JPS60216061A - Fuel gas feeder for gas internal-combustion engine - Google Patents

Fuel gas feeder for gas internal-combustion engine

Info

Publication number
JPS60216061A
JPS60216061A JP60060460A JP6046085A JPS60216061A JP S60216061 A JPS60216061 A JP S60216061A JP 60060460 A JP60060460 A JP 60060460A JP 6046085 A JP6046085 A JP 6046085A JP S60216061 A JPS60216061 A JP S60216061A
Authority
JP
Japan
Prior art keywords
fuel gas
combustion engine
gas
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60060460A
Other languages
Japanese (ja)
Other versions
JPH0233869B2 (en
Inventor
Michiyuki Miyake
三宅 陸進
Akira Hoshino
星野 章
Yoshiaki Watanabe
吉章 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP60060460A priority Critical patent/JPS60216061A/en
Publication of JPS60216061A publication Critical patent/JPS60216061A/en
Publication of JPH0233869B2 publication Critical patent/JPH0233869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PURPOSE:To feed fuel safely to an engine while self-conditioning the fuel gas temperature by providing a valve for passing the compressed fuel gas prior to starting in a bypass connecting between the vicinity of internal-combustion engine arranged in a compressed fuel gas feed path and the suction side of compressor. CONSTITUTION:The piping A in the downstream of a drain separator 24 is branched into the bypass system piping B returning to the mist separator 20 and the internal-combustion engine system piping C to be coupled through a heatexchanger 22 with the internal-combustion engine 26. The fuel gas returning from the piping B to the gas inlet 29 is heated excessively because of the friction heat of compressor, thereby it is passed through an after-cooler 28. Heat exchanger volume Q will decrease as the flow G of the fluid to be heated decreases to suppress the temperature rise of said fluid while since the delivery fuel gas of compressor is employed as the heating fluid of heatexchanger 22, self-conditioning function for preventing over heat is provided to the heatexchanger 22.

Description

【発明の詳細な説明】 この発明は、ガス燃焼式内燃機、すなわちガスタービン
およびガスエンジンに燃料ガスを過熱状鴨にして供給す
る燃料ガス供給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel gas supply device that supplies superheated fuel gas to a gas combustion internal combustion engine, that is, a gas turbine and a gas engine.

ffに、上ddガス燃焼式内燃槻における燃料ガスは、
圧縮或により圧力を高めて内燃機に供給されるrM会、
圧縮機により圧縮さ扛たガスの温度は通常内燃機にとっ
て高すぎるので、アフタクー、うで冷やす必要がある。
ff, the fuel gas in the upper dd gas combustion internal combustion engine is
rms is supplied to the internal combustion engine with increased pressure through compression;
The temperature of the gas compressed by the compressor is usually too high for internal combustion engines, so it is necessary to cool it in the aftercooler.

また、アフタクーラで冷やしたとき、温度が下がること
によって燃料ガスの一部の成分が凝縮液化してドレンが
生じるが、アフタクーラの下流のドレンセパレータでド
レンを除去しても、多少のドレンミストが残る。このド
レンミストは内燃機の燃料コントロール系統に詰って椋
々のトラブルの原因となるので、これを防ぐため、アフ
タクーラで冷やした後の飽和状態又は過飽和状態にある
燃料ガスを加熱して、過熱ガスにすることが行われるが
、従来、この加熱は、i/図に示すように外部Amによ
るヒータlによって行っていたう第1図において、2は
ミストセパレータ、8は圧縮機、4はアフタクーラ、5
はドレンセパレータ、6はガス燃焼式の内燃畿、7はこ
の内燃a6−に接続さnた負釘、8は圧力制御装置、9
は圧力制御装置により制御される圧力調整弁である。こ
の例のヒータlは外部から送られる加熱流体を熱源とす
る熱交換器である。そして、さらに温度制御装置tlO
t−設け、このi反制御装[10によって内燃Ja6に
送られる燃料ガスの温度を常時検知しながら流量調整弁
11を制御し、これによってヒータlによる加熱の制御
をして内燃機6に送らnる燃料ガスの加熱しすぎ、ある
いは加熱不足を防ぐようにしていた。
Also, when cooled by the aftercooler, some components of the fuel gas condense and liquefy due to the temperature drop, creating drain, but even if the drain is removed by the drain separator downstream of the aftercooler, some drain mist remains. . This drain mist can clog the fuel control system of the internal combustion engine and cause trouble, so in order to prevent this, the saturated or supersaturated fuel gas that has been cooled in the aftercooler is heated to turn it into superheated gas. Conventionally, this heating was performed by a heater l provided by an external Am as shown in Figure i/.In Figure 1, 2 is a mist separator, 8 is a compressor, 4 is an aftercooler, and 5
is a drain separator, 6 is a gas combustion type internal combustion tube, 7 is a negative nail connected to this internal combustion a6-, 8 is a pressure control device, 9
is a pressure regulating valve controlled by a pressure control device. The heater l in this example is a heat exchanger whose heat source is a heating fluid sent from the outside. And further temperature control device tlO
The control device 10 controls the flow rate regulating valve 11 while constantly detecting the temperature of the fuel gas sent to the internal combustion engine 6, thereby controlling the heating by the heater 1 and sending it to the internal combustion engine 6. This was done to prevent the fuel gas from heating too much or not enough.

