JPS60216703A - Brake system of internal-combustion engine driven electric vehicle - Google Patents

Brake system of internal-combustion engine driven electric vehicle

Info

Publication number
JPS60216703A
JPS60216703A JP59072341A JP7234184A JPS60216703A JP S60216703 A JPS60216703 A JP S60216703A JP 59072341 A JP59072341 A JP 59072341A JP 7234184 A JP7234184 A JP 7234184A JP S60216703 A JPS60216703 A JP S60216703A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
speed
braking
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59072341A
Other languages
Japanese (ja)
Other versions
JPH0447527B2 (en
Inventor
Shigenori Kinoshita
木下 繁則
Hiroshi Minami
南 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59072341A priority Critical patent/JPS60216703A/en
Publication of JPS60216703A publication Critical patent/JPS60216703A/en
Publication of JPH0447527B2 publication Critical patent/JPH0447527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/20Braking by supplying regenerated power to the prime mover of vehicles comprising engine-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To improve fuel consumption by reducing fuel supply amount to an internal-combustion engine when the rotating speed of the engine becomes an idling speed or higher at the brake operating time by an engine brake. CONSTITUTION:The output of a synchronous generator 2 which is coupled with a Diesel engine 1 is supplied through a generator side converter 3 and motor side converters 5L, 5R to wheel driving induction motors 6L, 6R. The engine 1 becomes an idling state at the brake operating time, brake powers generared from the motors 6L, 6R are supplied through the converters 5L, 5R and the converter 3 to a synchronous generator 2, and an engine brake is operated. At this time, when the rotating speed of the engine 1 becomes the idling speed or higher, a fuel supply amount reduction command is applied to a fuel supply unit 23 through a system controller 31.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、内燃機関で駆動される発電機からの電力に
より走行する内燃機関駆動電気式車両の制動方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a braking system for an internal combustion engine-driven electric vehicle that runs on electric power from a generator driven by an internal combustion engine.

〔従来技術とその問題点〕[Prior art and its problems]

大形のダンプトラックや自走式クレーン車のような大−
形建設機械用車両などでは、その車両に塔載する機−器
を小形軽量にできることや保守が容易であること、さら
にな−とえは連続降板時に非機械式抑速ブレーキが連続
的tこ得られることなどのために、従来の内燃機関から
の動力をクラッチや減速歯車・差動歯車を介して車輪に
与えるようになされている機械式よりも、内燃機関で発
電機を駆動し、この発電機出力により車輪に連結されて
いる走行電動機を駆動するようなされている電気式が使
用されるように一夕っだ。電気式も近年における半導体
電力変換装置の発達により、制御性は良好であるが保守
や価格に難点のある直流機よりも交流機が賞月されてい
る。
Large vehicles such as large dump trucks and self-propelled crane trucks
For construction equipment vehicles, etc., the equipment mounted on the vehicle can be made smaller and lighter, and maintenance is easier. For this purpose, the internal combustion engine is used to drive the generator, rather than the conventional mechanical system that applies power from the internal combustion engine to the wheels via a clutch, reduction gear, or differential gear. Overnight, electric systems began to be used, with the output of a generator driving a traction motor connected to the wheels. With the development of semiconductor power converters in recent years, electric power converters are now preferred over DC power converters, which have good controllability but are difficult to maintain and cost.

第1図は誘導電動機により走行する内燃機関駆動電気式
車両の従来例を示す主回路接続図である。
FIG. 1 is a main circuit connection diagram showing a conventional example of an internal combustion engine-driven electric vehicle driven by an induction motor.

この第1図において、内燃機関としてのレイーゼルエン
ジンlには同期発電機2が結合されており、この同期発
電機2が出力する交流電力はサイリスタでなる発電機側
変換器3により直流電力に変換され直流中間回路に与え
られる。この直流中間回路にはフィルタリアクトル4L
とフィルタリアクトル4Cとにより形成される逆り形の
フィルタが設けられていて、発電機側変換器3からの直
流1力に含まれている脈動分を除去している。このフィ
ルタにより平滑された直流電力はゲートターンオフサイ
リスタで構成されている電動機側変換器5Lと5Rに入
力される。左車輪を駆動する誘導電動機6Lは左車輪用
の電動機側変換器5Lから、才た右車輪を駆動する誘導
電動機6Rは右車輪用の変換器駅から交流電力の供給を
受けるのであるが、これらの電動機側変換器5Lと5R
は前述の平滑された直流電力を別個に可変電圧・可変周
波数の交(N、’flL力に変換するので、誘導電動機
5L、5Rの回転速度とトルクすなわち当該車両の走行
速度とけい引トルクは電動機側変換器5L 、5Rの変
換動作により制御される。また上述したように右車輪と
左車輪とは別個に制御されるので、この車両は曲線を円
滑に走行できるし、車輪と地面との間に滑りが発生して
も、その車輪のトルクと回転速度とを制御することでこ
の滑りを紫早く解消することができる。
In FIG. 1, a synchronous generator 2 is coupled to a laser engine l as an internal combustion engine, and the AC power output from the synchronous generator 2 is converted to DC power by a generator-side converter 3 made of a thyristor. It is converted and fed to the DC intermediate circuit. This DC intermediate circuit has a filter reactor of 4L.
An inverted filter formed by a filter reactor 4C and a filter reactor 4C is provided to remove the pulsation component contained in the single DC power from the generator side converter 3. The DC power smoothed by this filter is input to motor side converters 5L and 5R, which are composed of gate turn-off thyristors. The induction motor 6L that drives the left wheel receives AC power from the left wheel motor side converter 5L, and the induction motor 6R that drives the right wheel receives AC power from the right wheel converter station. Motor side converters 5L and 5R
Since the aforementioned smoothed DC power is separately converted into a variable voltage/variable frequency cross (N, 'flL force), the rotational speed and torque of the induction motors 5L and 5R, that is, the running speed and traction torque of the vehicle, are determined by the electric motor. It is controlled by the conversion operations of the side converters 5L and 5R.Also, as mentioned above, the right and left wheels are controlled separately, so this vehicle can run smoothly on curves, and the distance between the wheels and the ground is controlled separately. Even if slippage occurs, this slippage can be quickly eliminated by controlling the torque and rotational speed of the wheel.

