JPS60216603A - Manufacture of electromagnetic wave reflecting body - Google Patents

Manufacture of electromagnetic wave reflecting body

Info

Publication number
JPS60216603A
JPS60216603A JP7173884A JP7173884A JPS60216603A JP S60216603 A JPS60216603 A JP S60216603A JP 7173884 A JP7173884 A JP 7173884A JP 7173884 A JP7173884 A JP 7173884A JP S60216603 A JPS60216603 A JP S60216603A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
resin
conductor material
compound
resin compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7173884A
Other languages
Japanese (ja)
Inventor
Hideo Sakai
坂井 英男
Kazuaki Koda
香田 和章
Koichi Hirai
平井 宏一
Toshiyuki Otsuka
敏行 大塚
Kazumasa Shigeta
重田 一誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7173884A priority Critical patent/JPS60216603A/en
Publication of JPS60216603A publication Critical patent/JPS60216603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To obtain a uniform electromagnetic wave reflecting characteristic by inserting a nonconductive nonwoven cloth between a sheet radical curing resin compound and a fiber conductor material and applying compression molding. CONSTITUTION:The fiber conductor material, the nonconductive nonwoven cloth and the sheeet form radical curing resin compound are laminated sequentially, and they are molded by compression at heating. In the heat compression molding, the side of the nonwoven cloth in contact with the resin compound is deformed smoothly together with said compound and the side in contact with the conductor material is hardly deformed, then a shear force due to the compound flow does not directly reach the conductor material because of a kind of cushion operation. Thus, the fracture of the fiber conductor material or the increase in the interval of fibers is prevented.

Description

【発明の詳細な説明】 本発明は、均一な電磁波反射特性を有する樹脂製の電磁
波反射体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a resin electromagnetic wave reflector having uniform electromagnetic wave reflection characteristics.

近年、電子技術、通信技術の広範な利用及び高度化に伴
い各種の形状に対応出来かつ安価な電磁波反射体の開発
がめられている。
In recent years, with the widespread use and advancement of electronic technology and communication technology, there has been a desire to develop inexpensive electromagnetic wave reflectors that can accommodate various shapes.

例えば、通信衛星、放送衛星の受信に用いられるパラボ
ラアンテナの反射板や電子機器から発生する電磁波の遮
蔽等においては、高効率にかつ高い信頼性を有する電磁
波反射体が強く望まれている。
For example, electromagnetic wave reflectors with high efficiency and high reliability are strongly desired for shielding of electromagnetic waves generated from electronic equipment and reflectors of parabolic antennas used for reception of communication satellites and broadcasting satellites.

金属材料は周知の通り高い電磁波反射性を有するが成形
性が悪く任意の形状を容易かつ安価にうろことが困難で
あり、例えばパラボラアンテナの反射板等においては、
大面積において精密な反射板曲面を安価に得ることは困
難である。
As is well known, metal materials have high electromagnetic wave reflectivity, but they have poor formability and are difficult to mold into arbitrary shapes easily and inexpensively.For example, in the case of reflective plates for parabolic antennas, etc.
It is difficult to obtain a precise curved surface of a reflector over a large area at low cost.

これに対し、樹脂成形は安価に、高い表面精度を得るに
は、極めて有用な技術であり、電磁波反射体への応用が
考えられるが、樹脂自体は電磁波反射特性を有しない為
に導電性材料を多量に混合するか積層する必要があり、
その有力な技術の一つとして導電性繊維からなる導電層
とシート状ラジカル硬化型樹脂コンパウンドを積層し加
熱圧縮成形して電磁波反射体を得る技術が最近注目され
ている。
On the other hand, resin molding is an extremely useful technology for obtaining high surface precision at low cost, and can be applied to electromagnetic wave reflectors. It is necessary to mix or stack large amounts of
As one of the promising technologies, a technology to obtain an electromagnetic wave reflector by laminating a conductive layer made of conductive fibers and a sheet-like radical-curing resin compound and heating and compression molding has recently been attracting attention.

しかしながら、上記の方法においては、加熱圧縮成形時
の樹脂コンパウンド成分が流動しこれによって生じるせ
ん断力の為に、導電層たる導電性繊維層が破断したり導
電性繊維間隔の部分的増大を生じ局所的に電磁波を透過
する部分を生じるといった重大な欠点を生じる。
However, in the above method, the resin compound component flows during hot compression molding, and due to the shear force generated by this, the conductive fiber layer, which is the conductive layer, may break or the distance between the conductive fibers may partially increase. This has the serious disadvantage of creating a part that is transparent to electromagnetic waves.

本発明の目的は、かかる従来の加熱圧縮成形における技
術の欠点を解決した新規な電磁波反射体の製法を提供す
ることにある。
An object of the present invention is to provide a novel method for manufacturing an electromagnetic wave reflector that solves the drawbacks of the conventional heat compression molding technique.

