JPS6021614A - Supporting structure of tuning fork crystal oscillator - Google Patents

Supporting structure of tuning fork crystal oscillator

Info

Publication number
JPS6021614A
JPS6021614A JP13048283A JP13048283A JPS6021614A JP S6021614 A JPS6021614 A JP S6021614A JP 13048283 A JP13048283 A JP 13048283A JP 13048283 A JP13048283 A JP 13048283A JP S6021614 A JPS6021614 A JP S6021614A
Authority
JP
Japan
Prior art keywords
tuning fork
base
lead
type crystal
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13048283A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦博 高橋
Nobuyoshi Matsuyama
松山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP13048283A priority Critical patent/JPS6021614A/en
Publication of JPS6021614A publication Critical patent/JPS6021614A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve shock resistance characteristic by supporting a tuning fork type crystal oscillator by two supporting members in common use for leads having a Young's modulus within a prescribed range. CONSTITUTION:The total length L of the tuning fork type crystal oscillator 111 is 3.3mm., the length la of the tuning fork arm is 1mm., the length lb of the base part is 2.3mm., the length lc of the concaved part is 0.6mm., the maximum width W of the oscillator 111 is 1mm., the amount of cut (w) of the concaved part of the base part is 0.2mm., and the thickness of the oscillator 111 is nearly 55mum. The Young's modulus of the lead 112 made of ''Kovar'' is nearly 14,000kg/mm.<2>, the thickness of the lead 112 is 125mum and the distance lL between the base part end of the oscillator 111 and a plug 113 is 300mum. Through the constitution above, the supporting structure of the tuning form type crystal oscillator 111 having the concaved part to the base part is excellent against hock and the support does does not break even if it is dropped from a height of nearly 1m onto a concrete plate.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は基部に凹部のある音叉型水晶振動子の支持構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a support structure for a tuning fork type crystal resonator having a recessed portion at its base.

〈従来技術〉 近年、捩れ振動をする音叉型水晶振動子が注目されてい
る。その理由は、同じ音叉型水晶振動子において屈曲振
動をさせた時の)61波数よりも捩れ振動の周波数が高
く、又、厚みすべり振11flを利用するAT水晶等の
周波数よりも低い周波数が得られるためである。
<Prior Art> In recent years, tuning fork type crystal resonators that produce torsional vibration have attracted attention. The reason for this is that the frequency of torsional vibration is higher than the 61 wave number (when the same tuning fork type crystal oscillator is subjected to bending vibration), and the frequency is lower than that of an AT crystal that uses thickness shear vibration of 11fl. This is so that you can be saved.

又、屈曲振動と捩れ振動の弾性結合を利用して、年差数
秒等の高精度腕時計用水晶振動子を得ようとする試みも
なされている。
Attempts have also been made to utilize elastic coupling between bending vibration and torsional vibration to obtain a crystal resonator for a wristwatch with high accuracy, such as an annual difference of several seconds.

換れ振動単独であるにせよ、屈曲振動と捩れ振動の弾性
結合を利用する場合であるにせよ、音叉型水晶振動子が
捩れ振動を利用している限り、その基部における振動変
位は非常に大きい。音叉+hi+先端の振動子の厚み方
向変位が捩れ振動の最大変位であるが、その変位の大き
さを1とした時の基部端における振動変位は約10″2
の値である。一方、屈曲振動の最大変位は音叉腕先端の
振動子の幅方向変位であるが、その値を1としだ時の基
部端における振動変位は約118〜10−4の値である
。この事から、如何に音叉型水晶振動子における捩れ振
動の基部端における振動変位が大きいかが分る。
As long as a tuning fork type crystal resonator uses torsional vibration, the vibration displacement at its base is extremely large, regardless of whether it uses torsional vibration alone or an elastic combination of bending vibration and torsional vibration. . The displacement in the thickness direction of the tuning fork + hi + tip vibrator is the maximum displacement of torsional vibration, but when the magnitude of that displacement is 1, the vibration displacement at the base end is approximately 10"2
is the value of On the other hand, the maximum displacement of the bending vibration is the width direction displacement of the vibrator at the tip of the tuning fork arm, and when that value is taken as 1, the vibration displacement at the base end is a value of about 118 to 10-4. This shows how large the vibration displacement at the base end of the torsional vibration in the tuning fork type crystal resonator is.