上述のように構成されて走行している車両が制動動作に
入るとき、ディーゼルエンジン1はアイドリング運転状
態にしそあるから、同期発電機2は交流電圧を発生して
おり、それ散発電機側変換器3と電動機側変換器sL、
5Rとの中間のいわゆる直流中間回路もこの発電機側変
換器3からの直流電圧で光電されている。車両が坂を降
りつつあるとすると、この車両が保有する位置エネルギ
ーにより車輪を経て左右の誘導電動機6Lと6Rは回転
させられるため、この誘導電動機6L、6Rは誘導発電
機となって交流電力を発生し、電動機側変換器5L、5
Rはこの交流電力を直流電力に変換して直流中間回路に
送り込む。このとき同期発電機2は前述したように交流
電圧を発生しているから、発電機側変換器3は通常の電
力系統に接続された他励変換器と同様に逆変換動作が可
能である。よってこの発電機側変換器3を逆変換動作さ
せることにより誘導゛電動機6L、6Rから直流中間回
路に送り込°まれた電力を交流電力に変換して同期発電
機2へ送出する。
When a running vehicle configured as described above enters a braking operation, the diesel engine 1 is likely to be in an idling state, so the synchronous generator 2 generates an alternating current voltage, which is transferred to the converter on the scatterer generator side. 3 and motor side converter sL,
A so-called DC intermediate circuit between the generator and the generator 5R is also photoelectrically powered by the DC voltage from the generator side converter 3. Assuming that the vehicle is going down a slope, the left and right induction motors 6L and 6R are rotated through the wheels by the potential energy possessed by the vehicle, so these induction motors 6L and 6R become induction generators and generate AC power. occurs, and the motor side converter 5L, 5
R converts this AC power into DC power and sends it to the DC intermediate circuit. At this time, since the synchronous generator 2 is generating an alternating current voltage as described above, the generator side converter 3 can perform reverse conversion operation in the same way as a separately excited converter connected to a normal power system. Therefore, by performing a reverse conversion operation on the generator side converter 3, the power sent from the induction motors 6L and 6R to the DC intermediate circuit is converted into AC power and sent to the synchronous generator 2.

同期発電機2はこの交流電力を受けて同期発電機となり
、その速度はアイドリング中のディーゼルエンジン1の
速度よりも犬となる。このようにアイドリング運転中の
ディーゼルエンジン1の速度が増大することはエンジン
ブレーキが作用することなので、結局降板中の当該車両
が保有するエネルギーはこのエンジンブレーキに吸収さ
れて、この車両の走行速度を抑制することになる。さら
に同期発電機2にはサイリスク整流器7を介して制動抵
抗8が接続されているから、このサイリスク整流器7を
動作させイ1ば発を機側変換器3により逆変換された交
流電力を制動抵抗8に消費させることでこの車両の走行
速度を抑制することもできる。それ散発電機側変換器3
とサイリスタ整流 −器7を適切に制御して誘導電動機
6Lと6Rが発生する制動電力をディーゼルエンジン1
と制動抵抗8に配分して消費さぜるようにして自該車両
の走行速度を抑制させる。
The synchronous generator 2 receives this AC power and becomes a synchronous generator, and its speed is lower than the speed of the diesel engine 1 during idling. This increase in the speed of the diesel engine 1 during idling means that engine braking is applied, so the energy held by the vehicle that is exiting the vehicle is eventually absorbed by this engine braking, and the traveling speed of this vehicle is reduced. It will be suppressed. Furthermore, since a braking resistor 8 is connected to the synchronous generator 2 via a SIRIS rectifier 7, this SYRISC rectifier 7 is operated and the alternating current power reversely converted by the converter 3 on the machine side is transferred to the braking resistor. It is also possible to suppress the running speed of this vehicle by making it consume 8. That scattered generator side converter 3
The braking power generated by the induction motors 6L and 6R is transferred to the diesel engine 1 by appropriately controlling the thyristor rectifier and thyristor rectifier 7.
It is distributed to the braking resistance 8 and consumed to suppress the running speed of the vehicle.

しかしながら上述の方式では、制動時にディーゼルエン
ジン1はアイドリング運転を行なっているので、そのた
めに燃料が常時供給されている。
However, in the above-described system, the diesel engine 1 is idling during braking, so fuel is constantly supplied for this purpose.

それ故このディーゼルエンジン1は、その保有するエン
ジンブレーキ性能を十分に活用していないので、制動抵
抗8で消費させる制動電力の配分が多くなり、そのため
に制動抵抗8とサイリスク整流器7を小形軽量すること
ができず、当該車両の本来の目的に使用する載貨重量と
スペースが阻害されるばかりでなく、制動抵抗8の t
のために当該車両の走行燃費か悪化するという欠点を有
する。
Therefore, this diesel engine 1 does not fully utilize its engine braking performance, so the distribution of braking power consumed by the braking resistor 8 increases, so the braking resistor 8 and the sirisk rectifier 7 are made smaller and lighter. Not only is the payload and space available for the intended purpose of the vehicle obstructed, but also the braking resistance 8 t
This has the disadvantage that the fuel consumption of the vehicle deteriorates.