すなわち本発明は、(A)繊維状導電材料、(B)非導
電性不織布および(C)シート状ラジカル硬化型樹脂コ
ンパウンドを順次積層し加熱状態において圧縮成形する
均一電磁波反射特性を有する電磁波反射体の製法・で逃
ζ 以下、本発明の詳細な説明する。
That is, the present invention provides an electromagnetic wave reflector having uniform electromagnetic wave reflection characteristics, which is produced by sequentially laminating (A) a fibrous conductive material, (B) a non-conductive nonwoven fabric, and (C) a sheet-like radical-curable resin compound and compression-molding the same under heating. The present invention will be described in detail below.

本発明に用いられる(A)繊維状導電材料としては、例
えば、金属繊維、カーボン繊維、金属被覆されたガラス
繊維、金属被覆された有機繊維等の導電繊維のネット、
クロス、マット等の材料があげられる。なお金属の種類
としては、特に限定されるものではないが価格及び耐蝕
性の点から、真ちゅう、アルミ、アルミ合金、ニッケル
、クロム、ステンレススチール等カ好マしい。
Examples of the fibrous conductive material (A) used in the present invention include nets of conductive fibers such as metal fibers, carbon fibers, metal-coated glass fibers, and metal-coated organic fibers;
Examples include materials such as cloth and mats. The type of metal is not particularly limited, but brass, aluminum, aluminum alloy, nickel, chromium, stainless steel, etc. are preferable from the viewpoint of cost and corrosion resistance.

かかる繊維状導電材料の空隙間隔は、反射すべき電磁波
の周波数が増大するに従って狭(する必要があるが、該
空隙をより小さくすればするほど高周波域まで反射する
ことが可能なのでたとえば12GH1度の高周波は波長
が°25朋程度なので、2.5朋以下が好ましく特に1
.0羽以下が好ましい。
The gap in the fibrous conductive material needs to be narrower as the frequency of the electromagnetic waves to be reflected increases, but the smaller the gap, the higher the frequency range can be reflected. The wavelength of high frequency waves is about 25°, so it is preferably 2.5° or less, especially 1°.
.. The number of birds is preferably 0 or less.

また、上記の繊維状導電材料を一層だけでなく、多層に
用いても勿論よいが繊維状導電材料は比較的高価なので
、一層で高い均一な反射率を得ることが通常望まれる。
Moreover, it is of course possible to use the above-mentioned fibrous conductive material not only in one layer but also in multiple layers, but since fibrous conductive materials are relatively expensive, it is usually desired to obtain a high and uniform reflectance with a single layer.

本発明における(B)非導電性不織布としては、例工ば
、レーヨン、ポリエステル、アクリノへナイロン、ガラ
ス等の非導電性の有機又は無機の繊維を織機で織らず織
物状にした生地すなわち通常の不織布が使用できる。こ
の(B)非導電性不織布の厚みは、通常、0.15mm
以上が好ましく、特に0.3龍〜5朋が好ましい。通常
0.15mm未満においては後記のごとき繊維状導電材
料の目開きを防止する効果が低下し好ましくない。
The non-conductive non-woven fabric (B) in the present invention includes, for example, fabrics made from non-conductive organic or inorganic fibers such as rayon, polyester, acrino-nylon, glass, etc., without being woven on a loom, i.e., ordinary fabrics. Non-woven fabrics can be used. The thickness of this (B) non-conductive nonwoven fabric is usually 0.15 mm.
The above is preferable, and 0.3 to 5 is particularly preferable. Generally, if the thickness is less than 0.15 mm, the effect of preventing the opening of the fibrous conductive material as described below is reduced, which is not preferable.

また上記の不織布にあらかじめ例えば不飽和ポリエステ
ル樹脂、エポキシ樹脂等の成形工程において硬化する熱
硬化樹脂を含浸させておいてもよい。
Further, the above-mentioned nonwoven fabric may be impregnated in advance with a thermosetting resin that hardens during the molding process, such as unsaturated polyester resin or epoxy resin.

本発明に用いられる(C)シート状ラジカル硬化型樹脂
コンパウンドは、加熱状態において圧縮成形し、賦形及
び硬化するものである。
The sheet-like radical-curable resin compound (C) used in the present invention is compression molded in a heated state, shaped and cured.