第1図、2J2図、第6図は音叉型水晶振動子の平面図
を表わしている。音叉型水晶振動子の基部とは、音叉型
水晶振動子の内、2本の音叉腕を除いた部分を―°う、
捩れ振動をする音叉型水晶振動子の基部において、最も
大きい変位成分は振動子の厚み方向変位である。第1図
、第2図、第3図に示す6つの形状の基部端である直#
+lAE、CD。
FIGS. 1, 2J2, and 6 show plan views of the tuning fork type crystal resonator. The base of a tuning fork crystal resonator is the part of the tuning fork crystal resonator excluding the two tuning fork arms.
At the base of a tuning fork type crystal resonator that undergoes torsional vibration, the largest displacement component is the displacement in the thickness direction of the resonator. The straight # that is the base end of the six shapes shown in Figures 1, 2, and 3.
+lAE, CD.

liF上における捩れ振動の振動子厚み方向変位Uを第
4図に示す。この結果は有限袂素法のh舞により得られ
たものである。但し、第4図の結果は捩れ振動が捩れの
基本振動を行っている場合の特性を示している。捩れの
高次振動を利用する場合も、第4図の結果とAi4 i
4的には多少異なるが、定性的にはほぼ同等の結果が得
られる。第4図におハて、41は直線AB上、42は直
線CD上、43け直線EF上における変位をそれぞれ示
している。第4図から明らかなように、第1図に示す形
状を持つ音叉型水晶振動子の場合、基部に凹部を設けな
いと、基部端の幅方向端部で、即ち点Aと点B付近で振
動変位の大きいあおり振動を行う。
FIG. 4 shows the displacement U in the transducer thickness direction due to torsional vibration on the liF. This result was obtained by h-mai of the finite element method. However, the results shown in FIG. 4 show the characteristics when the torsional vibration is basic torsional vibration. Even when using higher-order vibrations of torsion, the results shown in Figure 4 and Ai4 i
Although there are some differences in terms of 4, qualitatively almost the same results can be obtained. In FIG. 4, 41 indicates the displacement on the straight line AB, 42 indicates the displacement on the straight line CD, and 43 indicates the displacement on the straight line EF. As is clear from Fig. 4, in the case of the tuning fork crystal resonator having the shape shown in Fig. 1, if a recess is not provided in the base, the widthwise ends of the base end, that is, near points A and B, Performs tilting vibration with large vibration displacement.

この基部端におけるあおり振動は、捩れ振動をする音叉
型水晶振動子にとって特有のものである。
This tilting vibration at the base end is unique to a tuning fork crystal resonator that vibrates torsionally.

ところが、第2図あるいは第3図の様に基部に凹部を設
けると、基部端における変位の絶対値は小さくなり、し
かもあおり振動も消失する。
However, if a concave portion is provided in the base as shown in FIG. 2 or 3, the absolute value of displacement at the end of the base becomes small, and moreover, the swinging vibration disappears.

音叉型水晶揚動子を基部において支持する場合、基部に
おける変位が大きいと、支持材を通して振動子の振動エ
ネルギーが漏れる振動モレの現象が生ずる。振動モレが
大きいと、安定な周波数温度特性や周波数エージング特
性が得られない欠点を持つ。この様に、捩れ振動を利用
する音叉型水晶振動子の基部に凹部を設け、その四部よ
りも基部端側で支持すると、振11リモレの少ない、即
ち安定な周波数温度特性や周波数エージング特性が得ら
れる特徴を持っている。
When a tuning fork type crystal lifter is supported at a base, if the displacement at the base is large, a phenomenon of vibration leakage occurs in which the vibration energy of the vibrator leaks through the support material. If the vibration leakage is large, it has the disadvantage that stable frequency temperature characteristics and frequency aging characteristics cannot be obtained. In this way, by providing a recess at the base of a tuning fork crystal resonator that utilizes torsional vibration and supporting it closer to the end of the base than the four parts, stable frequency temperature characteristics and frequency aging characteristics with less vibration 11 removal can be obtained. It has the characteristics of