第2図は直流冨、動機により走行する内燃1敗関駆動゛
厖気式車両の従来例を示す主回路接続図である。
FIG. 2 is a main circuit connection diagram showing a conventional example of an internal combustion, single-displacement drive, pneumatic vehicle that runs on direct current power.

この第2図において、ディーゼルエンジン1により駆動
される同期光@機2からの交流電力は左車輪を駆動する
ためにサイリスクで構成される電機子用変換器11Lに
より直流電力に変換され、制動抵抗12Lを1径で直流
電#1機電機子13Lに与えられるが、カ行運転すると
き、制動抵抗12Lは短絡スイッチ14Lで短絡して、
さく。右車輪を駆動するために、左車輪用と同じ機能を
保有する電機子用変換器11R1制動抵抗12R,戚膿
子13R,短絡スイッチ14Rが備えら第1ている。よ
たす・rリスクでなる界磁用変換器11Fからの直流゛
は力は左右の車1i’74を駆動する直流電動機の界磁
巻線15Lと15Rに与えられるのであるが、この界磁
巻線15L、15Rの極性は界磁切替スイッチ16で切
替えることができる。
In FIG. 2, AC power from a synchronous light machine 2 driven by a diesel engine 1 is converted to DC power by an armature converter 11L made of Cyrisk to drive the left wheel, and the braking resistance 12L is applied to the armature 13L of the DC current #1 machine with one diameter, but when driving in full force, the braking resistor 12L is short-circuited with the short-circuit switch 14L,
fence. In order to drive the right wheel, an armature converter 11R, a braking resistor 12R, a braking resistor 13R, and a short circuit switch 14R having the same functions as those for the left wheel are provided. The DC force from the field converter 11F, which is caused by the The polarity of the windings 15L and 15R can be changed by a field changeover switch 16.

車両を前進方向にカ行運転するとさ、短絡スイッチ14
L、14Rをオンにして制動抵抗12L、12Rを短絡
し、電機子用変換器11L、11Rと界磁用変換器11
Fを順変換動作させ、左右の電動機を所望の速度とトル
クで運転する。制動運転のとき、車輪すなわち電動4洩
はカ行運転時と同じ方向に回転させられているから、界
磁切替スイッチ16を操作して界磁巻線15L、15R
に流れる′電流方向を逆転させると、゛醒機子13L、
13Rにはカ行運転時とは逆の電圧が発生する。そこで
ディーゼルエンジン1をアイドリング運転して同期発電
機2から父流蹴圧を発生させておき、電機子用変換器]
、IL、IIRを通変換動作させれば、発電機とγXっ
た直流゛也動、1幾からの直流電力は父流電力に変換さ
れて同AA@′酩機2を電動機運転させるため、ディー
セルエンジン1はアイドリング運転時よりも高い速度で
回転させられてエンジンブレーキが作用することになる
。このとき短絡スイッチ14L、14Rをオフしておけ
ば制動抵抗12L、12Rには制動電力が消費される。
When the vehicle is driven in the forward direction, the short circuit switch 14
Turn on L and 14R, short-circuit braking resistors 12L and 12R, and connect armature converters 11L and 11R to field converter 11.
F is operated in forward conversion operation, and the left and right electric motors are operated at the desired speed and torque. During braking operation, the wheels, that is, the electric four wheels, are rotated in the same direction as during forward driving, so operate the field changeover switch 16 to change the field windings 15L and 15R.
When the direction of the current flowing in is reversed, the wake-up machine 13L,
A voltage opposite to that during forward driving is generated at 13R. Therefore, by idling the diesel engine 1 and generating father-flow kick pressure from the synchronous generator 2, the armature converter]
, IL, and IIR are operated, the DC power from the generator and γX is converted to father current power, and the same AA @' machine 2 is operated as a motor. The diesel engine 1 is rotated at a higher speed than when idling, and engine braking is applied. At this time, if the short-circuit switches 14L and 14R are turned off, braking power is consumed by the braking resistors 12L and 12R.

この制動抵抗12L、12Rとエンジンブレーキとが負
担する制動電力の比率は電機子用変換器11L、IIR
の出力電圧を加減することで調整できる。
The ratio of braking power borne by the braking resistors 12L, 12R and the engine brake is the armature converter 11L, IIR.
It can be adjusted by adjusting the output voltage.

しかしながらこの第2図に示す従来例の方式でも、ディ
ーセルエンジン1はアイドリング運転のために燃料が供
給されるので、このエンジン1はそのエンジンブレーキ
性能を100%活用できず、制動抵抗12L、12Rに
制動電力を消費させなければならないから、この制動抵
抗12L、12Rを小形軽量にすることができないため
、種々の不都合を生じることは既に述べたとおりである
However, even with the conventional system shown in FIG. 2, fuel is supplied to the diesel engine 1 for idling, so the engine 1 cannot fully utilize its engine braking performance, and the braking resistances 12L and 12R are As already mentioned, the braking resistors 12L and 12R cannot be made small and light because braking power must be consumed, which causes various inconveniences.

〔発明の目的〕[Purpose of the invention]

この発明は制動運転時に内燃機関が保有するエンジンブ
レーキ性能を100%活用することにより制動抵抗など
の他の制動手段を極力小形にすることができ、従って燃
費を改善できる内燃機関駆動電気式車両の制動方式を提
供することを目的とする。
This invention utilizes 100% of the engine braking performance possessed by the internal combustion engine during braking operation, thereby making it possible to minimize the size of other braking means such as braking resistance, thereby improving fuel efficiency. The purpose is to provide a braking method.