外部熱源によって過熱ガスにする上記従来の燃料ガス供
給装置には、次の欠点がある。すなわち。
The above-mentioned conventional fuel gas supply device, which uses an external heat source to make the gas superheated, has the following drawbacks. Namely.

(1) 特別な外部熱源が必要である。(1) A special external heat source is required.

(2)熱交換器によるヒータlの場合には、ヒータI内
の燃料ガスと加熱流体との間の43が生じたとき、大き
なトラブルとなる。
(2) In the case of the heater I using a heat exchanger, if a gap 43 occurs between the fuel gas in the heater I and the heating fluid, it will cause a big trouble.

(3)ヒータが成熱式の場合には、ヒータ表面温度が高
くなるため、防爆品として国内法規に適合しないという
問題がある。
(3) If the heater is a heating type, the surface temperature of the heater becomes high, so there is a problem that it does not comply with domestic regulations as an explosion-proof product.

この発明は上記従来の欠点を解消するために提案された
もので、圧縮機の吐出燃料ガスを加熱源とした熱交換器
を採用し、外部熱源を不要として省エネルギを達成し、
かつ、温度制御装置を特に設けなくとも燃料ガス温度が
自己調整されて安全に燃料を内燃機に供給することがで
き、しかも構成の簡単な燃料ガス供給装置を得ることを
目的とするものである。
This invention was proposed in order to eliminate the above-mentioned conventional drawbacks, and employs a heat exchanger that uses the fuel gas discharged from the compressor as a heating source, eliminating the need for an external heat source and achieving energy savings.
Another object of the present invention is to provide a fuel gas supply device that can self-adjust the fuel gas temperature and safely supply fuel to an internal combustion engine without particularly providing a temperature control device, and that has a simple configuration.

以下、この発明の一実施例を図面に従って説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図において、20はミストセパレータ、21は容積
式、ターボ式や軸流式等の圧縮機、22は熱交換器、2
8はアフタクーラ(冷却器)、24はドレンセパレータ
、zl)はフィルタ、S6dガスタービンやガスエンジ
ン等のガス燃焼式の内燃機、27は負荷、28は内燃機
の起動前に使用するための補助ドレンセパレータである
。そして矢印(イ)のようにガス入口29から供給され
た燃料ガスが、ミストセパレータzO1圧縮[211,
熱交換器22、アフタクーラ28、ドレンセパレータz
4をそれぞれ経て送られるように配管さn、さらに、ド
レンセパレータz4の下流の配管Aは、ミストセパレー
タ20に戻るバイパス系統の配管Bと、内燃機z6に熱
交換″l1i2!およびフィルタ25を経て送られる内
燃機系統の配管C(このうち熱交換器z2の上流の配管
Cs、下流の配管をC倉とする)とに分岐配管されてい
る。また、ドレンセパレータ24の下流の配管Aの分岐
する直前の部分およびきストセパレータ20にはガスの
圧力を検知してその圧力に応じて制御信号を出す圧力制
御値aao、atがそれぞrL設けられ、前記配管Bに
は圧力I14整弁82が設けられてりる。この圧力dl
l整弁82は、通常は配管Aの圧力制御装置80によっ
て制御さ牡るが、ミストセパレータ20内の圧力(すな
わち、圧縮機21の吸込圧力)が異常に低下したとき、
選択制御装置88によって切wえらnてミストセパレー
タ20内の圧力制御装置81の制御信号によシ作動する
ようになっている。
In FIG. 2, 20 is a mist separator, 21 is a positive displacement type, turbo type, axial type, etc. compressor, 22 is a heat exchanger, 2
8 is an aftercooler (cooler), 24 is a drain separator, zl) is a filter, S6d is a gas combustion type internal combustion engine such as a gas turbine or gas engine, 27 is a load, and 28 is an auxiliary drain separator for use before starting the internal combustion engine. It is. Then, the fuel gas supplied from the gas inlet 29 as shown by the arrow (A) is compressed by the mist separator zO1 [211,
Heat exchanger 22, aftercooler 28, drain separator z
Furthermore, the piping A downstream of the drain separator z4 is connected to the piping B of the bypass system that returns to the mist separator 20, and to the internal combustion engine z6 via a heat exchanger ``l1i2!'' and a filter 25. The piping C of the internal combustion engine system (of which the piping Cs upstream of the heat exchanger z2 and the piping downstream is the C warehouse) is branched to the piping C of the internal combustion engine system. and the thrust separator 20 are provided with pressure control values rL, respectively, for detecting the gas pressure and outputting a control signal according to the pressure, and the pipe B is provided with a pressure I14 regulating valve 82. This pressure dl
The l valve 82 is normally controlled by the pressure control device 80 of the pipe A, but when the pressure inside the mist separator 20 (that is, the suction pressure of the compressor 21) drops abnormally,
The selection control device 88 selectively operates the pressure control device 81 in the mist separator 20 according to a control signal.