ところで、第2図あるいは第3図に示す様な基部に四部
を設けた音叉型水晶振動子は、第1図に示す基部に凹部
のない形状に比較し、耐衝撃性に弱い性質を持っている
。即ち基部に凹部を設けた音叉型水晶振動子の耐衝撃特
性を強くするには、振動子以外の適切な条件を見つけな
ければならない。
By the way, a tuning fork type crystal resonator with four parts in the base as shown in Fig. 2 or 3 has weaker impact resistance than the shape shown in Fig. 1 without a concave part in the base. There is. That is, in order to strengthen the shock resistance of a tuning fork crystal resonator with a recessed portion in its base, it is necessary to find appropriate conditions other than the resonator.

〈発明の目的〉 本発明は、耐@撃特性に弱い基部に凹部を設けた音叉型
水晶振動子の耐衝撃特性を改善し、落下による衝撃に振
動子が折れない支持構造を提供することを目的としたも
のである。
<Object of the Invention> The present invention aims to improve the impact resistance of a tuning fork crystal resonator having a concave portion in its base, which is weak in impact resistance, and to provide a support structure that prevents the resonator from breaking due to impact caused by dropping. This is the purpose.

〈実施例〉 以下、本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

第5図は、音叉ノ(す水晶振動子が容器に封入された状
態を示す側面図である。51は音叉型水晶振動子、52
は電気的リードを兼ねた支持材、56はプラグ、54は
容器を表わしている。Dは容器の直径、LCは容器の全
長である。現在の腕時計用水晶振動子の容器は、Dが1
.5〜2.0 +++m、 TJが5〜6間の大きさが
主流である。この容器に音叉型水晶振動子を封入する場
合、振動子の全長は4唄以下が望ましい。父、フォトリ
ソグラフィを利用して音叉型水晶振動子を作製する場合
、振動子の厚みが厚いと水晶をエツチングするのに非常
に時間がかかり、量産性に不向きである。このため振動
子の厚みは100μm以]′:である事が望ましい。振
動子の厚みが薄く、シかも基部に凹部が設けられた音叉
型水晶振動子は、衝撃に対し非常に折れ易い欠点を持っ
ている。
FIG. 5 is a side view showing a state in which a tuning fork type crystal resonator is sealed in a container. 51 is a tuning fork type crystal resonator, 52
56 represents a support material which also serves as an electrical lead, 56 represents a plug, and 54 represents a container. D is the diameter of the container and LC is the total length of the container. The current container for watch crystal units has a D of 1.
.. 5 to 2.0 +++m, and a TJ of between 5 and 6 is the mainstream. When a tuning fork type crystal resonator is enclosed in this container, it is desirable that the total length of the resonator is 4 songs or less. When producing a tuning fork crystal resonator using photolithography, if the resonator is thick, etching the crystal takes a very long time, making it unsuitable for mass production. Therefore, it is desirable that the thickness of the vibrator be 100 μm or more. Tuning fork crystal resonators, which have a thin resonator and a recessed portion at the base, have the disadvantage that they are very easily broken by impact.

基部に凹部が設けられた音叉型水晶撮動子が落下衝撃に
よシ折れる場合、その折れる箇所を第6図と第7図に示
す。第6図は基部端に、第7図は基部の中間の位置に凹
部が設けられた音叉型水晶振動子を示している。61と
71はせ父型水晶振動子、62と72は電気的リードを
兼ねた支持材破線65,64,65,75,74.75
は衝撃によシ折れる箇所をそれぞれ示している。63と
75はリードと水晶の接触箇所の内、最も音叉腕先端に
近い箇所から折れる事を示している。64と74は基部
に設けだ凹部から折れる事を示し−Cいる。65と15
は、音叉腕のつけ根であ為叉部から折れる事を示してい
る。腕のつけ根である叉部から折れる場合と基部におい
て折れる場合とでは、衝撃による折れの構格は異なる。
When a tuning fork-type crystal camera having a concave portion at its base breaks due to a fall impact, the locations where the tuning fork crystal camera breaks are shown in FIGS. 6 and 7. FIG. 6 shows a tuning fork type crystal resonator in which a recess is provided at the end of the base, and FIG. 7 shows a recess in the middle of the base. 61 and 71 are crystal oscillators, 62 and 72 are supporting material broken lines 65, 64, 65, 75, 74.75 which also serve as electrical leads.
indicate the locations where the parts break due to impact. 63 and 75 indicate that the breakage occurs from the point closest to the tip of the tuning fork arm among the points of contact between the reed and the crystal. 64 and 74 indicate folding from the recess provided at the base. 65 and 15
indicates that it breaks from the fork part at the base of the tuning fork arm. The mechanism of breakage due to impact is different depending on whether the arm breaks at the fork, which is the base of the arm, or at the base.

