JPS60216537A - Vapor growth method of compound semiconductor single crystal epitaxial film - Google Patents

Vapor growth method of compound semiconductor single crystal epitaxial film

Info

Publication number
JPS60216537A
JPS60216537A JP59072400A JP7240084A JPS60216537A JP S60216537 A JPS60216537 A JP S60216537A JP 59072400 A JP59072400 A JP 59072400A JP 7240084 A JP7240084 A JP 7240084A JP S60216537 A JPS60216537 A JP S60216537A
Authority
JP
Japan
Prior art keywords
layer
flow rates
epitaxial
epitaxial film
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59072400A
Other languages
Japanese (ja)
Inventor
Masahisa Endo
遠藤 正久
Nobuhiko Noto
宣彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP59072400A priority Critical patent/JPS60216537A/en
Publication of JPS60216537A publication Critical patent/JPS60216537A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the intensity of light emission without forming a projection to the surface by selecting an atomicity ratio [Ga]/[As+P] in an epitaxial growth gas within a range of 2-2.5 and growing GaAs1-xPx (0.5<=x<=1) on a GaP substrate. CONSTITUTION:An N type GaP substrate 1, which is deflected at 5 deg. to <110> from (100) and to which Te is added, is set to a quartz vessel together with Ga, and Ga and H2S/H2, HCl, PH3/H2 as reaction gases are introduced at predetermined flow rates, thus forming an epitaxial layer 2. The flow rates of H2S/H2, HCl, PH3/H2 are kept at fixed values, the flow rate of AsH3/H2 is increased gradually up to a fixed value, and a substrate temperature is lowered up to a fixed value intermittently and slowly during that time, thus shaping a layer 3, a mixed crystal ratio (x) thereof changes to 0.85 from 1. The flow rates of H2S/H2, HCl, PH3/ H2, AsH3/H2 are settled at fixed values and a constant x layer (such as GaAs0.15P0.85) 4 is grown, lastly said flow rates are kept at fixed values, the flow rate of NH3 is increased up to a fixed value, and the flow rates of said each reaction gas are settled at fixed values, thus forming a constant x layer 5, to which N is added in desired concentration and which consists of GaAs1-xPx. According to the method, projections on the surface of an epitaxial film are reduced extremely, and the intensity of light emission is increased by approximately 20%.

Description

【発明の詳細な説明】 1皇よ旦と肚立証 本発明は発光ダイオード用間接遷移型三元系化合物半導
体燐化砒化ガリウム(GaAa□−xPX、0.5≦x
〈1)エピタキシャル膜の気相成長法に関する。
[Detailed Description of the Invention] 1. The present invention is an indirect transition type ternary compound semiconductor gallium arsenide phosphide (GaAa□-xPX, 0.5≦x) for light-emitting diodes.
<1) Regarding the vapor phase growth method of epitaxial films.

従来の技術 一般に、黄色、橙色及び赤色発光ダイオード用1−V族
化合物半導体の気相成長エピタキシャルウェー八として
、燐化ガリウム(GaP)等の単結晶基板に燐化砒化ガ
リウム(GaAs1−、Pcm 0.5≦Iく1)エピ
タキシャル膜を設けたものが知られている。
Conventional technology Generally, gallium arsenide phosphide (GaAs1-, Pcm 0 .5≦I (1) A device provided with an epitaxial film is known.

従来、黄色発光ダイオード(中心発光波長5saoX)
檄色発光ダイオード(中心発光波長6300A)等のエ
ピタキシャルウェー八は、GaP単結晶基板上に、Ga
Pのエピタキシャル層、格子定数の相異による格子不整
合を緩和するために、混晶率Xを徐々に変化させたGa
As 、−エPC(0,5≦z<1)混晶率変化711
(以下X変化層という)を高率な実際に示すと黄色発光
ダイオードではG5LA’ al @Paal’橙色発
光ダイオードではGaAsa、。
Conventional yellow light emitting diode (center emission wavelength 5saoX)
Epitaxial wafers such as orange light-emitting diodes (center emission wavelength 6300A) are made of GaP single crystal substrates.
Epitaxial layer of P, Ga with mixed crystal ratio X gradually changed to alleviate lattice mismatch due to difference in lattice constant.
As, -EPC (0,5≦z<1) Mixed crystal ratio change 711
(hereinafter referred to as the X change layer) is actually shown at a high rate in yellow light emitting diodes: G5LA' al @Paal' in orange light emitting diodes: GaAsa.

P である。It is P.