次に上述の燃料ガス供給装置の運転について説明する。Next, the operation of the above-mentioned fuel gas supply device will be explained.

l)ガス人口2gにおける燃料ガスは通常、温度は常温
、圧力は10〜′1.0kI/1iA(絶対圧)である
l) Fuel gas with a gas population of 2 g usually has a temperature of room temperature and a pressure of 10 to 1.0 kI/1iA (absolute pressure).

2)ミストセパレータ20によシ通常ミストの約qθ%
が除去される。
2) Approximately qθ% of the normal mist by the mist separator 20
is removed.

3)圧縮a21の吸込口においては、ミストセパレータ
20および配管系の圧力損失により、圧力がガス人口2
9での圧力より、通常約02〜tOk/−低くなる。
3) At the suction port of the compression a21, the pressure decreases to the gas population 2 due to pressure loss in the mist separator 20 and piping system.
The pressure at 9 is normally about 02 to tOk/- lower.

弘)圧縮機21の吐出側では、吐出圧力は通常lO〜t
t、h/dAcこれは、内燃!&26の要求ガス圧力に
圧14g2i1と内燃機とのN】の配管系の圧力損失を
加えた大きさの吐出圧力である)、吐出温度は?θ〜/
30℃である。
Hiroshi) On the discharge side of the compressor 21, the discharge pressure is usually lO~t.
t, h/dAc This is internal combustion! What is the discharge pressure equal to the required gas pressure of θ~/
The temperature is 30°C.

なお、吐出温度は次式によシ定まる。Note that the discharge temperature is determined by the following equation.

但し、可逆断熱式圧縮の場合(容積式圧縮aり但し、ポ
リトロープ圧縮の場合(ターボ式圧縮機) ここで、Td:吐出温度(0K) TS:吸込温間(0K) Pd:吐出圧力(b/mA) P8:吸込圧力(ha / d A )K :ガス定数
比Cp /CV Cp:定圧比熱 Cv;定容比熱 n :ポリトロープ変化の場合の指数 上記の+1.)、tIl1式から明らかなように、圧縮
機z1の吐出圧力Pdを下げt′L#f、吐出温[Td
も下がる。
However, in the case of reversible adiabatic compression (positive displacement compression a), however, in the case of polytropic compression (turbo compressor), Td: discharge temperature (0K) TS: suction warm temperature (0K) Pd: discharge pressure (b /mA) P8: Suction pressure (ha / dA) K: Gas constant ratio Cp /CV Cp: Constant pressure specific heat Cv; Constant volume specific heat n: Exponent in case of polytropic change , the discharge pressure Pd of the compressor z1 is lowered to t'L#f, and the discharge temperature [Td
It also goes down.

そして、圧縮機21の吐出圧力Pdは圧力制御装置80
の設定値を下げることによって下げることができる。
The discharge pressure Pd of the compressor 21 is controlled by the pressure control device 80.
It can be lowered by lowering the set value of.

t)熱父換′a22においては、圧縮[21から出た高
温ガスが内燃機系統の配管c’を流れる低温ガスに熱エ
ネルギを与えてこれを加熱する。なお、この熱交侠の現
象については後でさらに詳しく述べる。
t) In the heat exchange 'a22', the high-temperature gas discharged from the compressor [21] gives thermal energy to the low-temperature gas flowing through the pipe c' of the internal combustion engine system to heat it. The phenomenon of heat exchange will be described in more detail later.

6)熱交換器22において少し冷やされた高温ガスはア
フタクー2z8において常温近くまで再度冷却される。
6) The high temperature gas that has been slightly cooled in the heat exchanger 22 is cooled again to near room temperature in the aftercooler 2z8.

このとき、燃料ガス中に含まれるご部の成分は、温度が
下がることによって凝縮液化する。なお、クーラの種類
によっては、この凝縮液は−0クー2のドレン排出口に
よシ排出さnる場合がある。
At this time, the components contained in the fuel gas are condensed and liquefied as the temperature decreases. Note that depending on the type of cooler, this condensed liquid may be discharged through the drain outlet of the -0 cooler.

?)冷却さnた燃料ガスに飛沫同伴した凝縮液はドレン
セパレータ24で分離除去さnる。
? ) The condensate entrained in the cooled fuel gas is separated and removed by the drain separator 24.

g)なおガス人口29からドレンセパレータ24の下流
の配管Aまでの間には、圧縮機21の容量分だけの燃料
ガスが流れている。
g) Fuel gas corresponding to the capacity of the compressor 21 flows between the gas population 29 and the pipe A downstream of the drain separator 24.

ゲ)内燃機系統の配管Cには、内燃426の負荀が要求
する分だけ燃料ガスが分岐して送らnる。
g) The amount of fuel gas required by the internal combustion engine 426 is branched and sent to the piping C of the internal combustion engine system.

