調整した。次いで基板表面に
平均粒径が1μmで0.4μmのCu薄膜を真空蒸着し
たSmI Co5粒子、および0.3μmの導電性のZ
rN皮膜をイオンブレーティング法で被覆したSm2(
Co O,7,Cu O,15,Fe O,1,Mn
O,05)17組成の粒子をそれぞれ付着させた。これ
らの粒子の付着膜厚が0.1IIII11になるように
余分の粒子を取り除いた後、硫酸銅200 g/ β、
硫酸50g/ !lから成る銅めっき液中へ基板を浸漬
し、液温40’C,電流密度I A/dn+2でCuめ
っき膜厚が40μmになるまで基板を陰極として電解し
た。これによりSn+I Co5およびSm2(Co
0.7+Cu O,15,Fe 0.1.Mn O,0
5)17組成の磁性粒子を70%含有する磁気特性の良
好な金属膜が得られた。これらの磁性膜を着磁後、Δr
レーザを照射して微細着磁パターンを形成したところ良
好な着磁パターンが得られた。[Example 2] An electromagnet was brought into contact with the back surface of an iron substrate, and the magnetic flux density on the substrate surface was adjusted to 500 Gauss. Next, SmI Co5 particles with an average particle size of 1 μm and a 0.4 μm Cu thin film vacuum-deposited on the substrate surface, and 0.3 μm conductive Z
Sm2 (
CoO,7,CuO,15,FeO,1,Mn
Particles of O, 05) and 17 compositions were respectively deposited. After removing excess particles so that the adhesion film thickness of these particles was 0.1III11, copper sulfate 200 g/β,
Sulfuric acid 50g/! The substrate was immersed in a copper plating solution consisting of 1 A, and electrolysis was carried out using the substrate as a cathode at a solution temperature of 40'C and a current density of IA/dn+2 until the Cu plating film thickness reached 40 μm. This allows Sn+I Co5 and Sm2(Co
0.7+Cu O,15,Fe 0.1. Mn O,0
5) A metal film containing 70% of magnetic particles having a composition of 17 and having good magnetic properties was obtained. After magnetizing these magnetic films, Δr
When a fine magnetized pattern was formed by laser irradiation, a good magnetized pattern was obtained.
〔実施例3〕
第1図で示すように外径が80mmの銅製の円筒基板(
2)の内側に永久磁石(7)を接触させ、基板(2)表
面における磁束密度が500〜600ガウスの範囲にな
るように調整した。この基板(2)表面に0.4μmの
導電性のAg薄膜をスパッター法で被覆したγ−Fe2
0a粒子(平均粒径0.06μm、平均長さ0.6μm
)を付着させ、AgCN 36 g/j!!、 KCN
60 g/l。[Example 3] As shown in Fig. 1, a copper cylindrical substrate with an outer diameter of 80 mm (
A permanent magnet (7) was brought into contact with the inside of the substrate (2), and the magnetic flux density on the surface of the substrate (2) was adjusted to be in the range of 500 to 600 Gauss. The surface of this substrate (2) was coated with a 0.4 μm conductive Ag thin film by sputtering.
0a particles (average particle size 0.06 μm, average length 0.6 μm
) and AgCN 36 g/j! ! , KCN
60 g/l.
K2 COa 45g/βから成るめっき液(4)中に
浸漬した。対向するロール(3)とのギャップを50μ
mとするとともに陽極(5)及び電解用電源(6)を配
置して、基板(2)を30rpo+で回転させながら温
度30℃、電流密度0.5 A/dII2で八gめっき
膜厚が3μmになるまで基板(2)を陰極として電解し
た。これにより円筒状基板(2)の外側にγ−Fe20
3粒子の含有率が95容量%で外観と磁気特性の良好な
磁性膜(1)が得られた。この磁性膜(1)を着磁後、
YAGレーザを照射して微細着磁を行なったところ良好
な着磁パターンが得られた。It was immersed in a plating solution (4) consisting of 45 g/β of K2 COa. The gap between the opposing roll (3) is 50μ
m, the anode (5) and the electrolytic power source (6) were arranged, and the substrate (2) was rotated at 30rpo+ at a temperature of 30°C and a current density of 0.5 A/dII2, and the plating film thickness was 3 μm. Electrolysis was carried out using the substrate (2) as a cathode until . As a result, γ-Fe20 is placed on the outside of the cylindrical substrate (2).