通常不飽和ポリエステル等の樹脂、反応性希釈剤、強化
繊維充填剤、ラジカル開始剤及び各種助剤からなるもの
をロールで圧して一体に成型して流動性をな(してシー
ト状(板状)にしたもので加熱下金型中で圧力によって
塑性変形しかつ流動化して任意の形態に成型し5るシー
ト状材料であす、一般的にSMC(シート・モールディ
ング・コンパウンド)と通称される材料である。
Usually, a material consisting of a resin such as unsaturated polyester, a reactive diluent, a reinforcing fiber filler, a radical initiator, and various auxiliary agents is pressed with a roll and molded into one piece to form a fluidity sheet (plate shape). ) is plastically deformed under pressure in a heated mold, fluidized, and molded into any desired shape.This material is generally known as SMC (Sheet Molding Compound). It is.

上記(C)の樹脂成分としては上記したごとく不飽和ポ
リエメテル樹脂カ;最も一般的であり、通常例えばフマ
ール酸、無水マレイン酸、イタコン酸等のα、β−不飽
和不飽和酸塩基酸類;/または無水フタル酸、イソフタ
ル酸、テレフタル酸、コハク酸、アジピン酸、セバシン
酸、無水テトラヒドロフタル酸、シクロヘキサンジカル
ボン酸、無水トリメリット酸、ジメチルテレンタル酸等
の飽に 和多塩基酸類;例えばエチレングリコール、プロピレン
グリコール、ジエチレングリコール、シフロピレングリ
コール、フタンジオール、ヘキサンジオール、ネオペン
チルグリコール、トリメチルベンタンジオール、ジメチ
ロールシクロヘキサン、水添ビスフェノールA、ビスフ
ェノールへのアルキレンオキサイド付加物、グリセリン
、トリメチロールエタン、トリメチロールプロパン、ペ
ンタエリスリトール、トリスヒドロキシエチルインシア
ヌレート等の多価アルコール類とを縮合反応させ更には
必要に応じ脂肪酸等の一塩基酸、ジシクロペンタジェン
等を変性原料として用い反応させ得られるが、又ビスフ
ェノールAのジグリシジルエーテル等のエポキ7基を分
子内に複数有する多価エポキシ樹脂と不飽和カルボン酸
の付加物である不飽和基を有する樹脂、多価アルコール
と不飽和カルボン酸とを縮合してなる不飽和基を有する
樹脂、イソシアネート基を分子末端に有する樹脂と例え
ばヒドロキシエチルメタクリレート、ヒドロキシプロピ
ルメタクリレート、ヒドロキシエチルアクリレート、ア
リルアルコール等のヒドロキれる。この中でも安価で、
高い架橋密度を有する不飽和ポリエステル樹脂が特に好
ましい。
As for the resin component (C), as mentioned above, unsaturated polyester resin is the most common, and usually α,β-unsaturated unsaturated acid-base acids such as fumaric acid, maleic anhydride, and itaconic acid; or saturated polybasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, sebacic acid, tetrahydrophthalic anhydride, cyclohexanedicarboxylic acid, trimellitic anhydride, dimethylterental acid; for example, ethylene glycol , propylene glycol, diethylene glycol, cyfropylene glycol, phthanediol, hexanediol, neopentyl glycol, trimethylbentanediol, dimethylolcyclohexane, hydrogenated bisphenol A, alkylene oxide adducts to bisphenol, glycerin, trimethylolethane, trimethylolpropane, It can be obtained by a condensation reaction with polyhydric alcohols such as pentaerythritol and trishydroxyethyl in cyanurate, and further by using a monobasic acid such as a fatty acid, dicyclopentadiene, etc. as a modified raw material if necessary, but it can also be obtained by a reaction with polyhydric alcohols such as pentaerythritol and trishydroxyethyl in cyanurate, but it can also be obtained by reacting with polyhydric alcohols such as pentaerythritol and trishydroxyethyl incyanurate, using monobasic acids such as fatty acids, dicyclopentadiene, etc. as modified raw materials, but also bisphenol. Polyhydric epoxy resin having a plurality of 7 epoxy groups in the molecule such as diglycidyl ether of A, resin having an unsaturated group which is an adduct of unsaturated carboxylic acid, polyhydric alcohol and unsaturated carboxylic acid are condensed together. For example, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, allyl alcohol, etc. can be hydroxylated with resins having unsaturated groups such as resins having isocyanate groups at the molecular ends. Among these, it is the cheapest,
Particular preference is given to unsaturated polyester resins with high crosslink density.

上記の(C)に用いられる、反応性希釈剤は、樹脂コン
パウンドに適度な成形時の塑性を付与しかつ、上記の不
飽和樹脂成分と反応して成形物の強度を発現せしめるも
のであり例えばスチレン、ビニルトルエン、パラメチル
スチレン、α−メチルスチレン、メタクリル酸メチル、
メタクリル酸エチル、メタクリル酸ブチル、ジビニルベ
ンゼン、エチレングリコールジメタクリレート等のラジ
カル重合性単量体類が用いられる。
The reactive diluent used in (C) above imparts appropriate plasticity to the resin compound during molding and reacts with the unsaturated resin component to develop the strength of the molded product. Styrene, vinyltoluene, paramethylstyrene, α-methylstyrene, methyl methacrylate,
Radically polymerizable monomers such as ethyl methacrylate, butyl methacrylate, divinylbenzene, and ethylene glycol dimethacrylate are used.