落下仙j撃によシ振動子が折れる機構を、第8図と第9
図において考えてみる。第8図は基部端に四部が設けら
れている廿叉型水晶振動子が容器に封入されている状態
を示す側面図であシ、第9図はその平面図でりる。81
,91は音叉型水晶振動子、82.92は叉部、83は
基部における四部の始′まりの位置、84と95は電気
的リードを基ねた支持材、85と94はプラグ、86と
95は容器を表わしている。振動子が最も折れ易い、即
ち、]辰励動に加わる衝撃力が最も大きい落下の方向は
、第8図においては矢印87の方向に、第9図に二(、
−いてはへ面に垂直方向に落ちた場合である。落下して
衝撃を受けた瞬間、音叉腕先端はまず慣性から、矢印8
8の方向へたわむ。その時、リードの振動子との接触箇
所の内、音叉腕先端に最も近い箇所89及び凹部の始ま
る箇所83.96に強い上向きの衝撃力が働らく。この
結果、第6図に示す破線65,64.第7図に示す破線
73゜74の箇所で折れる。このリードから振動子に伝
わシ衝撃力は、衝撃によるリード84と93のたわみが
小さい程強い。リードのたわみが大きければ、リードか
ら振動子に伝わる衝撃力は弱まり、第6図に示す破、i
泉63や64あるいは第7図に示す破線75や74に沿
った折れは生じない。
Figures 8 and 9 show the mechanism by which the vibrator breaks due to a falling bullet.
Let's think about it in terms of a diagram. FIG. 8 is a side view showing a state in which a fork-shaped crystal resonator having four parts provided at the base end is sealed in a container, and FIG. 9 is a plan view thereof. 81
, 91 is a tuning fork type crystal oscillator, 82, 92 is a fork part, 83 is the starting position of the four parts at the base, 84 and 95 are supporting materials based on electrical leads, 85 and 94 are plugs, 86 and 95 represents a container. The direction of fall in which the vibrator is most likely to break, that is, the impact force applied to the dragon excitation is greatest, is in the direction of arrow 87 in FIG. 8, and in the direction of arrow 87 in FIG.
- This is the case when the object falls perpendicular to the plane. At the moment when it falls and receives an impact, the tip of the tuning fork arm first moves in the direction of arrow 8 due to inertia.
Deflect in direction 8. At this time, a strong upward impact force acts on the point 89 closest to the tip of the tuning fork arm and the point 83, 96 where the recess begins among the points of contact between the reed and the vibrator. As a result, broken lines 65, 64 . It is bent at the broken line 73°74 shown in FIG. The impact force transmitted from the lead to the vibrator is stronger as the bending of the leads 84 and 93 due to the impact is smaller. If the deflection of the lead is large, the impact force transmitted from the lead to the vibrator will be weakened, causing the failure shown in Figure 6, i.
No bending occurs along the springs 63 and 64 or the broken lines 75 and 74 shown in FIG.