α−5 発光層となるX−足側には、窒素を添加し、この窒素ア
イソエレクトロニックトラップにとらえられたエキシト
ンの再結合発光により高い発光強度が得られる。
Nitrogen is added to the X-leg side which becomes the α-5 luminescent layer, and high luminescence intensity is obtained by recombination luminescence of excitons captured in the nitrogen isoelectronic trap.

従来、前記X一定足側成長させる際に、エピタキシャル
成長用ガス中に含まれるガリウムと砒素及び燐との原子
数比(Ga) / (Aa+P) (以下〔I〕/(V
)比と略記する)を0.5〜2.0に選択して成長させ
てきた。
Conventionally, when growing on the constant side of
) has been grown by selecting a ratio of 0.5 to 2.0.

(1)/(V)比を増加し、Ga jJラッテ雰囲気中
でX−足側の成長を行うと、この層内にとりこまれる窒
素の量は(1) /(V)比の増大に伴なって増加し、
発光強度が改善される。また、(1)/(V)比の増大
に伴なって、非発光再結合中心となるX−足側内のガリ
ウム空格子が低濃度になり、ガリウム空格子の減少に伴
なって少数キャリアの寿命が長くなり、これらのことか
らも発光強度の向上が期待される。
When the (1)/(V) ratio is increased and the X-leg side is grown in a Ga jJ latte atmosphere, the amount of nitrogen incorporated into this layer increases as the (1)/(V) ratio increases. and increase,
Emission intensity is improved. In addition, as the (1)/(V) ratio increases, the concentration of gallium vacancies on the X-leg side, which is the center of non-radiative recombination, decreases, and as the gallium vacancies decrease, minority carriers The lifetime of the LED will be extended, and from these factors, an improvement in luminescence intensity is expected.

しかし、(鳳)/(V)比が更に大きくなり、窒素原子
が過剰に添加されると、結晶性が悪くなり逆に発光強度
が低下する原因となる。
However, if the (Otori)/(V) ratio becomes even larger and nitrogen atoms are added in excess, crystallinity deteriorates and, conversely, the emission intensity decreases.

これらのことに着目し研究を重ねた結果、〔l/〔V〕
比を2.0より大にした時、従来より約20%の発光強
度の向上が達成され、3.0以上になると発光強度の低
下が見られた。
As a result of focusing on these things and conducting repeated research, we found that [l/[V]
When the ratio was made larger than 2.0, an approximately 20% improvement in emission intensity was achieved compared to the conventional ratio, and when the ratio was made greater than 3.0, a decrease in emission intensity was observed.

また、(1) / (V)比が大きくなり、エピタキシ
ャル成長ガス中にGa原子成分が過剰に存在すると、エ
ピタキシャル膜表面に「ピラミッド」と呼ばれる突起が
発生する。特に(1)/(V)比を2,5以上にすると
顕著に現われることが判った。
Furthermore, when the (1)/(V) ratio becomes large and an excessive Ga atomic component exists in the epitaxial growth gas, protrusions called "pyramids" occur on the surface of the epitaxial film. It has been found that this effect is particularly noticeable when the (1)/(V) ratio is set to 2.5 or more.

この「ピラミッド」はエビタキVヤルウエーへから発光
ダイオードを製造すふ工程において妨げになると共に、
成長させた一枚のウェーハから製造できる発光ダイオー
ドの数を著しく減少させる。
This "pyramid" becomes a hindrance in the process of manufacturing light emitting diodes from Evitaki V Yaruwei, and
This significantly reduces the number of light emitting diodes that can be manufactured from a single grown wafer.

問題点を解決するための手段 本発明の目的は()aP単結晶基板上にGaAs 、−
エP工(0,5≦xく1)エピタキシャル陵を成長させ
る際、その表面に突起を発生させず発光強度を向上させ
ることにある。
Means for Solving the Problems The purpose of the present invention is to () deposit GaAs on an aP single crystal substrate, -
The object of the present invention is to improve the light emission intensity without generating protrusions on the surface when growing an epitaxial layer (0,5≦x×1).

この目的は、エピタキシャル成長ガス中の〔勇〕/〔V
〕比を2 < (1)/(V) < 2. sの範囲に
することにより達成できる。
The purpose of this is to
] The ratio is 2 < (1)/(V) < 2. This can be achieved by setting the range to s.

次d二実施例および比較例に基づいて本発明を説明する
が、ここにあげた実施例によって本発明が限定されない
ことはもちろんである。
The present invention will be explained based on the following two examples and comparative examples, but it goes without saying that the present invention is not limited to the examples listed here.