上記(C)に含有される強化材としては、成形物の機械
的強度を向上せしめるもので、ガラス繊維、カーボン繊
維、ケプラー(商標)等の高強度有機繊維を長さ3〜5
0mmにカットしたものを用いるが特に安価なガラス繊
維が好ましい。
The reinforcing material contained in the above (C) is one that improves the mechanical strength of the molded product, and is made of high-strength organic fibers such as glass fiber, carbon fiber, and Kepler (trademark) with a length of 3 to 5 mm.
Glass fibers cut to 0 mm are used, but inexpensive glass fibers are particularly preferred.

又と記(C)に用いられる充填剤は、収縮率の低下、着
色等の機能を有し、例えば炭酸カルシウム、アルミナ、
シリカ、タルク、硫酸バリウム、マイカ粉、水酸化アル
ミニウム、クレー等が用いられる。
The filler used in (C) has functions such as reducing shrinkage and coloring, and includes, for example, calcium carbonate, alumina,
Silica, talc, barium sulfate, mica powder, aluminum hydroxide, clay, etc. are used.

また上記(C)の樹脂コンパウンド中には、樹脂及び反
応性希釈剤のラジカル硬化反応をひきおこすラジカル開
始剤を使用し、ラジカル開始剤としては例えば過酸化ベ
ンゾイル、過酸化ラウロイル、ターシャリ−ブチルハイ
ドロパーオキサイド、ターシャリ−ブチルパーオキシベ
ンゾエート、クメンハイドロパーオキサイド、ジクミル
パーオキサイド、ジターシャリ−ブチルパーオキサイド
、メチルエチルケトンパーオキサイド等の有機過酸化物
類、例えばアゾビスイソブチロニトリル、アゾビスバレ
ロニトリル等のアゾ系ラジカル開始剤類が好んで用いら
れ圧縮成形時の温度に応じ一種又は二種以上を適宜選択
し使用する。
Further, in the resin compound (C) above, a radical initiator that causes a radical curing reaction of the resin and the reactive diluent is used, and examples of the radical initiator include benzoyl peroxide, lauroyl peroxide, and tert-butyl hydroperoxide. organic peroxides such as oxide, tert-butyl peroxybenzoate, cumene hydroperoxide, dicumyl peroxide, di-tert-butyl peroxide, methyl ethyl ketone peroxide, etc., such as azobisisobutyronitrile, azobisvaleronitrile, etc. Azo radical initiators are preferably used, and one or more of them are appropriately selected and used depending on the temperature during compression molding.

この他上記(C)の樹脂コンパウンドには通常複数の助
剤を使用する。
In addition, a plurality of auxiliaries are usually used in the resin compound (C) above.

助剤の一つは、樹脂コンパウンドの粘性や塑性な調整す
る増粘剤であり、例えば酸化マグネシウム、水酸化マグ
ネシウム、酸化亜鉛等の金属酸化物又は金属塩や例えば
トリレンジイソシアネート、ジフェニルメタンジイソ7
アネート等のジイソシアネート或いは多価アルコール類
との反応物等が用いられる。 ・ また圧縮成形時に生じる成形収縮を低減する為に例えば
ポリアクリル樹脂、ポリメチルメタクリレート儒脂、ポ
リスチレン樹脂、ポリエチレン樹脂、線状ポリエステル
樹脂、スチレンブタジェンブロック共重合樹脂、ポリ酢
酸ビニル樹脂等の熱可塑性樹脂を助剤の一つとして用い
る。
One of the auxiliary agents is a thickening agent that adjusts the viscosity and plasticity of the resin compound, such as metal oxides or metal salts such as magnesium oxide, magnesium hydroxide, zinc oxide, and tolylene diisocyanate, diphenylmethane diiso7, etc.
Diisocyanates such as anates or reactants with polyhydric alcohols are used. - In addition, in order to reduce molding shrinkage that occurs during compression molding, heat treatment of polyacrylic resin, polymethyl methacrylate resin, polystyrene resin, polyethylene resin, linear polyester resin, styrene-butadiene block copolymer resin, polyvinyl acetate resin, etc. A plastic resin is used as one of the auxiliary agents.

また離型性を付与する助剤、色ムラを防止する助剤、ガ
ラス繊維等の強化材と樹脂の接着性を改良する助剤等の
各種助剤を適宜混合使用してもよい。
Further, various auxiliary agents such as an auxiliary agent that imparts mold releasability, an auxiliary agent that prevents color unevenness, and an auxiliary agent that improves the adhesion between a reinforcing material such as glass fiber and a resin may be mixed and used as appropriate.