A magnetic film (1) with a content of 3 particles of 95% by volume and good appearance and magnetic properties was obtained. After magnetizing this magnetic film (1),
Fine magnetization was performed by irradiation with a YAG laser, and a good magnetization pattern was obtained.
〔実施例4〕
第2図に示すように外径が50mmの銅製の円筒状基板
(2)の内側に永久磁石(7)を接触させ、基板(2)
表面における磁束密度が3’OO〜400ガウスの範囲
になるように調整した。この基板(2)表面に0.3μ
mのCr薄膜をスパッタ法により被覆したNd−Fe硬
質磁性粒子(平均粒径1μm)を付着させ、クロム酸2
50g/ It 、硫酸2.5 g/ Itからなるク
ロムめっき液中へ浸漬した。[Example 4] As shown in Fig. 2, a permanent magnet (7) is brought into contact with the inside of a copper cylindrical substrate (2) with an outer diameter of 50 mm, and the substrate (2) is
The magnetic flux density at the surface was adjusted to be in the range of 3'OO to 400 Gauss. 0.3μ on the surface of this substrate (2)
Nd-Fe hard magnetic particles (average particle size 1 μm) coated with a Cr thin film (average particle size 1 μm) were deposited, and
It was immersed in a chromium plating solution consisting of 50 g/It and 2.5 g/It of sulfuric acid.
さらに、基板(2)と対向する位置にブレード(8)を
取りつけ、基板とのギャップを60μmとして、温度5
0℃、電流密度15A/dm2で基板(2)を陰極とし
20rpmで回転させながらCrめっき膜厚が15μm
になるまで電解した。これにより円筒状基板(2)の外
側にNd−Fe粒子の含有率が80%で磁気特性と外観
の良好な磁性膜(1)がiMられた。この磁性膜を着磁
後。Furthermore, a blade (8) is attached to a position facing the substrate (2), the gap with the substrate is set to 60 μm, and the temperature is 5.
Cr plating film thickness is 15 μm at 0°C, current density 15 A/dm2, using substrate (2) as a cathode and rotating at 20 rpm.
It was electrolyzed until As a result, a magnetic film (1) containing 80% Nd-Fe particles and having good magnetic properties and appearance was formed on the outside of the cylindrical substrate (2). After magnetizing this magnetic film.
YAGレーザを照射して微m@磁を行ったところ良好な
着磁パターンが得られた。When fine m@magnetization was performed by irradiating a YAG laser, a good magnetization pattern was obtained.
また、磁性粒子と基板(2)形状およびめっき装置と基
板(2)の回転数は同じままで、めっき液をシアン化金
カリウム30g/ l 、弱酸緩衝剤100g/ A
、ピペラジン化合物25g/β、pttsの金めつき液
に変え、ブレード(8)と基板(2)のギャップを20
μmとして温度40℃、電流密度3 A/dm2で金め
つき膜厚が5μmとなるまで電解した。これにより円筒
基板(2)の外側にNd−Fe粒子の含有率が80%で
磁気特性と耐食性に優れた磁性膜が得られた。ここで得
られた磁性膜についても着磁後YAGレーザを用いて微
細着磁を行なったところ良好な着磁パターンが得られた
。In addition, the shapes of the magnetic particles and the substrate (2) and the rotational speed of the plating device and the substrate (2) remained the same, and the plating solution was mixed with 30 g/l of potassium gold cyanide and 100 g/l of weak acid buffer.
, piperazine compound 25g/β, changed to PTTs gold plating solution, and the gap between the blade (8) and the substrate (2) was set to 20g/β.
Electrolysis was carried out at a temperature of 40° C. and a current density of 3 A/dm 2 until the gold plating thickness reached 5 μm. As a result, a magnetic film having an Nd-Fe particle content of 80% and excellent magnetic properties and corrosion resistance was obtained on the outside of the cylindrical substrate (2). The magnetic film obtained here was also finely magnetized using a YAG laser after magnetization, and a good magnetization pattern was obtained.
〔発明の効果〕 −
以上のように本発明によれば、耐熱性が良好でレーザに
よる微細着磁パターンの形成に最適な硬質磁性膜を作製
することができ、これにより磁気エンコーダやパルスモ
ータの小型化、高性能化が達成できるという効果を奏す
るものである。[Effects of the Invention] - As described above, according to the present invention, it is possible to fabricate a hard magnetic film that has good heat resistance and is optimal for forming fine magnetized patterns using a laser, and thereby can be used in magnetic encoders and pulse motors. This has the effect of achieving smaller size and higher performance.