第10図は、衝撃によりリードがたわむ様子を示したリ
ードに支持された音叉型水晶振動子の側面図である。1
01け音叉す水晶振動子、102は又部、103は基部
に設けた凹部の始壕る箇所、104は電気的リードを兼
ねた支持材、105はプラグを表わしている。第10図
においてδ、Lは、衝はによるリードのたわみヲ表わし
ている。δLは、振動子の基部端とプラグ1田のリード
の長さをAL、リードの厚みをtr、リードのヤング率
をEとするとほぼ次式で表わすことができる。
FIG. 10 is a side view of a tuning fork crystal resonator supported by a lead, showing how the lead bends due to impact. 1
01 is a tuning fork crystal oscillator, 102 is a cross section, 103 is a starting point of a recess provided at the base, 104 is a support material that also serves as an electrical lead, and 105 is a plug. In FIG. 10, δ and L represent the deflection of the lead due to collision. δL can be approximately expressed by the following equation, where AL is the length of the lead between the base end of the vibrator and the plug 1, tr is the thickness of the lead, and E is the Young's modulus of the lead.

δI、=4 L’ / (K t L” )この様に、
振動子の衝撃力を弱めるためには、リードの祠質が一定
の時には、リードの長−さtLを長くするか、リードの
厚むtを薄くすれば良い。
δI, = 4 L' / (K t L") Thus,
In order to weaken the impact force of the vibrator, when the abrasive quality of the reed is constant, the length tL of the reed may be increased or the thickness t of the reed may be decreased.

リードは、現在一般にヤング率Eが14000に9/、
Jのコバールが使われている。厚みが200μm以上の
コバールで支持した基部に四部のある音叉型水晶振動子
を、コンクリート板上11nから路下させた時、第6図
に示す破線63,64,73゜74等で折れることが分
った。これは、リードの厚みを200μm以上にすると
衝撃によるリードのたわみが小さくなり、拘馨時にリー
ドから振動子に加わる衝撃力が非常に大きくなるためで
ある。
Reed generally has a Young's modulus E of 14,0009/,
Kovar J is used. When a tuning fork-shaped crystal resonator with a four-part base supported by Kovar with a thickness of 200 μm or more is dropped from 11n on a concrete board, it will not break at the dashed lines 63, 64, 73°74, etc. shown in Figure 6. I understand. This is because when the thickness of the lead is 200 μm or more, the deflection of the lead due to impact becomes small, and the impact force applied from the lead to the vibrator during locking becomes very large.

振動子の厚みが100μm以下になれば、衝撃によるリ
ードから振動子如伝わる衝撃力は同じでも耐衝撃性は弱
くなる。
If the thickness of the vibrator is 100 μm or less, the impact resistance will be weakened even though the impact force transmitted from the lead to the vibrator is the same.

一方、リードから振動子に伝わる衝撃力を弱めるために
は、衝撃時のリードのたわみδLを大きくする必要があ
る。そのためには、リードの厚みを小さくし、し7かも
振動子の基部端とプラグの距離t1を長くすれば良い。
On the other hand, in order to weaken the impact force transmitted from the lead to the vibrator, it is necessary to increase the deflection δL of the lead at the time of impact. To achieve this, the thickness of the lead may be reduced, and the distance t1 between the base end of the vibrator and the plug may be increased.

故に、リードの厚みは200μm以下にし、LLも長く
すれば良い。ところで、衝撃により IJ−ドがたわむ
結果、振動子も静止状態の位置から変位する。衝撃によ
る音叉腕先端の静止位置からの変位δRを第10図に示
す。このδRがあまり大きいと、音叉腕先端は容器の内
壁に衝突し、叉部に大きな#i撃力が加わる。
Therefore, the thickness of the lead may be set to 200 μm or less, and LL may be made long. By the way, as a result of the deflection of the IJ-board due to the impact, the vibrator is also displaced from its resting position. FIG. 10 shows the displacement δR of the tip of the tuning fork arm from its rest position due to the impact. If this δR is too large, the tip of the tuning fork arm collides with the inner wall of the container, and a large #i impact force is applied to the fork.

この結果、音叉型水晶振動子は第6図の65及び第7図
の75で示す破線において折れる。
As a result, the tuning fork type crystal resonator is broken at the broken lines shown at 65 in FIG. 6 and 75 in FIG.

このため、前述した如く振動子が基部で折れないために
衝撃時にリードはある程度たわまなければならないが、
・)反対に、振動子が叉部で折れない庭めにはリードは
たわみすぎても困るのである。
For this reason, as mentioned above, in order for the vibrator not to break at the base, the lead must bend to some extent upon impact.
・) On the other hand, in gardens where the vibrator does not break at the forks, it is a problem if the lead is too bent.