そして、熱交換器2zに入る前には飽和状暢又は過飽和
状態にあった燃料ガスは、熱交換器22によって加熱さ
nて過熱ガスとなシ内燃機26に供給さnる。
The fuel gas, which was in a saturated or supersaturated state before entering the heat exchanger 2z, is heated by the heat exchanger 22 and turned into superheated gas, which is then supplied to the internal combustion engine 26.

lの内WSa系統の配管Cに送らnる燃料ガスは上述の
ように内燃機26の負ftr2?に見合う量だけしか流
れないため、余剰分の燃料ガスは圧力調整弁8B及び配
管Bを経てガス人口29に戻る。
The fuel gas sent to the pipe C of the WSa system is the negative ftr2 of the internal combustion engine 26 as described above. Since only the amount corresponding to the amount flows, the surplus fuel gas returns to the gas population 29 via the pressure regulating valve 8B and the pipe B.

したがって、圧力制御装置80によって圧力を検知して
、その検知した圧力に応じて圧力調整弁82の開に1i
−調整することによシ、内燃機系統の配管Cに送られる
燃料ガスの圧力を一定に保つことができる。
Therefore, the pressure is detected by the pressure control device 80, and the pressure regulating valve 82 is opened according to the detected pressure.
- By adjusting, the pressure of the fuel gas sent to the pipe C of the internal combustion engine system can be kept constant.

なお、バイパス系統の配置fBからガス人口2gに戻る
燃料ガスはアフタクーラz8を経たものでなければなら
ない。なぜならば、圧縮機21が容積式のものであって
も、完全な可逆断熱変化により圧縮されるのではなく、
圧縮機の摩擦熱などによシ実際には余分に加熱さ牡るた
め、圧縮さnた尚温ガスを圧ブ几14斃弁82で断熱膨
張させたとしても、もとの供給ガス温度まで下がらず、
したがって、このバイパスガスが循環していると仮に考
えると、そのガスは圧縮機21により相乗的に加熱され
、その結果圧saw tの吐出ガスの温度が上昇してい
き機械的問題が生じるからでめる。
Note that the fuel gas returning from the bypass system arrangement fB to the gas population 2g must pass through the aftercooler z8. This is because, even if the compressor 21 is a positive displacement type, compression is not achieved through a complete reversible adiabatic change.
In reality, it is heated excessively due to the frictional heat of the compressor, so even if the compressed still-temperature gas is adiabatically expanded by the pressure valve 14 and the valve 82, it will not return to the original supply gas temperature. Not going down,
Therefore, if this bypass gas were to be circulated, it would be synergistically heated by the compressor 21, and as a result, the temperature of the discharged gas at the pressure saw t would rise, causing mechanical problems. Melt.

//)ミストセパレータ20g@の圧力制御値ft81
は、ドレンセパレータ24の下流の配管Aの圧力制御装
置80と同様に制御信号を出しており、通常は選択制御
i!I装置88によって無視さnている。が、ガス入口
2gの燃料ガスの供給量が減少して圧縮*21の吸込圧
力が一定値以下に下ったときには、選択制御装置8Bに
よって切替えがなされ、圧力調整弁82は、ミストセパ
レータ20側の圧力制御値gjt、81によってのみ制
御される。この場合、配管Aの圧力制御装置BOは無視
され、圧縮g21の吐出14111のガスを吸込側に戻
して圧縮機21の吸込側の圧力低下を防ぐように、圧力
調整弁82が開となる制御がなさnる。こnは、圧ma
uiの吸込圧力が低下した場合、圧縮機21KN常な影
響を与えて故障の原因となるし、ま之、吸込圧が真空近
くになnば空気を吸う可能性がでてきてきわめて危険で
あるためであり、すなわち内燃機26への供給より、圧
縮機21の保護を優先させるためである。この椋に人口
29の供給量が減って内燃機系統の配管Cにおける圧力
が一定値以下に低下したときには、図示しない別の燃料
系統(通常は液体燃料)に切シ替えるか、あるいは内燃
鏡26の運転を止める。
//) Pressure control value of mist separator 20g@ft81
outputs a control signal in the same way as the pressure control device 80 of the pipe A downstream of the drain separator 24, and normally select control i! Ignored by I device 88. However, when the supply amount of fuel gas at the gas inlet 2g decreases and the suction pressure of compression*21 falls below a certain value, the selection control device 8B switches the pressure regulating valve 82 to the mist separator 20 side. It is controlled only by the pressure control value gjt,81. In this case, the pressure control device BO of the pipe A is ignored, and the pressure regulating valve 82 is controlled to open so as to return the gas from the discharge 14111 of the compressor g21 to the suction side and prevent a pressure drop on the suction side of the compressor 21. I'm sorry. This is pressure ma
If the suction pressure of the ui decreases, it will have a permanent effect on the compressor 21KN and cause it to malfunction.However, if the suction pressure gets close to vacuum, there is a possibility that air will be sucked in, which is extremely dangerous. This is because protection of the compressor 21 is given priority over supply to the internal combustion engine 26. When the amount of fuel supplied to this tank 29 decreases and the pressure in the piping C of the internal combustion engine system drops below a certain value, the fuel system must be switched to another fuel system (usually liquid fuel) not shown, or the internal combustion mirror 26 must be switched to another fuel system (usually liquid fuel). Stop driving.