上記の(C)の樹脂コンパウンドは通常0゜5〜7朋の
厚さのシートとして用いられる。
The resin compound (C) above is usually used in the form of a sheet having a thickness of 0.5 to 7 mm.

本発明においては、上記のごとき(A)繊維状導電材料
、(B)非導電性不織布および(C)シート状ラジカル
硬化型樹脂コンパウンドを金型中で順次積層し加熱状態
で圧縮成形して電磁波反射体を製造する。この際、使用
時における(A)繊維状導電材料の側が入射電磁波に向
けられるように考慮する。したがって、上記の(A)、
(B)及び(C)は、プレス機に装着された下金型上に
(A)→(B)→(C)の順序で順次積層した後、金型
を締めて圧縮成形を行う。また、上型面に電磁波反射層
を形成した場合には(C)→(B)→(A)の順序で順
次下型上に積層した後圧縮成形しても勿論差し支えない
In the present invention, (A) a fibrous conductive material, (B) a non-conductive nonwoven fabric, and (C) a sheet-like radical-curing resin compound are sequentially laminated in a mold and compression-molded under heating to produce an electromagnetic wave. Manufacture reflectors. At this time, consideration is given so that the side of the fibrous conductive material (A) during use is directed toward the incident electromagnetic waves. Therefore, (A) above,
(B) and (C) are sequentially laminated in the order of (A) → (B) → (C) on a lower mold installed in a press machine, and then the mold is tightened and compression molding is performed. Furthermore, in the case where an electromagnetic wave reflecting layer is formed on the upper mold surface, it is of course possible to layer the electromagnetic wave reflecting layer on the lower mold in the order of (C) → (B) → (A) and then compression molding.

金型は通常120〜170℃に加熱され、又圧縮成形時
の圧力は通常10〜200kg/cyiであり、特に1
35〜155℃、70〜tookg/fflの条件が好
ましい。圧縮成形時間は通常1〜30分であり、勿論長
い圧縮成形時間としても特に弊害はないが、生産性の観
点から1〜5分が好ましい。
The mold is usually heated to 120 to 170°C, and the pressure during compression molding is usually 10 to 200 kg/cyi, especially 1
Conditions of 35 to 155°C and 70 to tookg/ffl are preferable. The compression molding time is usually 1 to 30 minutes, and of course there is no particular adverse effect even if the compression molding time is long, but from the viewpoint of productivity, 1 to 5 minutes is preferable.

本発明の方法においては、非導電性不織布を繊維状導電
材料とシート状ラジカル硬化型樹脂コンパウンドの間に
介在せしめて圧縮成形することにより、得られる電磁波
反射体はその成形物の各部位において均一な電磁波反射
特性を有し、極めて高い品質の信頼性のものが得られる
ことが特徴である。
In the method of the present invention, a non-conductive nonwoven fabric is interposed between a fibrous conductive material and a sheet-like radical-curing resin compound and compression molded, so that the electromagnetic wave reflector obtained is uniform in each part of the molded product. It has excellent electromagnetic wave reflection characteristics and is characterized by extremely high quality and reliability.

これは、加熱圧縮成形を行う際、下層の(C)ラジカル
硬化型樹脂コンパウンドの流れによって剪断力が生ずる
が、該剪断力を、該不織布が効果的に吸収するからであ
る(すなわち、不織布のうち、(C)樹脂コンパウンド
に接する側は該コンパウンドと共にスムースに変形し、
一方、(A)導電材料に接する側はほとんど変形しない
ため、一種のクノシ胃ン作用により、コンパウンドの流
れによる剪断力が直接導電材料に到達しないのである)
This is because when hot compression molding is performed, shearing force is generated by the flow of the lower layer (C) radical-curing resin compound, but the nonwoven fabric effectively absorbs the shearing force (in other words, the nonwoven fabric (C) The side in contact with the resin compound deforms smoothly together with the compound,
On the other hand, (A) the side in contact with the conductive material hardly deforms, so the shearing force caused by the flow of the compound does not directly reach the conductive material due to a type of oxidation effect.)
.

したがって、(A)繊維状導電材料の破断あるいは繊維
間隔め増大(目開き)を防止し、これが本来有する均一
な反射特性を維持するものと想定される。
Therefore, it is assumed that (A) breakage of the fibrous conductive material or increase in the fiber spacing (opening) is prevented, and the uniform reflection characteristics inherent to the fibrous conductive material are maintained.