衝撃によりリードがたわみすぎないためには、振動子の
基部端とプラグの間の距離をある値より小さくする必要
がある。基部に凹部のある長さ4咽、厚み50μmの音
叉型水晶振動子を100μm厚のコバール製リードで支
持し、かつ直径2咽の容器に封入して、コンクIJ −
ト板上1mから落下実験を行なった。その結果、振子の
基部端とプラグの間の距離LLが500μm以上になる
と、衝撃により音叉腕先端は容器にぶつかり、叉部が折
れることが分った。
In order to prevent the lead from bending too much due to impact, the distance between the base end of the vibrator and the plug needs to be smaller than a certain value. A tuning fork-shaped crystal resonator with a length of 4 and a thickness of 50 μm with a recess at the base is supported by a 100 μm thick Kovar reed and sealed in a container with a diameter of 2.
A drop experiment was conducted from 1 m above the board. As a result, it was found that when the distance LL between the base end of the pendulum and the plug was 500 μm or more, the tip of the tuning fork arm collided with the container due to the impact, causing the fork portion to break.

第11図は、本発明の音叉型水晶振動子の実施例を示し
ている。111は基部に凹部を設けた音叉型水晶振動子
、112は電気的リードを兼ねた支持材、113はプラ
グをそれぞれ示している。
FIG. 11 shows an embodiment of the tuning fork type crystal resonator of the present invention. Reference numeral 111 indicates a tuning fork type crystal resonator having a recessed portion at its base, reference numeral 112 indicates a support material which also serves as an electrical lead, and reference numeral 113 indicates a plug.

音叉型水晶振動子の基部の同一平面上を電気的リードを
兼ねた支持材112が2本で支那している。
Two supporting members 112, which also serve as electrical leads, are supported on the same plane at the base of the tuning fork type crystal resonator.

iK叉散型水晶振動子全長りは4■以下であり、厚みは
100μm以下である。リード112のヤング率は10
000〜15000にり/−の値を持ち、リードの厚み
は200μm以下である。振動子の基部端とプラグの間
の距離LLは500μm以下である。ヤング率が100
00〜15000に47 mAの範囲にある値を持つ時
、上述の議論はほぼ適用できる。又、本発明の具体的な
実施例を以下に示す。
The total length of the iK dispersion type crystal resonator is 4 mm or less, and the thickness is 100 μm or less. Young's modulus of lead 112 is 10
The lead has a value of 000 to 15000/-, and the lead thickness is 200 μm or less. The distance LL between the base end of the vibrator and the plug is 500 μm or less. Young's modulus is 100
When the value is in the range of 47 mA from 00 to 15000, the above discussion is almost applicable. Further, specific examples of the present invention are shown below.

第11図において、音叉型水晶振動子の全長りは3.3
 mm、音叉腕の長さZaは1調、基部の長さzbは2
.3 m+n、四部の長さtCil″i0.6間、振動
子の最大幅Wは1調、基部の凹部の切りこみ量Wは0、
2 am、振動子の厚臥は約5571 mである。IJ
−ドのヤング率は約14000に4’/−のコバール、
リードの厚みは125%m、振動子の基部端とプラグの
間の距離は300μmである。この本発明の基部に凹部
のある音叉型水晶振動子の支持構造は、耐衝撃に非常に
優れ、コンクリート板上1mから落下させても折れるこ
とはなく、シかも落下前後の振動子の周波数シフトも非
常に少ない。
In Figure 11, the total length of the tuning fork crystal resonator is 3.3
mm, the length of the tuning fork arm Za is 1 key, and the length of the base zb is 2
.. 3 m+n, the length of the four parts is tCil''i0.6, the maximum width W of the vibrator is 1 tone, the amount of cut W of the concave part of the base is 0,
2 am, and the thickness of the oscillator is approximately 5571 m. I.J.
The Young's modulus of -do is about 14,000 and Kovar of 4'/-.
The thickness of the lead was 125% m, and the distance between the base end of the vibrator and the plug was 300 μm. The supporting structure of the tuning fork type crystal resonator with a recessed part at the base of the present invention has excellent shock resistance, and will not break even if dropped from 1 m on a concrete plate, and the frequency of the resonator will shift before and after the drop. There are also very few.