第1図および第2図は円筒状の基板に磁性膜を形成する
場合のめっき装置を示す概略図である。
ti> 磁性膜
(2) 基板
(3) ロール
(4)めっき液
(5)陽極
(6)電解用電源
(7)永久磁石
(8)ブレードFIGS. 1 and 2 are schematic diagrams showing a plating apparatus for forming a magnetic film on a cylindrical substrate. ti> Magnetic film (2) Substrate (3) Roll (4) Plating solution (5) Anode (6) Power source for electrolysis (7) Permanent magnet (8) Blade
Claims (1)
て安定な導電性皮膜を有する硬質磁性粒子を付着させ、
次いでめっき液中に浸漬して基板を陰極として電解する
ことにより硬質磁性粒子を含む金属膜を基板上に得るこ
とを特徴とする硬質磁性膜の製造方法。1. Apply a magnet from the back of the substrate to attach hard magnetic particles with a conductive film that is stable against the plating solution to the substrate,
A method for producing a hard magnetic film, which comprises obtaining a metal film containing hard magnetic particles on a substrate by immersing the substrate in a plating solution and electrolyzing the substrate using the substrate as a cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59074538A JPS60217605A (en) | 1984-04-12 | 1984-04-12 | Manufacture of rigid magnetic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59074538A JPS60217605A (en) | 1984-04-12 | 1984-04-12 | Manufacture of rigid magnetic film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60217605A true JPS60217605A (en) | 1985-10-31 |
Family
ID=13550151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59074538A Pending JPS60217605A (en) | 1984-04-12 | 1984-04-12 | Manufacture of rigid magnetic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60217605A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61248401A (en) * | 1985-04-25 | 1986-11-05 | Mitsubishi Steel Mfg Co Ltd | Heat treatment of magnetic material |
-
1984
- 1984-04-12 JP JP59074538A patent/JPS60217605A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61248401A (en) * | 1985-04-25 | 1986-11-05 | Mitsubishi Steel Mfg Co Ltd | Heat treatment of magnetic material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0283905A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
KR20130111036A (en) | Method of preparing nanocomposite magnet using electroless or electro deposition method | |
WO2007091602A1 (en) | Process for production of rare earth permanent magnets having copper plating films on the surfaces | |
KR100374398B1 (en) | HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME | |
WO2002088423A1 (en) | Copper plating solution and method for copper plating | |
JPH03173106A (en) | Rare earth permanent magnet with corrosion resistant film and manufacture thereof | |
CN108597710A (en) | A kind of preparation method of samarium iron nitrogen magnetic nano-array | |
JPS60217605A (en) | Manufacture of rigid magnetic film | |
Hanafi et al. | POTENTIOSTATIC ELECTRODEPOSITION OF Co-Ni-Fe THIN FILMS FROM SULFATE MEDIUM. | |
JPS60217603A (en) | Manufacture of rigid magnetic film | |
JP2004137533A (en) | Method for manufacturing rare earth system permanent magnet having copper plating film on surface | |
JPS60217604A (en) | Manufacture of rigid magnetic film | |
JP2001257112A (en) | Permanent magnet material | |
JP2000133541A (en) | Manufacture of corrosion-resistant r-fe-b bonded magnet | |
JP2908637B2 (en) | Surface treatment method for Fe-BR-based sintered magnet | |
JP2001250707A (en) | Permanent magnet material | |
JP3236813B2 (en) | High corrosion resistance R-Fe-B bonded magnet and method for producing the same | |
CN104894623A (en) | Multi-phase composite magnetic nano-wire array and preparation method thereof | |
Dhanapal et al. | Double dumbbell shaped AgNi alloy by pulsed electrodeposition | |
JPH04288804A (en) | Permanent magnet and manufacture thereof | |
JP3236815B2 (en) | High corrosion resistance R-Fe-B bonded magnet and method for producing the same | |
JP3142172B2 (en) | R-TM-B permanent magnet with improved adhesion and method for producing the same | |
JPH0226003A (en) | Rare-earth permanent magnet having excellent corrosion-resistance and manufacture thereof | |
CN110277211B (en) | Preparation method of samarium-iron-nitrogen magnetic nanotube | |
JPH07106109A (en) | R-tm-b permanent magnet of improved corrosion resistance, and its manufacture |