+2)また、補助ドレンセパレータz8は内姶鏡26の
起動時に用いるもので、起動前に内燃機26の手前のバ
ルブ84を閉、補助ドレンセパレータ28側のバルブ8
5を開として圧縮4i221を運転し、燃料ガスを循環
させて冷えている配管を温め、各゛ 配管が温まった後
内燃戟26を起動する。これによって起動のはじめから
好ましい過熱ガスを内燃a26に供給することができる
+2) Also, the auxiliary drain separator z8 is used when starting the internal combustion engine 26. Before starting, close the valve 84 in front of the internal combustion engine 26, and close the valve 84 on the side of the auxiliary drain separator 28.
5 is opened to operate the compressor 4i 221, the fuel gas is circulated to warm the cold pipes, and after each pipe is warmed up, the internal combustion engine 26 is started. This makes it possible to supply preferable superheated gas to the internal combustion a26 from the beginning of startup.

次に、前述の(夕)の項で述べた熱交換器22における
?!1父換の現象について述べる。
Next, what about the heat exchanger 22 described in the (evening) section above? ! I will describe the phenomenon of single-father replacement.

一般に熱交換器における9、換熱量Qは次式で定まる。Generally, the amount of heat exchanged Q in a heat exchanger is determined by the following formula.

Q−UXAX△im ・・・・・・・・・・・・・・・
 (,11)U:総括伝熱係数 A:伝熱面積(一定) △trrz対数平均温度差 △ts −’l’管−1+ △tm−’fr を麿 /I’l、二加熱流体の熱交換器入口における温度T會
:加熱流体の熱交換器出口における温度tI:被加熱流
体の熱交換器入口における温度を雪:被加熱流体の熱交
換器出口における温度被加熱流体の流f& (すなわち
、内燃機系統の配管Cにおける流*)が減り、カス流速
が減ると、山括伝熱係数Uが少さくなる。゛また、被加
熱流体の出口における温度を鵞は上昇するが、加熱流体
と被〃口熱流体の温WL差、すなわちTI−tベームを
寓)が小さくなり、(■)式における分子の数値は大き
くなるが、そrにも増して分母の数値の方が大きくなる
ので対数平均温度差Δtmは小さくなる(このことは、
+IV)式において数学的演算によシ直ちに導かれるこ
とである。ンしたがって、被加熱流体の流tGが小ざく
なると熱交侠量Qも小さくなる。
Q-UXAX△im ・・・・・・・・・・・・・・・
(,11) U: overall heat transfer coefficient A: heat transfer area (constant) △trrz logarithm mean temperature difference △ts -'l' tube -1+ △tm-'fr is Maro/I'l, heat of two heating fluids Temperature at the inlet of the exchanger T: Temperature of the heated fluid at the outlet of the heat exchanger tI: Temperature of the heated fluid at the inlet of the heat exchanger Snow: Temperature of the heated fluid at the outlet of the heat exchanger , the flow *) in the piping C of the internal combustion engine system decreases and the waste flow rate decreases, the heat transfer coefficient U decreases.゛Also, although the temperature at the outlet of the heated fluid increases, the temperature WL difference between the heated fluid and the heated fluid (in other words, TI-t Boehm) decreases, and the numerical value of the numerator in equation (■) decreases. becomes larger, but the denominator value becomes larger than r, so the logarithmic mean temperature difference Δtm becomes smaller (this means that
+IV) can be easily derived by mathematical operations in the equation. Therefore, as the flow tG of the fluid to be heated becomes smaller, the amount of heat exchange Q also becomes smaller.

ところで、一定の伝熱面積を有する熱交換器において移
動する熱綾として、加熱される被加熱流体の温度上昇は
次式で定まる。
By the way, the temperature rise of the fluid to be heated is determined by the following equation as a heat wave moving in a heat exchanger having a fixed heat transfer area.

△t−−9− GxΩp G :被加熱流体の流゛m″ Cp:被加熱流体の比熱 △t ;被加熱流体の温度上昇 ここにおいて、前述しえ如く被加熱流体の流量Gが小石
くなっても、熱交侯量Qも小さくなるので、被加熱流体
の温度上昇△tはそt′L糧大きくならない。
△t--9- GxΩp G: Flow rate m of the heated fluid Cp: Specific heat of the heated fluid △t; Temperature rise of the heated fluid Here, as mentioned above, the flow rate G of the heated fluid becomes small. However, since the amount of heat exchange Q also becomes small, the temperature rise Δt of the heated fluid does not increase by t'L.

すなわち、内燃横26の負荷が減少して、内燃機系統の
配管Cに流nるガス樋が減っても(なお、その限度は、
一般に定格負荷時の流量の約ψO%でおる)、この熱交
換器22において加熱しすぎることがない。このように
本発明においては、熱父撲:a22の加熱流体として圧
me:の吐出燃料ガスを用いていることにより、この熱
交換器22は、加熱しすぎることのない自己調整能をも
つものとなっており、第1図に示した従来の装置のごと
き温度制御装置10を設けることなく、内燃a26へ送
る燃料ガスの温度上昇を許容値以内に収めることが可能
となっている。
In other words, even if the load on the internal combustion horizontal 26 decreases and the number of gas gutter flowing into the internal combustion engine system piping C decreases (note that the limit is
Generally, the flow rate is about ψO% of the flow rate at rated load), so that the heat exchanger 22 does not overheat. In this way, in the present invention, by using the discharged fuel gas of the pressure me as the heating fluid of the heat exchanger 22, the heat exchanger 22 has a self-adjusting ability that does not overheat. Therefore, it is possible to keep the temperature rise of the fuel gas sent to the internal combustion a26 within an allowable value without providing a temperature control device 10 such as the conventional device shown in FIG.