〔発明の要点〕[Key points of the invention]

この発明は、エンジンブレーキを用いて制動運転すると
きに、内燃機関回転速度がほぼアイドリング運転速度で
ある第1速度設定値以上では、当該内燃機関への燃料供
給量を低減あるいは零にすることにより、この燃料低減
分のエネルギーに相当する制動力を余分に発生させよう
とするものである。さらに制動エネルギーにより当該内
燃機関の速度をその許容最大速度である第2速度設定値
まで上昇させることで、この内燃機関が吸収する制動エ
ネルギーを増大させようとするものである。
This invention provides a method of reducing or eliminating the amount of fuel supplied to the internal combustion engine when the internal combustion engine rotational speed is equal to or higher than a first speed setting value, which is approximately the idling operating speed, when performing braking operation using the engine brake. The purpose is to generate an extra braking force corresponding to the energy reduced by this fuel reduction. Furthermore, by using braking energy to increase the speed of the internal combustion engine to a second speed setting value that is the maximum allowable speed, the braking energy absorbed by the internal combustion engine is increased.

〔発明の実施例〕[Embodiments of the invention]

内燃機関の例としてディーゼルエンジンを使用する場合
における本発明の実施例を以下に説明する。
An embodiment of the present invention will be described below in which a diesel engine is used as an example of an internal combustion engine.

第3図は本発明により、エンジンブレーキ作動時の燃料
供給量を示すグラフであって、横軸はエンジンの回転速
度を、縦軸はこのエンジンへの燃料供給量をあられして
いる。この第3図において、ディーゼルエンジンにエン
ジンブレーキが作用したとき、このディーゼルエンジン
の速度がN1なる第1速度設定値すなわちアイドリング
運転速度を越えたならば、このエンジンに供給する燃料
の量を減少させて最終的には燃料供給量は零にする。
FIG. 3 is a graph showing the amount of fuel supplied when the engine brake is activated according to the present invention, in which the horizontal axis represents the rotational speed of the engine, and the vertical axis represents the amount of fuel supplied to the engine. In Fig. 3, when engine braking is applied to the diesel engine, if the speed of the diesel engine exceeds the first speed setting value N1, that is, the idling speed, the amount of fuel supplied to the engine is reduced. Eventually, the fuel supply amount will be reduced to zero.

このように燃料を減少させることにより、この減少量に
見合った制動エネルギーを余分にエンジンブレーキとし
て吸収させることができるので、従来方法にくらべてエ
ンジンブレーキとしての性能が向上することになる。
By reducing the amount of fuel in this manner, braking energy commensurate with the amount of reduction can be absorbed as extra engine braking, resulting in improved engine braking performance compared to conventional methods.

第4図は本発明によりエンジンブレーキ作動時の速度−
制動トルク特性を示すグラフであって、横軸はエンジン
の回転速度を、縦軸は制動トルクをあられしている。こ
の第4図においてN1なるアイドリング速度よりも低い
速度ではエンジンブレーキの効果は僅かであるから一1
他の制動方法たとえば制動抵抗に制動エネルギーを消費
させたり、機械的な制動をかけるなどして、エンジンブ
レーキは使用しない。N1なるアイドリング速度からエ
ンジンブレーキを作用させ、第3図に示すように燃料供
給量を減少させるにっiて制動トルクは増太し、燃料零
でその制動トルクは最大値TQとなる。
Figure 4 shows the speed when the engine brake is applied according to the present invention.
This is a graph showing braking torque characteristics, with the horizontal axis representing engine rotational speed and the vertical axis representing braking torque. In this Figure 4, at speeds lower than the idling speed N1, the effect of engine braking is slight;
Other braking methods, such as consuming braking energy in braking resistance or applying mechanical braking, do not use engine braking. Engine braking is applied from an idling speed of N1, and as the fuel supply amount is reduced as shown in FIG. 3, the braking torque increases, and when the fuel is zero, the braking torque reaches the maximum value TQ.

この状態で制動エネルギーがさらに増大すればTQなる
制動トルクでエンジン′速度は増大することにより、こ
のエンジンは増大する制動エネルギーを吸収する。エン
ジン速度がN2なる許容量大速度に到達すれば、このエ
ンジンはそれ以上の制動エネルギーを吸収するのは危険
であるから、余分の制動エネルギーは制動抵抗あるいは
惧械的な制動により消費させるようにする。
If the braking energy further increases in this state, the engine's speed will increase due to the braking torque TQ, and the engine will absorb the increased braking energy. Once the engine speed reaches the allowable high speed of N2, it is dangerous for the engine to absorb any more braking energy, so the excess braking energy is consumed by braking resistance or mechanical braking. do.

第5図は本発明の実施例を示す回路図であって、この回
路により第3図と第4図に示すようなエソジンブレーキ
動作をさせるのである。
FIG. 5 is a circuit diagram showing an embodiment of the present invention, and this circuit performs the esogen brake operation as shown in FIGS. 3 and 4.