また、同時に、加熱圧縮成形時に、該不織布層を通して
下層のラジカル硬化型樹脂が徐々にしみ出してぎて(A
)繊維状導電材料間およびその表面で硬化し、強固な樹
脂層を形成するので、該導電材料が外部環境から有効に
保護されるという作用効果もある。
At the same time, during hot compression molding, the lower layer radical curing resin gradually seeped out through the nonwoven fabric layer (A
) It cures between and on the surface of the fibrous conductive material to form a strong resin layer, which has the effect of effectively protecting the conductive material from the external environment.

以上のごとくして得られる本発明の電磁波反射体は金型
面が平面であってもまた曲面であっても、各部位におい
て均一で優れた電磁波反射特性を有し、極めて高い製品
の信頼性を示す。
The electromagnetic wave reflector of the present invention obtained as described above has uniform and excellent electromagnetic wave reflection characteristics in each part, regardless of whether the mold surface is flat or curved, resulting in extremely high product reliability. shows.

以下実施例を示し、本発明を具体的に説明する。EXAMPLES The present invention will be specifically explained below with reference to Examples.

実施例1 まず、シート状樹脂コンパウンド(SMC)は次のごと
くして製造した。すなわち、フタル酸系不飽和ポリエス
テル樹脂(三井東圧化学■製ニスターML3101)6
0部、ポリ酢酸ビニル系低収縮化剤(三井東圧化学銖)
製ニスターE M 128)40部、硬化触媒ターシャ
リ−ブチルパーオキシベンゾエート1.2部、内部離型
剤ステアリン酸亜鉛3.0部、着色剤10.0部(東洋
インキ製造■製TR9301Grey)、充填剤炭酸カ
ルクラム(日東粉化工業■製NS≠200) 150部
を混線後、増粘剤酸化マグネシウム1.5部を加えて 
調整した不飽和ポリエステル組成物に補強材として1イ
ンチに切断したガラスロービング(日東紡績■製PB5
49 )を30重量%含、み、厚さが2.5朋で単位重
量が400〜450g/mとなる様SMC含浸機を設定
し巾1000mmのシート状とし40℃で16時間熟成
して製造した。
Example 1 First, a sheet-shaped resin compound (SMC) was manufactured as follows. That is, phthalic acid-based unsaturated polyester resin (Nister ML3101 manufactured by Mitsui Toatsu Chemical Co., Ltd.) 6
0 parts, polyvinyl acetate-based low shrinkage agent (Mitsui Toatsu Chemical Co., Ltd.)
Nistar EM 128) 40 parts, curing catalyst tert-butyl peroxybenzoate 1.2 parts, internal mold release agent zinc stearate 3.0 parts, colorant 10.0 parts (TR9301Gray manufactured by Toyo Ink Manufacturing Co., Ltd.), filling After mixing 150 parts of Calcrum Carbonate (NS≠200 manufactured by Nitto Funka Kogyo), add 1.5 parts of magnesium oxide as a thickener.
Glass roving cut into 1 inch pieces (PB5 manufactured by Nitto Boseki) was added to the prepared unsaturated polyester composition as a reinforcing material.
Containing 30% by weight of 49), the SMC impregnation machine was set so that the thickness was 2.5 mm and the unit weight was 400 to 450 g/m, and the sheet was formed into a sheet with a width of 1000 mm, and was aged at 40°C for 16 hours. did.

150℃に加熱した300 mu X 300 mm(
D平板状の金型(下型)の上に、16メノシー(空隙間
隔0.99順)の真ちゅう性金鋼及び厚さ0.5mrt
tのレーヨン製不織布(重量70 g/ rrl )を
金型サイズに裁断して順次重ね、次に上記のごとくして
得られたシート状樹脂コンパウンドを290 urn 
X 290 mmに裁断して重ね、140℃に加熱した
上型をおろして圧締し、100kg/c++tの圧力で
3分間圧縮成型し厚さ2群の本発明め電波反射体(I)
を得た。電波反射体の電波反射性能は、定在波測定機(
島田理化工業株式会社製)の装置を用い、12.2.9
.3、及び4.0GHzの電磁波に対し第1図に示す各
点において反射率を測定した。測定結果は第1表に示す
300 mu x 300 mm heated to 150°C (
D On top of the flat mold (lower mold), brass metal steel of 16 minosie (gap spacing 0.99 order) and thickness 0.5 mrt
A rayon nonwoven fabric (weight 70 g/rrl) of T was cut to the mold size and layered one after another, and then the sheet-like resin compound obtained as above was heated to 290 urn.
The pieces were cut to 290 mm x 290 mm and stacked, then the upper mold heated to 140°C was put down and compressed, and compression molded for 3 minutes at a pressure of 100 kg/c++t to obtain radio wave reflectors (I) of the present invention having two thicknesses.
I got it. The radio wave reflection performance of a radio wave reflector can be measured using a standing wave measuring device (
12.2.9 using a device manufactured by Shimada Rika Kogyo Co., Ltd.
.. The reflectance was measured at each point shown in FIG. 1 for electromagnetic waves of 3 and 4.0 GHz. The measurement results are shown in Table 1.