さらに、上記温度上昇が許容値を越えるケースがある場
合でも、内燃機26が必要とする圧力範囲(通常的gN
/φに/dG(ゲージ圧))で吐出圧力を下げることに
より圧縮機21の吐出温度を下げて、内燃機26へ送る
燃料ガスの温度を許容値以内に収めることができる。こ
の状況を詳しく説明ずれは、 MIJ述した+11式、
+1)式よシ明らかなとおり、圧縮Malの吐出圧力P
d’fc−丁げれば、吐出温度Tdも下がる。そして圧
縮機21の吐出圧力Pdを下り′ることは圧力1lJI
J御装置80の設定値を下げることによって行うことが
できるので、圧力制御ii置80の設定値を内燃a26
が必殻とする圧力範囲内で低く設定することによって圧
縮機21の吐出温良を下げることができ、その結果とし
て、内燃機系統の配管C鵞のガス塩tJ〔を下げること
ができる。
Furthermore, even if there is a case where the temperature rise exceeds the allowable value, the pressure range required by the internal combustion engine 26 (normal gN
By lowering the discharge pressure by /φ to /dG (gauge pressure)), the discharge temperature of the compressor 21 can be lowered, and the temperature of the fuel gas sent to the internal combustion engine 26 can be kept within an allowable value. If this situation is not explained in detail, the +11 formula mentioned in MIJ,
+1) As is clear from the formula, the discharge pressure P of compressed Mal
If d'fc- is lowered, the discharge temperature Td will also decrease. Then, the discharge pressure Pd of the compressor 21 is reduced to a pressure of 1lJI.
This can be done by lowering the set value of the J control device 80, so the set value of the pressure control
By setting it low within the required pressure range, the discharge temperature of the compressor 21 can be lowered, and as a result, the gas salt tJ of the pipe C of the internal combustion engine system can be lowered.

そして、圧力制御装置800設定1匝を変えることは、
手動で行ってもよい。このような設定値の変更は、夏期
と冬期とでガス人口z9から供給される燃料ガスの温度
に著しい差がある場合などに行うとよい。又、第3図の
ように、内燃機系統の配管C■に、温度を検知してその
検知した温度に応じた制御信号を出す温度側+fJl 
jJ、1配86を設け、この制御信号によって配管Aの
圧力制gl袈酵80の設定値を変えるようにし、このよ
うなカスケード制御によって圧力制御装置80の設定値
の変更を自動的に行うようにしてもよい。
And changing the pressure control device 800 settings by 1 sai is as follows:
You can also do it manually. Such a change in the set value is preferably performed when there is a significant difference in the temperature of the fuel gas supplied from the gas population z9 between summer and winter. In addition, as shown in Fig. 3, there is a temperature side +fJl that detects the temperature and outputs a control signal according to the detected temperature to the piping C■ of the internal combustion engine system.
jJ, 1 pipe 86 is provided, and the setting value of the pressure control device 80 of the pipe A is changed by this control signal, and the setting value of the pressure control device 80 is automatically changed by such cascade control. You can also do this.

第9図は、他の具体的な実施例を示すもので、定格2夕
00−のガスタービン40.40のλ基に燃料を供給す
るものでめる。そして、吸込圧力103Jhtr/rJ
Aから吐出圧力/’1.3hy/cJにに圧縮するため
に2段の往1y動圧iHd&f、 41 r 42を設
け、中IHjクークー冷却赫)4・8、中iblミスト
セハレータ44を設けている。中間クーラ・シ8.およ
びアフタクーラ28は大気温度が最、14μs℃の鍮V
+における空冷式である。捷た、f^交喚躊z2の答寮
はガスタービン定@、2 t 00 hs 2台分とし
、約/ d、 0θ0kcal/Hの父?A熱容鴫、を
有する伝熱面積lφ−の二繊管式熱交侠器を用いている
。なお、第2図と共迫する一4分については同−信号を
付して説明を省略する、また使用する燃料ガスの性状は
次のものとする。
FIG. 9 shows another specific embodiment, in which fuel is supplied to a 40.40 λ group of gas turbines with a rating of 2.00 -. And suction pressure 103Jhtr/rJ
In order to compress the discharge pressure from A to /'1.3hy/cJ, a two-stage dynamic pressure iHd&f, 41 r 42 is provided, and a middle IHj cooing cooling 4,8, and a middle ibl mist sehalator 44 are provided. . Intermediate Cooler Shi8. And the aftercooler 28 is a brass V
It is an air-cooled type in +. The response room for the f^exchange z2 is 2 gas turbines, 2 t 00 hs, and is approximately / d, the father of 0θ0kcal/H? A two-tube type heat exchanger with a heat transfer area lφ- and a heat capacity A is used. It should be noted that the 14 minute period, which is similar to that in FIG. 2, will be marked with the same sign and its explanation will be omitted.The properties of the fuel gas used are as follows.