実施例1 下記の方法により第1図に示す構造の黄色発光ダイオー
ド用GaAs *−xPxエビタキシヤルウェーッ寺製
造した。
Example 1 A GaAs*-xPx yellow light emitting diode having the structure shown in FIG. 1 was manufactured by the following method.

fstAt(Te)を2.ax10JfL子/d添加し
た結晶方位<ioo>のGaP単結晶棒を(1(30)
より<11)0>の方向に5°偏位なもつ様椹;厚さ3
50μにスライスした後、通常の化学エツチングと機械
化学研摩をほどこした厚さ約300μのGaP鏡面単結
晶ウェーハをエビタキVヤル基板1として用いた。また
反応ガスとして水素(Hg ) 。
fstAt(Te) to 2. A GaP single crystal rod with crystal orientation <ioo> to which ax10JfL/d is added is (1(30)
5° deviation in the <11)0>direction; thickness 3
A GaP mirror-finished single crystal wafer having a thickness of about 300 μm, which was sliced into 50 μm slices and subjected to ordinary chemical etching and mechanochemical polishing, was used as the epitaxial V-shaped substrate 1. Hydrogen (Hg) is also used as a reaction gas.

H2希釈の濃度50 ppmの硫化水素(H28n型不
純物)、H2希釈の1%砒化水素(ABMs)Jx希釈
の10%の燐化水素(PHm)、高純度塩化水素ガス(
HOI)及び高純度アンモニアガス(NHB)を用いた
Hydrogen sulfide (H28 n-type impurity) at a concentration of 50 ppm in H2 dilution, 1% hydrogen arsenide (ABMs) in H2 dilution, 10% hydrogen phosphide (PHm) in Jx dilution, high purity hydrogen chloride gas (
HOI) and high purity ammonia gas (NHB) were used.

以後上記反応ガスを各々Ha 、 H2B / H2,
AaH1/H,、PH,/H,、)101及び皿、と略
記する。
Thereafter, the above reaction gases were converted into Ha, H2B/H2,
AaH1/H, PH, /H, ) 101 and plate.

上記GaP単結晶基板1を洗浄した後、これと高純度G
a入り石英容器とを縦型石英製反応機内の所定の場所に
セットした。
After cleaning the GaP single crystal substrate 1, this and high-purity G
The quartz container containing a was set at a predetermined location in a vertical quartz reactor.

反応機内に高純度窒業ガス(N2)、ついでキャリアガ
スとして高純度水素ガス(N2)を導入して反応機内を
充分に置換した後、昇温を開始した。
After introducing high-purity nitrogenous gas (N2) into the reactor and then high-purity hydrogen gas (N2) as a carrier gas to sufficiently replace the inside of the reactor, temperature elevation was started.

上記GaP基板セット領域の温度か880℃に達したこ
とを確認した後、黄色発光ダイオード用GaAs0.I
 S PO,m sエピタキシャル膜の気相成長を開始
した。
After confirming that the temperature of the GaP substrate setting area reached 880°C, the GaAs0. I
Vapor phase growth of the SPO,ms epitaxial film was started.

中のGaと反応させてGaolを形成させ、同時に導入
した流量が毎分250ccのPHs/HaとによりGa
P単結晶基板l上に厚さ5μのGapエピタキシャルJ
fii2を成長させた。
Gaol is formed by reacting with the Ga in the inside, and the Gaol is reacted with the PHs/Ha introduced at the same time at a flow rate of 250 cc/min.
Gap epitaxial J with a thickness of 5μ on a P single crystal substrate l
I grew fii2.

次に上記層2上にG■8□−XPX層をエピタキシャル
成長させた。最初に前記H,8/H1l、 HにII及
びPH,/H1の流量を各々毎分11cc、68ee及
び250eCに保ちながら、ASH8/ N2の流量を
毎分Qccより260Ceまで徐々に増加させて、混晶
率Iが1から約0.85まで変化する厚さ35μのX変
化層3を形成した。AsHB /H2の流量が毎分Oa
から170eeに変化する間、基板セット領域の温度を
880℃から820℃に徐々C二、かつ断続的に低下さ
せた。以後、この基板セット領域の温度はエピタキシャ
ル膜成長終了まで820℃C二固定した。
Next, a G■8□-XPX layer was epitaxially grown on the layer 2 described above. First, while keeping the flow rates of H, 8/H1l, H to II and PH, /H1 at 11cc, 68ee and 250eC per minute, respectively, the flow rate of ASH8/N2 was gradually increased from Qcc to 260Ce per minute, An X-variable layer 3 having a thickness of 35 μm and having a mixed crystal ratio I varying from 1 to about 0.85 was formed. The flow rate of AsHB/H2 is Oa per minute
During the change from 880° C. to 170° C., the temperature of the substrate setting area was gradually lowered by C2 and intermittently from 880° C. to 820° C. Thereafter, the temperature of this substrate setting area was fixed at 820° C. until the epitaxial film growth was completed.