第5図において1なる内燃機関としてのディーゼルエン
ジンには同期発電機2が結合されて交流電力を発生し、
発電機側変換器3によりこの交流電力を直流電力に変換
している。この直流電力はフィルタリアクトル4Lとフ
ィルタコンデンサ4cにより脈動分を除去され、左車輪
用の誘導電動機6Lに(ま電動機側変換器5Lで変換し
た交流電力を与える。右車輪用の誘導電動機6Rには、
同様に電動機側変換器5Rで変換した交流電力が与えら
れるので、当該車両は所望の走行速度とけい引トルクを
得ることができることは従来例と同様である。
In FIG. 5, a synchronous generator 2 is coupled to a diesel engine 1 as an internal combustion engine to generate alternating current power,
The generator-side converter 3 converts this AC power into DC power. The pulsation of this DC power is removed by a filter reactor 4L and a filter capacitor 4c, and the AC power converted by the motor side converter 5L is applied to the induction motor 6L for the left wheel. ,
Similarly, since AC power converted by the motor-side converter 5R is applied, the vehicle can obtain the desired running speed and traction torque, as in the conventional example.

制動運転時腎左右の誘導電動機から出力される制動電力
は電動機側変換器5L 、 5Rにより直流電力に変換
され、さらに発電機側変換器3により交流電力に変換さ
れ、この交流電力により同期発′lt機2を電動機運転
させるかあるいはサイリスタ調整器9を介して制動抵抗
10に電力損失を発生させるかして上述の制動電力を消
費して当該車両の速度を抑制する。
During braking operation, the braking power output from the induction motors on the left and right sides of the kidney is converted into DC power by converters 5L and 5R on the motor side, and further converted into AC power by the converter 3 on the generator side, and this AC power is used for synchronous generation. The speed of the vehicle is suppressed by consuming the above-mentioned braking power by operating the electric motor of the lt machine 2 or by causing power loss to occur in the braking resistor 10 via the thyristor regulator 9.

ディーゼルエンジン1には速度検出器加が結合されて、
常時その速度を検出できるし、詔なる燃料供給数置はデ
ィーゼルエンジン1に供給する燃料の量を制御してその
出力を調整する。また同期発電機2には励磁装置21が
備えられており、この励磁装置21に接続されている発
電機界磁巻線ηに供給する励磁電流を制御する。30は
当該車両の運転指令器であって、アクセルペダルやブレ
ーキペダルなどで構成されている。さらに31はシステ
ム制御装置であって、運転指令器Iからの指令にもとづ
いてディーゼルエンジン1の燃料供給装置幻、同期発電
機2の励゛磁装置21、発電機側変換器3、サイリスク
調整器9、電動機側変換器5Lと5Rを制御する。
A speed detector is coupled to the diesel engine 1,
Its speed can be detected at all times, and the fixed fuel supply number controls the amount of fuel supplied to the diesel engine 1 to adjust its output. The synchronous generator 2 is also equipped with an excitation device 21, which controls the excitation current supplied to the generator field winding η connected to the excitation device 21. Reference numeral 30 denotes a driving command device for the vehicle, which is composed of an accelerator pedal, a brake pedal, and the like. Furthermore, 31 is a system control device, which controls the fuel supply system of the diesel engine 1, the excitation device 21 of the synchronous generator 2, the generator-side converter 3, and the si-risk regulator based on commands from the operation controller I. 9. Control motor side converters 5L and 5R.

当該車両がカ行運転から制動運転に切替わるとき、アク
セルペダルはフリーの状態になるが、これを運転指令器
30が指令し、ディーセルエンジン1はアイドリンク運
転状態となる。引続きブレーキペダルが踏み込まれると
運転指令器30とシステム制御装置31からの指令によ
り、篩4電動機6L、−6Rから発生する制動電力は電
動機側変換器5L、5Rと発電機側変換器3を経て同期
発電機2を駆動するので、ディーゼルエンジン1はその
(ロ)転速度がアイドリング速度以上になってエンジン
ブレーキが作用する。このアイドリング速度N1を速度
検出器加が検出し、システム制御装置31を経て燃料供
給装置器に燃料供給量減少指令を発し、エンジン1に吸
収されるエンジンブレーキのエネルギーを増大させる。
When the vehicle switches from forward driving to braking driving, the accelerator pedal is in a free state, but the driving command unit 30 issues this command, and the diesel engine 1 is placed in an idle link driving state. When the brake pedal is subsequently depressed, the braking power generated from the sieve 4 electric motors 6L and -6R is transmitted through the motor side converters 5L and 5R and the generator side converter 3 according to commands from the operation command device 30 and the system control device 31. Since the synchronous generator 2 is driven, the (b) rotational speed of the diesel engine 1 becomes higher than the idling speed and engine braking is applied. The speed detector detects this idling speed N1, and issues a fuel supply reduction command to the fuel supply device via the system control device 31 to increase the engine braking energy absorbed by the engine 1.

エンジン1への燃料供給量を岑にしても、発生する制動
電力をエンジン1に吸収しきれないとき、このエンジン
1は速度を許容最大速度N2まで増加させてエネルギー
吸収能力を増大させるから、エンジン速度がN1からN
2までの間では、発生する制動電力はすべてエンジンブ
レーキとして吸収できるので、制動抵抗10を使用しな
くてもよい。
Even if the amount of fuel supplied to the engine 1 is reduced, when the generated braking power cannot be absorbed by the engine 1, the engine 1 increases its speed to the maximum allowable speed N2 and increases the energy absorption capacity of the engine. Speed is from N1 to N
2, all the generated braking power can be absorbed as engine braking, so there is no need to use the braking resistor 10.