実施例2 実施例1で用いた金網の代りにカーボン繊維マット(3
0g/m)を用い、又レーヨン製不織布の代りにポリエ
ステル製不織布(厚み0.46羽、重量65g/7yL
りを用い実施例1に示すシート状樹脂コンパウンドを用
い、実施例1と全く同様な条件において本発明の電磁波
反射体(II)を作成した。
Example 2 Instead of the wire mesh used in Example 1, carbon fiber mat (3
0g/m), and polyester nonwoven fabric (thickness 0.46, weight 65g/7yL) was used instead of rayon nonwoven fabric.
An electromagnetic wave reflector (II) of the present invention was prepared using the sheet-like resin compound shown in Example 1 under the same conditions as in Example 1.

実施例1と同様にして行った電磁波反射性能の測定結果
を第1表に記載する。
Table 1 shows the measurement results of electromagnetic wave reflection performance performed in the same manner as in Example 1.

実施例3 厚さ5罷のポリエステル製不織布(435g/+nj)
に不飽和a IJエステル樹脂(三井東圧化学■ML 
3101 ) 100重量部、炭酸カルシウム(日東粉
化工業製N54200) 10重量部重合開始剤である
t−ブチルパーオキシベンゾ/z−)1.2重量部及び
、増粘剤である酸化マグネシウム4重量部の混合液を1
17g/m含浸し16時間40℃で熟成したものを、用
いた以外は実施例2と全く同様にして本発明の電磁波反
射体(ト)を得た。この電磁波反射性能の測定結果を第
1表に記載する。
Example 3 Polyester nonwoven fabric with 5 strips of thickness (435g/+nj)
unsaturated a IJ ester resin (Mitsui Toatsu Chemical ML
3101) 100 parts by weight, 10 parts by weight of calcium carbonate (N54200 manufactured by Nitto Funka Kogyo), 1.2 parts by weight of t-butylperoxybenzo/z-) as a polymerization initiator, and 4 parts by weight of magnesium oxide as a thickener. 1 part of the mixture
An electromagnetic wave reflector (G) of the present invention was obtained in exactly the same manner as in Example 2, except that a material impregnated with 17 g/m and aged at 40° C. for 16 hours was used. The measurement results of this electromagnetic wave reflection performance are listed in Table 1.

実施例4 実施例2のポリエステル製不織布の代りにより薄手の厚
み0.35mm(40!i’ /m” )のポリエステ
ル製不織布を用いた以外は実施例2と全く同様な条件で
本発明の電磁波反射体(tV)を作成した。
Example 4 The electromagnetic waves of the present invention were applied under exactly the same conditions as in Example 2, except that a thin polyester non-woven fabric with a thickness of 0.35 mm (40!i'/m'') was used instead of the polyester non-woven fabric in Example 2. A reflector (tV) was created.

この電磁波反射性能の測定結果を第1表に記載する。The measurement results of this electromagnetic wave reflection performance are listed in Table 1.

実施例5 実施例4のポリエステル製不織布の代りにより薄手の厚
み0.3mm(35り/i)のポリエステル製不織布を
用いた以外は実施例4と全(同様な条件で本発明の電磁
波反射体(ト)を作成した。この電磁波反射性能の測定
結果を第1表に記載する。
Example 5 The electromagnetic wave reflector of the present invention was prepared under the same conditions as in Example 4, except that a thinner polyester nonwoven fabric with a thickness of 0.3 mm (35 mm/i) was used instead of the polyester nonwoven fabric in Example 4. (g) was prepared.The measurement results of this electromagnetic wave reflection performance are listed in Table 1.

実施例6 実施例2で用いたカーボン繊維マットの代りに、アルミ
被覆をほどこしたガラス繊維マット(55り/m′)を
用いた以外は実施例2と全く同様な条件で本発明の電磁
波反射体(Vl)を作成した。この電磁波反射性能の測
定結果を第1表に記載する。
Example 6 Electromagnetic wave reflection of the present invention was carried out under exactly the same conditions as in Example 2, except that an aluminum-coated glass fiber mat (55 l/m') was used instead of the carbon fiber mat used in Example 2. A body (Vl) was created. The measurement results of this electromagnetic wave reflection performance are listed in Table 1.