ところで、第11図に示す基部に設けた四部の切り込み
量Wがあまり大きいと、リードの条件だけでは衝撃に強
い構造にならない。2ケ所の切り込み量の和2Wが振動
子の最大幅Wの半分以下であることが望ましい。即ち、
本発明の音叉型水晶振動子は次式の関係を満たす必要が
ある。
By the way, if the cut amount W of the four portions provided in the base shown in FIG. 11 is too large, a structure that is strong against impact cannot be obtained only by the lead conditions. It is desirable that the sum of the incisions at the two locations, 2W, is less than half the maximum width W of the vibrator. That is,
The tuning fork type crystal resonator of the present invention needs to satisfy the following relationship.

2 w / W ≦05 この条件は、第5図に示す形状、即ち、基部の基部端で
なく、基部の中間の位置に凹部を設けた音叉型水晶振動
子にもあてはまる。
2 w / W ≦05 This condition also applies to the tuning fork type crystal resonator having the shape shown in FIG. 5, that is, a recessed portion is provided not at the base end of the base portion but at a position in the middle of the base portion.

〈発明の効果〉 以上詳細に説明した様に、本発明の音叉型水晶振動子の
支持構造は耐衝撃性に優れ、しかも振動子の特性を安定
に保つ優れた特徴を持っている。
<Effects of the Invention> As explained above in detail, the support structure of the tuning fork type crystal resonator of the present invention has excellent impact resistance and has excellent characteristics that keep the characteristics of the resonator stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は音叉型水晶振動子の平面図、
第4図は、第1図、第2図、第3図に示す形状の音叉型
水晶振動子が捩れ振動をする時の基部端における振動子
の厚み方向変位を示すグラフ、第5図は、音叉型水晶振
動子が容器に封入された状態を示す側面図、第6図と第
7図は、基部に凹部を設けた音叉型水晶振動子が衝撃に
よシ折れる箇Iツ「を示した音叉型水晶撮動子の平面図
、第8図は基部端に凹部のある音叉型水晶振動子が容ト
器に刺入されている状態を示す側面図、第9図は基部外
1に凹部のある音叉型水晶振動子が容器に封入されてい
る状態を示す平面図、第101dは、衝撃によりリード
がたわむ様子を示した音叉型水晶振動子の側面図、第1
1図は、本発明の実施例を示す音叉型水晶振動子の支持
構造の平面図である。 111、・・・音叉型水晶振動子 112・・・リード 113・・・プラグ L ・・・振動子の全長 W ・・・凹部の切り込み量 tL ・・・振動子の基部端とプラグの間のリードの距
離 以 上 第2図 第3 +=<+ E F −〉チ重り子の基割り嘉の位置 第5図 第6図 第7図 第8図 第9図 第H口
Figures 1, 2, and 3 are plan views of tuning fork crystal resonators;
FIG. 4 is a graph showing the displacement in the thickness direction of the vibrator at the base end when the tuning fork type crystal vibrator having the shapes shown in FIGS. 1, 2, and 3 torsionally vibrates, and FIG. Figures 6 and 7, which are side views showing a tuning fork type crystal resonator sealed in a container, show the points where a tuning fork type crystal resonator with a concave portion at its base breaks due to impact. A plan view of a tuning fork type crystal vibrator, FIG. 8 is a side view showing a state in which a tuning fork type crystal vibrator with a recess at the base end is inserted into a container, and FIG. Fig. 101d is a plan view showing a tuning fork type crystal resonator sealed in a container;
FIG. 1 is a plan view of a support structure for a tuning fork crystal resonator according to an embodiment of the present invention. 111,...Tuning fork crystal resonator 112...Lead 113...Plug L...Full length W of the vibrator...Amount of cut of the recess tL...Distance between the base end of the vibrator and the plug More than the lead distance Fig. 2 Fig. 3 +=<+ E F -> Position of the base of the weight Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. H mouth

Claims (2)