エンジン1の速度が許容最大速度N2を越えるとエンジ
ン1は破損のおそれがあるから、このときにエンジンブ
レーキで吸収できない分は機械ブレーキや制動抵抗10
に与えて、エンジン1が吸収できるエネルギーを制限す
る。また発生する制動電力が僅かであってエンジン1の
速度がN1なるアイドリング速度以下lこなるときは、
エンジンブレーキを作用させずに、機械ブレーキあるい
は制動抵抗10によりエネルギーを消費させるやである
が、システム制御装置31によりこれらの動作が実施さ
れる。
If the speed of the engine 1 exceeds the maximum allowable speed N2, the engine 1 may be damaged, so the amount that cannot be absorbed by the engine brake at this time is applied to the mechanical brake or the braking resistance 10.
limit the energy that the engine 1 can absorb. Also, when the generated braking power is small and the speed of the engine 1 is less than the idling speed N1,
The system control device 31 executes these operations such that energy is consumed by the mechanical brake or the braking resistor 10 without applying the engine brake.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、内燃機関駆動電気式車両をエンジン
ブレーキにより制動運転するとき、内燃機関の速度がア
イドリング運転速度よりも大となる場合は当該内燃機関
に供給する燃料の量を減少または零にして吸収できる制
動エネルギーを増大させるのであるが、さらに内燃機関
の速度を許容量大速度まで増加させるようにしてより一
層制動エネルギーの吸収が図れる。すなわちエンジンブ
レーキ作動時の内燃機関速度がアイドリング速度から許
容量大速度までの間では、走行電動機から発生する制動
電力はすべて内燃機関に吸収させることができるので、
制動抵抗にエネルギーを消費させるのはごく僅かなもの
となる。それ散開動抵抗の寸法と重量を縮小できるから
、当該車両の本来目的である載貨重量やスペースが大と
なるばかりでなく、制動抵抗が軽量になるので、カ行時
の燃費が改善される。さらにエンジンブレーキ作動時に
内燃機関へ供給jる燃料の量を減少あるいは零にするの
で、ここでも燃費改善が図れる。
According to the present invention, when an internal combustion engine-driven electric vehicle is braked by engine braking, if the speed of the internal combustion engine becomes higher than the idling speed, the amount of fuel supplied to the internal combustion engine is reduced or eliminated. In addition, by increasing the speed of the internal combustion engine to a large permissible speed, even more braking energy can be absorbed. In other words, when the internal combustion engine speed is between the idling speed and the maximum permissible speed when the engine brake is applied, all the braking power generated from the traveling electric motor can be absorbed by the internal combustion engine.
Only a small amount of energy is consumed in braking resistance. Since the size and weight of the unfolding dynamic resistance can be reduced, not only the payload weight and space, which are the original purpose of the vehicle, can be increased, but also the braking resistance can be reduced, which improves fuel efficiency when traveling. Furthermore, since the amount of fuel supplied to the internal combustion engine is reduced or eliminated when the engine brake is activated, fuel efficiency can be improved here as well.

【図面の簡単な説明】[Brief explanation of the drawing]

211図は誘導電動機による内燃機関駆動電気式車両の
従来例を示す主回路接続図であり、第2図は直流電動機
による内燃機関駆動電気式車両の従来例を示す主回路接
続図である。第3図は本発明によるエンジンブレーキ作
動時の燃料供給量グラフ、第4図は本発明によるエンジ
ンブレーキ作動時の速度−制動トルクのグラフであり、
第5図は本溌明の実施例を示す回路図である。 1・・・内燃機関としてのディーゼルエンジン、2・・
・同期発電機、3・・・発電機側変換器、4C・・・フ
ィルタコンデンサ、4L・・・フィルタリアクトル、5
L、5R・・・電動機側変換器、6L t 6R・・・
誘導電動機、7・・・サイリスク整流器、8,10・・
・制動抵抗、9・・・サイリスタ調整器、IIF・・・
界磁用変換器、IIL、IIR・・・電機子用変換器、
12L、12R・・・制動抵抗、13L、13R・・・
直流電動機電機子、14L、14R・・・短絡スイッチ
、15L、15R・・・直流電動機界磁巻線、16・・
・界磁切替スイッチ、加・・・速度検出器、21・・・
励磁装置、n・・・発電機界磁巻線、お・・・燃料供給
装置、刃・・・運転指令器、第2図 一奈エンジン速灰 第3図 −−〉エンジン速度 − 第4図
FIG. 211 is a main circuit connection diagram showing a conventional example of an internal combustion engine driven electric vehicle using an induction motor, and FIG. 2 is a main circuit connection diagram showing a conventional example of an internal combustion engine driven electric vehicle using a DC motor. FIG. 3 is a fuel supply amount graph when the engine brake is activated according to the present invention, and FIG. 4 is a graph of speed vs. braking torque when the engine brake is activated according to the present invention.
FIG. 5 is a circuit diagram showing an embodiment of the present invention. 1... Diesel engine as an internal combustion engine, 2...
・Synchronous generator, 3... Generator side converter, 4C... Filter capacitor, 4L... Filter reactor, 5
L, 5R...Motor side converter, 6L t 6R...
Induction motor, 7... Cyrisk rectifier, 8, 10...
・Braking resistance, 9... Thyristor regulator, IIF...
Field converter, IIL, IIR... Armature converter,
12L, 12R...braking resistance, 13L, 13R...
DC motor armature, 14L, 14R... Short circuit switch, 15L, 15R... DC motor field winding, 16...
・Field switching switch, acceleration/speed detector, 21...
Excitation device, n... Generator field winding,... Fuel supply device, Blade... Operation command device, Fig. 2 Ichina Engine speed ash Fig. 3 --> Engine speed - Fig. 4

Claims (1)