比較例1 実施例1におけるレーヨン製不織布を用いず、繊維状導
電材料である真ちゅう製金鋼とシート状樹脂コンパウン
ドのみを実施例1と同様な条件で圧縮成形し、比較用の
電磁波反射体(vIDを作成した。この電磁波反射性能
を同様な方法で測定し第1表に記載する。
Comparative Example 1 Without using the rayon nonwoven fabric in Example 1, only the fibrous conductive material brass metal steel and sheet-like resin compound were compression molded under the same conditions as Example 1, and a comparative electromagnetic wave reflector ( A vID was created.The electromagnetic wave reflection performance was measured in a similar manner and is listed in Table 1.

比較例2 実施例2におけるポリエステル製不織布を用いず、カー
ボン繊維マットとシート状樹脂コンパウンドのみを実施
例2と同様な条件で圧縮成形し、比較用の電磁波反射体
(至)を作成した。この電磁波反射性能を同様な方法で
測定し第1表に記載する。
Comparative Example 2 A comparative electromagnetic wave reflector was created by compression molding only the carbon fiber mat and sheet-like resin compound under the same conditions as in Example 2, without using the polyester nonwoven fabric in Example 2. The electromagnetic wave reflection performance was measured in a similar manner and is listed in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電磁波反射体を示す平面図である。図
においてa9、a2、al、a、は測定位置を示す。マ
タ図にオイテll ” 300 mrn、17 = 1
50 mm ”’Qする。 特許出願人 三井東圧化学株式会社
FIG. 1 is a plan view showing the electromagnetic wave reflector of the present invention. In the figure, a9, a2, al, and a indicate measurement positions. 300 mrn, 17 = 1
50 mm ”'Q. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1) (A)繊維状導電材料。 (B)非導電性不織布、および (C)シート状ラジカル硬化型41t 脂コンパウンド を順次積層し加熱状態において圧縮成形する均一電磁波
反射特性を有する電磁波反射体の製法。
(1) (A) Fibrous conductive material. A method for manufacturing an electromagnetic wave reflector having uniform electromagnetic wave reflection characteristics by sequentially laminating (B) a non-conductive nonwoven fabric and (C) a sheet-like radical-curable 41t fat compound and compression molding under heating.
JP7173884A 1984-04-12 1984-04-12 Manufacture of electromagnetic wave reflecting body Pending JPS60216603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7173884A JPS60216603A (en) 1984-04-12 1984-04-12 Manufacture of electromagnetic wave reflecting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7173884A JPS60216603A (en) 1984-04-12 1984-04-12 Manufacture of electromagnetic wave reflecting body

Publications (1)

Publication Number Publication Date
JPS60216603A true JPS60216603A (en) 1985-10-30

Family

ID=13469163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7173884A Pending JPS60216603A (en) 1984-04-12 1984-04-12 Manufacture of electromagnetic wave reflecting body

Country Status (1)

Country Link
JP (1) JPS60216603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146406A (en) * 1987-12-02 1989-06-08 Sekisui Chem Co Ltd Reflection mirror for parabolic antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146406A (en) * 1987-12-02 1989-06-08 Sekisui Chem Co Ltd Reflection mirror for parabolic antenna

Similar Documents

Publication Publication Date Title
US4554204A (en) Fiber reinforced resin molded articles for electromagnetic waves and method for production thereof
US4784899A (en) Electroconductive nonwoven fabric-resin composite articles and method for production thereof
JPH02501998A (en) How to repair damaged composite articles
JPS62248299A (en) Electric wave absorbing composite unit
WO1990008800A1 (en) A process for forming flat plate ballistic resistant materials
EP0739915B1 (en) Thermosetting resin compositions, electrical laminates obtained therefrom and process of producing these
JPH04340299A (en) Millimeter radio wave absorber
JPS60216603A (en) Manufacture of electromagnetic wave reflecting body
JPS60217129A (en) Manufacture of electromagnetic wave reflector
JPS60216604A (en) Method for forming electromagnetic wave reflecting body
JPH11340593A (en) Laminate for printed wiring board and its manufacture
JPS59201504A (en) Manufacture of reinforced plastic-made parabolic antenna
JPS6221010B2 (en)
JPH0234484B2 (en) TAIKOSEINISUGURERUDENJIHAHANSHATAI
JPS60217130A (en) Manufacture of compression molding with coating layer
CA1244547A (en) Fiber reinforced resin molded articles for electromagnetic waves and method for production thereof
JPS58124647A (en) Composite material having excellent interlayer adhesive strength
JPH0363242B2 (en)
JPS59201505A (en) Manufacture of reinforced plastic-made parabolic antenna
JPH06134903A (en) Sheet composition
JPH0666558B2 (en) Manufacturing method of plastic molded products with radio wave reflection and shielding properties
JP2002144334A (en) Sheet-like preparatory molded body, method for manufacturing molded body using that and molded body
JPH04224830A (en) Composite molding
JP3164652B2 (en) Fiber reinforced plastic products with improved weather resistance
JPS60229504A (en) Manufacture of parabolic antenna