成分 1段目圧縮或41人口におけるそル比(%)メタ
ン lぶg2 エタン 7.2 g tl− プロパン 22.26 イソプタン ム26 ノルマルブタン /jγ9 ノルマルペンタン よ10 ヘキサン lAAc 1プタン ユ69 水魚′AJ、/弘 硫化水素 ユ?り 74、 累 0gり 炭噛ガス /、3V− 合 計 100% 上記燃上記燃料ガス金員合の結果を示すと、第9図の各
段階に記す通りとなり、ガスタービン40に6夕℃の燃
料ガスを供給することができた。
Ingredients 1st stage compression or 41 Solubility ratio (%) in population Methane lbg2 Ethane 7.2 g tl- Propane 22.26 Isoptane 26 Normal butane /jγ9 Normal pentane 10 Hexane 1AAc 1 Butane 69 Waterfish'AJ ,/Hydrogen sulfide? 74, Cumulative 0g Charcoal Chewing Gas /, 3V- Total 100% The results of the above fuel gas combination are as shown in each stage of Fig. 9, and the gas turbine 40 is heated to We were able to supply fuel gas.

以上の実施例において、アフタクーラ28の容峻は、第
1図に示すりl〈外部熱源によるヒータlを用い7hも
のと較べ、熱交換器22の容歓tα00θk cal 
/ H相当分だけ小ちくすることが可能となつンE0 また、ガスタービン40側への燃料ガス供給量はガスタ
ービン1台無a荷運転の時に最少となるが、このときガ
スタービン40へ送られる燃料ガスは熱交r4W722
において最高に加熱さn、そのときのガス温度は77℃
であった。この温度はガスタービンへ送ら7する燃料ガ
スとしては許容さnる範囲内のものである。
In the above embodiment, the volume of the aftercooler 28 is as shown in FIG.
The amount of fuel gas supplied to the gas turbine 40 side is at its minimum when one gas turbine is operated without a load. The fuel gas is heat exchanger r4W722
The gas temperature at that time was 77℃.
Met. This temperature is within an acceptable range for the fuel gas sent to the gas turbine.

以上説明したように、この発明の燃料ガス供給装置によ
nは、圧AI?i機の吐出燃料ガスを加熱流体とする熱
交換器によって、クーラを経て内燃機に送られる慾科ガ
スを加熱してこ牡を過熱ガスとするようにしているので
、 (1) 特別な外部熱源を必要とせず、省エネルギが達
成さnる。
As explained above, in the fuel gas supply device of the present invention, n is the pressure AI? A heat exchanger that uses the discharged fuel gas of Aircraft I as the heating fluid heats the fuel gas sent to the internal combustion engine via the cooler and turns it into superheated gas. (1) A special external heat source is used. Energy savings can be achieved without the need for

(2)クーラのf4 ’kが従来のものと較べて小さい
もので済む。
(2) The f4'k of the cooler can be smaller than that of the conventional cooler.

(3)この熱交換器において社、被加熱流体の流漬が減
少したときに与える熱源が減少する、いわば加fA温度
自己riI4.!iI槻能をもつので、負荷が減少して
内燃機に送る燃料ガス清かratつても加熱しすぎるこ
とがlよい。
(3) In this heat exchanger, when the flow of the fluid to be heated is reduced, the heat source provided is reduced, so to speak, the temperature is increased. ! Since the internal combustion engine has high performance, it is better not to overheat it even if the load is reduced and the fuel gas sent to the internal combustion engine becomes purer.

(φ)熱交換器において71II熱ガスと加熱さnるガ
スとがもともと同じでわるので、内部漏nがおっても危
険がなく、しかも少敏でろ扛は性能にも悪影響を与え/
41.い。
(φ) In the heat exchanger, the 71II hot gas and the heated gas are essentially the same, so there is no danger even if internal leakage occurs, and moreover, a small filter will adversely affect performance.
41. stomach.

など、種々のきわめて優れた効果が得らnる。。Various excellent effects can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

j47図は従来の燃料ガス供給装置のシステム図、第2
凶は本発明の一実施例を示すシステム図、第3図は他の
実施例を示すシステム図、第φ図はさらに他V実袖例を
示すシステム図である。 21・・・・・・圧^11役、26・・・・・・内然或
、29・・・・・・ガス人口(圧縮槻販込−)、84.
85・・・・・・バルブ(弁)、A、C・・・・・・配
管(圧縮燃料ガス供給管路)。
Figure j47 is a system diagram of a conventional fuel gas supply device,
Figure 3 is a system diagram showing one embodiment of the present invention, Figure 3 is a system diagram showing another embodiment, and Figure φ is a system diagram showing another practical example. 21... pressure^11 role, 26... naizen, 29... gas population (compression Tsuki sales included), 84.
85... Valve (valve), A, C... Piping (compressed fuel gas supply pipe).