【特許請求の範囲】 1)車両に塔載されている内燃機関により駆動される発
電機が発生する電力を車輪に結合せる走行電動機に与え
て前記車両を所望の速度で一走行させるとともに、制動
運転時には前記走行電動機が発生する制動エネルギーを
前記発電機に与えて電動機運転させることで前記内燃機
関に制動エネルギーを吸収させて当該車両の速度を抑制
するようなされている内燃機関駆動電気式車両において
、制動運転時に前記内燃機関の速度が第1速度設定値以
下のときは当該内燃機関に吸収させるIIエネルギーを
減少または零にし、−前記内燃機関の速度が前記第1速
度設定値をこえるときは当該内燃機関に供給する燃料を
減少または零にし、前記内燃機関の速度が前記第1速度
設定値よりも高い値の第2速度設定値をこえるときは当
該内燃機関に吸収させる制動エネルギーを減少または零
にすることを物体とする内燃機関−駆動電気式車両の制
動方式。 2、特許請求の範囲第1−項記載の制動方式において、
−前記内燃機関の第1速度設定値は当該内燃機関のアイ
ドリング運転速度にほぼ等しく設定することを特徴とす
る内燃機関駆動電気式車両の制動方式。 3)特許請求の範囲第1項記載の制動方式において、前
記内燃機関め第2速度設定値は当該内燃機関に許容され
る最大速度より小さく設定することを特徴とする内燃機
関駆動電気式車両の制動方式。
[Scope of Claims] 1) Electric power generated by a generator driven by an internal combustion engine mounted on a vehicle is applied to a traveling electric motor coupled to wheels to drive the vehicle at a desired speed, and also to brake the vehicle. In an internal combustion engine-driven electric vehicle, the internal combustion engine-driven electric vehicle is configured to apply braking energy generated by the traveling electric motor to the generator to operate the electric motor, thereby causing the internal combustion engine to absorb the braking energy and suppressing the speed of the vehicle. , when the speed of the internal combustion engine is below the first speed setting value during braking operation, the II energy to be absorbed by the internal combustion engine is reduced or zero; - when the speed of the internal combustion engine exceeds the first speed setting value; Reduce or eliminate the fuel supplied to the internal combustion engine, and when the speed of the internal combustion engine exceeds a second speed set value that is higher than the first speed set value, reduce or reduce the braking energy absorbed by the internal combustion engine. A braking system for internal combustion engine-powered electric vehicles that aims to reduce the temperature to zero. 2. In the braking system described in claim 1-,
- A braking method for an internal combustion engine-driven electric vehicle, characterized in that the first speed setting value of the internal combustion engine is set approximately equal to the idling operating speed of the internal combustion engine. 3) In the braking method according to claim 1, the second speed setting value for the internal combustion engine is set smaller than the maximum speed allowable for the internal combustion engine. Braking method.
JP59072341A 1984-04-11 1984-04-11 Brake system of internal-combustion engine driven electric vehicle Granted JPS60216703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072341A JPS60216703A (en) 1984-04-11 1984-04-11 Brake system of internal-combustion engine driven electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072341A JPS60216703A (en) 1984-04-11 1984-04-11 Brake system of internal-combustion engine driven electric vehicle

Publications (2)

Publication Number Publication Date
JPS60216703A true JPS60216703A (en) 1985-10-30
JPH0447527B2 JPH0447527B2 (en) 1992-08-04

Family

ID=13486494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072341A Granted JPS60216703A (en) 1984-04-11 1984-04-11 Brake system of internal-combustion engine driven electric vehicle

Country Status (1)

Country Link
JP (1) JPS60216703A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760178A1 (en) * 1994-05-18 1997-03-05 Rosen Motors L.P. Electric power train control
EP0798153A1 (en) * 1996-03-27 1997-10-01 Voith Turbo GmbH & Co. KG Method to drive a traction unit in a vehicle and traction unit
WO2006037040A1 (en) * 2004-09-27 2006-04-06 Oshkosh Truck Corporation System and method for braking in an electric vehicle
JP2009529307A (en) * 2006-03-07 2009-08-13 シーメンス アクチエンゲゼルシヤフト Diesel electric drive system with permanent excitation synchronous generator
US8864613B2 (en) 2010-06-22 2014-10-21 Oshkosh Corporation Electromechanical variable transmission
US8947531B2 (en) 2006-06-19 2015-02-03 Oshkosh Corporation Vehicle diagnostics based on information communicated between vehicles
US9114804B1 (en) 2013-03-14 2015-08-25 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
US9420203B2 (en) 2006-06-19 2016-08-16 Oshkosh Defense, Llc Vision system for a vehicle
US9650032B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9651120B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9656659B2 (en) 2015-02-17 2017-05-23 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10421350B2 (en) 2015-10-20 2019-09-24 Oshkosh Corporation Inline electromechanical variable transmission system
US10578195B2 (en) 2015-02-17 2020-03-03 Oshkosh Corporation Inline electromechanical variable transmission system
US10584775B2 (en) 2015-02-17 2020-03-10 Oshkosh Corporation Inline electromechanical variable transmission system
US10982736B2 (en) 2015-02-17 2021-04-20 Oshkosh Corporation Multi-mode electromechanical variable transmission
US11701959B2 (en) 2015-02-17 2023-07-18 Oshkosh Corporation Inline electromechanical variable transmission system