ついで、上記H2B/H2,HOI、PH,/H,およ
びAsH3/H,!! の流量を各々毎分10QIIn
、59cc。
Then, the above H2B/H2, HOI, PH, /H, and AsH3/H,! ! The flow rate of each is 10QIIn per minute.
, 59cc.

2500Cおよび260eeに固定し、厚さ10μのX
−窓層4すなわち、Ga”0.18 POJ6の層を成
長させた。
Fixed to 2500C and 260ee, 10μ thick
- Window layer 4, a layer of Ga"0.18 POJ6 was grown.

最後に、H,B/H2,HOI、 PH,/H,、As
八へH2の流量を各々毎分l OCC,68cc、 2
5 Qccおよび260eCに保ちなからHE、の流量
を毎分Occから400eeに増加し、つい1′HtB
/H,、HOI 。
Finally, H,B/H2,HOI, PH,/H,,As
The flow rate of H2 to 8 l OCC, 68 cc, 2 per minute, respectively.
5 While maintaining Qcc and 260eC, increase the flow rate of HE from Occ to 400ee per minute, and just 1'HtB.
/H,,HOI.

pa3/H,I、 ABH3/ Hz およびNH,の
流量を各々毎分I Qcc、 63cc、 250cc
、 2 (i 0ccおよび400CCに固定して、所
望の濃度に窒素原子が添付された厚さ25μのGaAs
1−XPXx一定M5(以下N#&加X一定層足側う)
を形成し、黄色発光ダイオード用間接遷移型GaAs□
−xPXエピタキシャル膜の成長を終了させ、エピタキ
シャルクエー八を得た。
The flow rates of pa3/H, I, ABH3/ Hz and NH are I Qcc, 63cc, and 250cc per minute, respectively.
, 2 (i fixed at 0cc and 400cc, 25μ thick GaAs with nitrogen atoms attached to the desired concentration)
1-XPXx constant M5 (hereinafter N# & +X constant layer foot side)
Indirect transition type GaAs□ for yellow light emitting diode
The growth of the -xPX epitaxial film was completed to obtain an epitaxial Q8.

ド用GaAs H−x Pxエピタキシャルウェー八へ
製造した。
A GaAs H-x Px epitaxial wafer was fabricated for use in the wafer.

つぎに、前記実施例1.2および比較例1.2゜3.4
に示す方法によって得た黄色発光ダイオード用エビタキ
シャルウェーッ翫にZn拡散を行なってP−N接合を形
成し黄色発光ダイオードを製作した。この黄色発光ダイ
オード(樹脂コートなし)の発光輝度(ミリカンデラ、
mad)およびエピタキシャル膜表面のピラミッドの数
は第1表に示す通りであった。
Next, Example 1.2 and Comparative Example 1.2゜3.4
The yellow light emitting diode was manufactured by diffusing Zn into the yellow light emitting diode epitaxial wave rod obtained by the method described above to form a PN junction. The luminance of this yellow light emitting diode (without resin coating) (millicandela,
The number of pyramids on the surface of the epitaxial film was as shown in Table 1.

発明の効果 上記第1表に示した如く、本発明に基づく方法は、従来
の方法に比べて、エピタキシャル膜表面のピラミッドが
極端に少なく、かつ発光強度は約20%の輝度向上が達
成され、本発明の方法による効果が確認された。
Effects of the Invention As shown in Table 1 above, the method based on the present invention has an extremely small number of pyramids on the surface of the epitaxial film, and an approximately 20% increase in luminance intensity compared to the conventional method. The effects of the method of the present invention were confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に示す黄色発光ダイオード用GaAS0
.1S Po、15エピタキシヤルウエーへの断面図を
示すものである。 1・・・GaP単結晶基板 2・・・GaPエピタキシャル層 3・・・I変化7m 4・・・X−完膚 5・・・N添加X一定層
Figure 1 shows GaAS0 for yellow light emitting diode shown in the example.
.. 1S Po, 15 shows a cross-sectional view into the epitaxial way. 1...GaP single crystal substrate 2...GaP epitaxial layer 3...I change 7m 4...X-complete 5...N-added X constant layer