Claims (1)

【特許請求の範囲】[Claims] 燃料ガスを圧縮して内燃機に送る燃料ガス供給装置にお
いて、圧縮・燃料ガス供給管路の内燃機近傍と圧縮槻吸
込側とを結ぶバイパス管路と、内庸険起′IJJJ前に
圧動燃料ガスを上記圧縮燃料ガス供給管路から上記バイ
パス管路に流通させる弁と7設けたことtl−特徴とす
るガス燃焼式内燃機における燃料ガス供給装置。
In a fuel gas supply device that compresses fuel gas and sends it to an internal combustion engine, a bypass pipe connects the vicinity of the internal combustion engine of the compression/fuel gas supply pipe and the compressor suction side, and a compressed fuel gas A fuel gas supply device for a gas-burning internal combustion engine, characterized in that the fuel gas supply device is provided with a valve for causing the compressed fuel gas to flow from the compressed fuel gas supply pipe to the bypass pipe.
JP60060460A 1985-03-25 1985-03-25 Fuel gas feeder for gas internal-combustion engine Granted JPS60216061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060460A JPS60216061A (en) 1985-03-25 1985-03-25 Fuel gas feeder for gas internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060460A JPS60216061A (en) 1985-03-25 1985-03-25 Fuel gas feeder for gas internal-combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56063073A Division JPS57179356A (en) 1981-04-25 1981-04-25 Fuel gas feeding apparatus for gas combustion type internal combustion engine

Publications (2)

Publication Number Publication Date
JPS60216061A true JPS60216061A (en) 1985-10-29
JPH0233869B2 JPH0233869B2 (en) 1990-07-31

Family

ID=13142897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060460A Granted JPS60216061A (en) 1985-03-25 1985-03-25 Fuel gas feeder for gas internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60216061A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218254A (en) * 2006-02-15 2007-08-30 General Electric Co <Ge> Pressure control method and system for reducing requirement for fuel supply pressure of gas turbine
WO2012002341A1 (en) * 2010-06-28 2012-01-05 三菱重工業株式会社 Gas engine provided with charge air cooler
JP2014219001A (en) * 2013-04-30 2014-11-20 ゼネラル・エレクトリック・カンパニイ Fuel conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687483U (en) * 1993-05-31 1994-12-22 株式会社イナックス Deodorant Western style toilet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218254A (en) * 2006-02-15 2007-08-30 General Electric Co <Ge> Pressure control method and system for reducing requirement for fuel supply pressure of gas turbine
US8286414B2 (en) 2006-02-15 2012-10-16 General Electric Company Pressure control method and system to reduce gas turbine fuel supply pressure requirements
WO2012002341A1 (en) * 2010-06-28 2012-01-05 三菱重工業株式会社 Gas engine provided with charge air cooler
JP2012007582A (en) * 2010-06-28 2012-01-12 Mitsubishi Heavy Ind Ltd Drain system of charge air cooler of gas engine
KR101340229B1 (en) * 2010-06-28 2013-12-10 미츠비시 쥬고교 가부시키가이샤 Gas engine provided with charge air cooler
US9217398B2 (en) 2010-06-28 2015-12-22 Mitsubishi Heavy Industries, Ltd. Gas engine having intercooler
JP2014219001A (en) * 2013-04-30 2014-11-20 ゼネラル・エレクトリック・カンパニイ Fuel conditioning system

Also Published As

Publication number Publication date
JPH0233869B2 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
US10926884B2 (en) Two mode system that provides bleed and outside air or just outside air
JPH0830623B2 (en) Unloading system for refrigeration system
JP3059116B2 (en) Multistage gas compressor, thermostatically controlled intercooler system, and method for substantially minimizing water condensation in a multistage gas compressor
US5086622A (en) Environmental control system condensing cycle
US2925712A (en) Aircraft fuel system with fuel heating means
US3503208A (en) Co2 gas turbine power plant
US20070101695A1 (en) Highly supercharged regenerative gas turbine
JP2012180086A (en) Environmental control system supply precooler bypass
CN1653253A (en) Power generating system
JPH0353443B2 (en)
US11459110B2 (en) Environmental control system utilizing two pass secondary heat exchanger and cabin pressure assist
US3152753A (en) Heat exchanger method and apparatus
US11859605B2 (en) Compressor system, and control method for same
US20170305557A1 (en) Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode
JPS60216061A (en) Fuel gas feeder for gas internal-combustion engine
US4238932A (en) High pressure charge storage system
CN207585127U (en) It can carry out the transcritical refrigerant heat pump assembly of single twin-stage conversion
US5435122A (en) Temperature control method and apparatus for the air supply in PFBC plants
US4279574A (en) Energy recovery system
JPS6151659B2 (en)
JPH09158870A (en) Water-cooled two-stage oil-free screw compressor
JPS5833364Y2 (en) Exhaust heat recovery equipment such as compressors
JPH0392700A (en) Boil-off gas processing method of low temperature liquefied gas
JPH0225019B2 (en)
JPS6343663B2 (en)