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760178A4 (en) * 1994-05-18 1997-07-23 Rosen Motors Lp Electric power train control
EP0760178A1 (en) * 1994-05-18 1997-03-05 Rosen Motors L.P. Electric power train control
EP0798153A1 (en) * 1996-03-27 1997-10-01 Voith Turbo GmbH & Co. KG Method to drive a traction unit in a vehicle and traction unit
US5839530A (en) * 1996-03-27 1998-11-24 Voith Turbo Gmbh & Co. Kg Process for operating a drive unit for vehicles or drive unit
WO2006037040A1 (en) * 2004-09-27 2006-04-06 Oshkosh Truck Corporation System and method for braking in an electric vehicle
JP2009529307A (en) * 2006-03-07 2009-08-13 シーメンス アクチエンゲゼルシヤフト Diesel electric drive system with permanent excitation synchronous generator
US9420203B2 (en) 2006-06-19 2016-08-16 Oshkosh Defense, Llc Vision system for a vehicle
US8947531B2 (en) 2006-06-19 2015-02-03 Oshkosh Corporation Vehicle diagnostics based on information communicated between vehicles
US9428042B2 (en) 2010-06-22 2016-08-30 Oshkosh Defense, Llc Electromechanical variable transmission
US10029556B2 (en) 2010-06-22 2018-07-24 Oshkosh Defense, Llc Electromechanical variable transmission
US10843549B2 (en) 2010-06-22 2020-11-24 Oshkosh Defense, Llc Electromechanical variable transmission
US8864613B2 (en) 2010-06-22 2014-10-21 Oshkosh Corporation Electromechanical variable transmission
US10457134B2 (en) 2010-06-22 2019-10-29 Oshkosh Defense, Llc Electromechanical variable transmission
US11440527B2 (en) 2013-03-14 2022-09-13 Oshkosh Defense, Llc Methods and systems for vehicle drive
US11827207B2 (en) 2013-03-14 2023-11-28 Oshkosh Defense, Llc Drive train for a vehicle
US9132736B1 (en) 2013-03-14 2015-09-15 Oshkosh Defense, Llc Methods, systems, and vehicles with electromechanical variable transmission
US11299139B2 (en) 2013-03-14 2022-04-12 Oshkosh Defense, Llc Drive train for a vehicle
US9821789B2 (en) 2013-03-14 2017-11-21 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
US11052899B2 (en) 2013-03-14 2021-07-06 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
US9452750B2 (en) 2013-03-14 2016-09-27 Oshkosh Defense, Llc Methods, systems, and vehicles with electromechanical variable transmission
US9114804B1 (en) 2013-03-14 2015-08-25 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
US10315643B2 (en) 2013-03-14 2019-06-11 Oshkosh Defense, Llc Methods, systems, and vehicles with electromechanical variable transmission
US10392000B2 (en) 2013-03-14 2019-08-27 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
US9376102B1 (en) 2013-03-14 2016-06-28 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
US10160438B2 (en) 2015-02-17 2018-12-25 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10982736B2 (en) 2015-02-17 2021-04-20 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10584775B2 (en) 2015-02-17 2020-03-10 Oshkosh Corporation Inline electromechanical variable transmission system
US9650032B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10935112B2 (en) 2015-02-17 2021-03-02 Oshkosh Corporation Inline electromechanical variable transmission system
US10967728B2 (en) 2015-02-17 2021-04-06 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10974713B2 (en) 2015-02-17 2021-04-13 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10578195B2 (en) 2015-02-17 2020-03-03 Oshkosh Corporation Inline electromechanical variable transmission system
US10989279B2 (en) 2015-02-17 2021-04-27 Oshkosh Corporation Multi-mode electromechanical variable transmission
US11009104B2 (en) 2015-02-17 2021-05-18 Oshkosh Corporation Inline electromechanical variable transmission system
US11701959B2 (en) 2015-02-17 2023-07-18 Oshkosh Corporation Inline electromechanical variable transmission system
US9908520B2 (en) 2015-02-17 2018-03-06 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9656659B2 (en) 2015-02-17 2017-05-23 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9651120B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US11007860B2 (en) 2015-10-20 2021-05-18 Oshkosh Corporation Inline electromechanical variable transmission system
US10421350B2 (en) 2015-10-20 2019-09-24 Oshkosh Corporation Inline electromechanical variable transmission system

Also Published As

Publication number Publication date
JPH0447527B2 (en) 1992-08-04

Similar Documents

Publication Publication Date Title
JPS60216703A (en) Brake system of internal-combustion engine driven electric vehicle
JP3175771B2 (en) Method and apparatus for propelling and slowing off-road vehicles
US8025115B2 (en) Hybrid vehicle power control systems and methods
KR100324434B1 (en) Vehicle drive system and its operation method
JP3044880B2 (en) Drive control device for series hybrid vehicles
US6809429B1 (en) Control method and apparatus for internal combustion engine electric hybrid vehicles
US5927416A (en) Method for operating a non-railborne hybrid vehicle
US5629596A (en) Method of controlling electric vehicle driven by an internal combustion engine
JP2973796B2 (en) Air conditioning control method for hybrid electric vehicle
JP2003061207A (en) Hybrid vehicle driving device
JP3791195B2 (en) Hybrid car
JP5390507B2 (en) Energy exchange system for electric or hybrid vehicles
JP2000224709A (en) Power supply
JP3646964B2 (en) Hybrid car
JPS60187202A (en) Electric vehicle driven by internal combustion engine
JP2007223560A (en) Charging controller for hybrid car
JP3646963B2 (en) Hybrid car
JPS59198802A (en) Vehicle for industry
JPH0559973A (en) Compound prime mover device for automobile
JPS6264201A (en) Brake system for internal combustion engine-driven electric motor vehicle
JPH0447528B2 (en)
JPS6268004A (en) Electric rolling stock driven by internal combustion engine
JP2998007B2 (en) Vehicle drive
JP3925498B2 (en) Control device for hybrid vehicle
JPH11217024A (en) Hybrid powered automobile