【特許請求の範囲】[Claims] (1)全長が4論以下で、振動子の厚みが100μm以
下の基部に凹部が設けられた音叉型水晶振動子を、その
基部の同一平面上において、ヤング率が10000〜1
5000に9/叫2の範囲にある値を持つ電気的リード
を兼ねた2本の支持材で振動子を支持するとともに、基
部端とプラグの間隔は400μm以下で、かつリードの
厚みは200μm以下であることを特徴とする音叉型水
晶振動子の支持構造。
(1) A tuning fork type crystal resonator with a recessed portion at the base having a total length of less than 100 μm and a thickness of less than 100 μm has a Young's modulus of 10,000 to 1 on the same plane of the base.
The vibrator is supported by two supporting materials that also serve as electrical leads having a value in the range of 5000 to 9/2, the distance between the base end and the plug is 400 μm or less, and the lead thickness is 200 μm or less. A support structure for a tuning fork crystal resonator, characterized in that:
(2)基部に設けた凹部の切り込み量Wが、振動子の最
大幅Wに対し、2w/W≦0.5の条件を満たすことを
特徴とする特許請求の範囲第1項記載の音叉型水晶振動
子の支持構造。
(2) A tuning fork type according to claim 1, wherein the cut amount W of the recess provided in the base satisfies the condition 2w/W≦0.5 with respect to the maximum width W of the vibrator. Support structure for crystal oscillator.
JP13048283A 1983-07-18 1983-07-18 Supporting structure of tuning fork crystal oscillator Pending JPS6021614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13048283A JPS6021614A (en) 1983-07-18 1983-07-18 Supporting structure of tuning fork crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13048283A JPS6021614A (en) 1983-07-18 1983-07-18 Supporting structure of tuning fork crystal oscillator

Publications (1)

Publication Number Publication Date
JPS6021614A true JPS6021614A (en) 1985-02-04

Family

ID=15035306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13048283A Pending JPS6021614A (en) 1983-07-18 1983-07-18 Supporting structure of tuning fork crystal oscillator

Country Status (1)

Country Link
JP (1) JPS6021614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9319022B2 (en) 2012-07-26 2016-04-19 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic apparatus
US10181836B2 (en) 2012-12-19 2019-01-15 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic device, and moving object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9319022B2 (en) 2012-07-26 2016-04-19 Seiko Epson Corporation Resonator element, resonator, oscillator, and electronic apparatus
US10181836B2 (en) 2012-12-19 2019-01-15 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic device, and moving object

Similar Documents

Publication Publication Date Title
CA1209369A (en) Double resonating beam force transducer with reduced longitudinal pumping
US8100016B2 (en) Vibratory sensor
EP0130705B1 (en) Beam structure for piezoelectric vibrating beam force or pressure sensors
JPS62191727A (en) Vibration beam type force converter
JP5659585B2 (en) Vibrating piece, vibrator, oscillator and electronic device
US4410827A (en) Mode coupled notched tuning fork type quartz crystal resonator
JP2004515992A (en) Time base with integrated micro-mechanical tuning fork resonator
JP3978783B2 (en) Piezoelectric device, mobile phone device using piezoelectric device, and electronic equipment using piezoelectric device
KR100432190B1 (en) Integrated Accelerometer Transducer and Accelerometer
US5929553A (en) Piezoelectric transformer
JPS6021614A (en) Supporting structure of tuning fork crystal oscillator
US4004166A (en) Method for stabilizing the vibration frequency of a tuning fork-type quartz crystal oscillator
TWI511447B (en) Improved micromechanical resonator
JPS61187411A (en) Tuning fork type crystal resonator
US3984790A (en) Electromechanical reed filter
US4926086A (en) Piezoelectric resonator
US20070024158A1 (en) Integrated resonators and time base incorporating said resonators
JP2002185282A (en) Piezoelectric device
WO2002031975A1 (en) Torsional vibrator
JP2010119127A (en) Tuning-fork type piezoelectric resonator
JPS644370B2 (en)
JP2001007678A (en) Piezoelectric vibrator
GB2075254A (en) Mode coupled tuning fork type piezo-electric resonator
JPH1137859A (en) Piezoelectric oscillator for pressure sensor
JP2010048643A (en) Acceleration detection unit and acceleration sensor