Claims (1)

【特許請求の範囲】[Claims] 1、燐化ガリウム(Gap)単結晶基板上に、GaPエ
ピタキシャル層、三元系化合物半導体GaAs□−エP
 の混晶率変化層(ただし0.5≦xく1)、Chls
Aa□−エP工の混晶率−足側(ただし0.5≦Iく1
)及びキャリアの発光再結合領域に窒素の添加されたG
aAa、−エル混晶率一定Jii(ただし0.5≦xく
1)よりなるエピタキシャル膜を気相成長させる方法に
おいて、上記エピタキシャル膜成長用ガス中に含まれる
ガリウムと燐及び砒素との原子数比(ea)/(As+
P)が2<(Ga)/(Aa+P)<2.5であること
を特徴とする化合物半導体単結晶エピタキシャル膜の気
相成長法。
1. GaP epitaxial layer, ternary compound semiconductor GaAs□-EP on gallium phosphide (Gap) single crystal substrate
The mixed crystal ratio changing layer (however, 0.5≦x1), Chls
Aa□-EP mixed crystal ratio-foot side (however, 0.5≦Iku1
) and G with nitrogen added to the radiative recombination region of carriers.
aAa, - In a method for vapor phase growing an epitaxial film having a constant mixed crystal ratio Jii (0.5≦x1), the number of atoms of gallium, phosphorus, and arsenic contained in the epitaxial film growth gas; Ratio (ea)/(As+
A method for vapor phase growth of a compound semiconductor single crystal epitaxial film, characterized in that P) satisfies 2<(Ga)/(Aa+P)<2.5.
JP59072400A 1984-04-11 1984-04-11 Vapor growth method of compound semiconductor single crystal epitaxial film Pending JPS60216537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072400A JPS60216537A (en) 1984-04-11 1984-04-11 Vapor growth method of compound semiconductor single crystal epitaxial film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072400A JPS60216537A (en) 1984-04-11 1984-04-11 Vapor growth method of compound semiconductor single crystal epitaxial film

Publications (1)

Publication Number Publication Date
JPS60216537A true JPS60216537A (en) 1985-10-30

Family

ID=13488183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072400A Pending JPS60216537A (en) 1984-04-11 1984-04-11 Vapor growth method of compound semiconductor single crystal epitaxial film

Country Status (1)

Country Link
JP (1) JPS60216537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782202A3 (en) * 1995-12-27 1998-04-22 Shin-Etsu Handotai Co., Ltd Compound semiconductor epitaxial wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454568A (en) * 1977-10-08 1979-04-28 Mitsubishi Monsanto Chem Method of growing gas phase epitaxial of compound semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454568A (en) * 1977-10-08 1979-04-28 Mitsubishi Monsanto Chem Method of growing gas phase epitaxial of compound semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782202A3 (en) * 1995-12-27 1998-04-22 Shin-Etsu Handotai Co., Ltd Compound semiconductor epitaxial wafer
US5912476A (en) * 1995-12-27 1999-06-15 Shin-Etsu Handotai Co., Ltd. Compound semiconductor epitaxial wafer

Similar Documents

Publication Publication Date Title
JP3440873B2 (en) Method for manufacturing group III nitride compound semiconductor device
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
CN103748662A (en) Semiconductor substrate and method of forming
US4252576A (en) Epitaxial wafer for use in production of light emitting diode
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
JP4333377B2 (en) GaN single crystal substrate, manufacturing method thereof, and light emitting device
JP2773597B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH0579163B2 (en)
JP2003517721A (en) III-V nitride doped with magnesium and method
JP3146874B2 (en) Light emitting diode
JPS60216537A (en) Vapor growth method of compound semiconductor single crystal epitaxial film
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JPH08264464A (en) Vapor-phase epitaxy
JPS60214524A (en) Growing method of gallium phosphide arsenide epitaxial film
JPH0760903B2 (en) Epitaxial wafer and manufacturing method thereof
US6057592A (en) Compound semiconductor epitaxial wafer
JP3111644B2 (en) Gallium arsenide arsenide epitaxial wafer
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPH08335555A (en) Fabrication of epitaxial wafer
JPS60187013A (en) Epitaxial wafer
JPH0654758B2 (en) Method for growing compound semiconductor single crystal film
JPS6392014A (en) Manufacture of compound semiconductor epitaxial wafer
JPH079883B2 (en) Method of manufacturing epitaxial wafer