JPS60216053A - Reciprocating internal-combustion engine - Google Patents

Reciprocating internal-combustion engine

Info

Publication number
JPS60216053A
JPS60216053A JP59070132A JP7013284A JPS60216053A JP S60216053 A JPS60216053 A JP S60216053A JP 59070132 A JP59070132 A JP 59070132A JP 7013284 A JP7013284 A JP 7013284A JP S60216053 A JPS60216053 A JP S60216053A
Authority
JP
Japan
Prior art keywords
piston
sub
cam
connecting rod
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59070132A
Other languages
Japanese (ja)
Inventor
Yozo Tosa
土佐 陽三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59070132A priority Critical patent/JPS60216053A/en
Publication of JPS60216053A publication Critical patent/JPS60216053A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the cycle efficiency by temporarily decreasing the lowering motion speed of sub-piston in the way of expansion stroke of piston. CONSTITUTION:Sub-piston 11 is reciprocative to slide between the sliding face 10 and the sideface. Cam 15 is formed at the small end section of conrod 4 along the outercircumference of piston pin 3. Upon rolling of conrod 4 around the piston pin 3 in the first half lowering stroke of piston pin 1, a roller 14 is pushed up through cam face to move the sub-piston pin 11 upward. In the way of expansion stroke of piston, the lowring motion speed of sub-piston is decreased temporarily to stop expansion and to gain time for completing the combustion resulting in improvement of cycle efficiency.

Description

【発明の詳細な説明】 本発明は往復動内燃機関に関する。[Detailed description of the invention] The present invention relates to reciprocating internal combustion engines.

第1図は従来のこの種往復動内燃機関を示す。FIG. 1 shows a conventional reciprocating internal combustion engine of this type.

図において、01はピストン、02はシリンダ2イナ、
03はピストンピン、04はコンロッド。
In the figure, 01 is the piston, 02 is the cylinder 2 inner,
03 is the piston pin, 04 is the connecting rod.

05はクランクピン、06はクランク軸、07は燃焼室
空間である。クランク軸06の回転に対応し、クランク
ピン05.コンロッド04及びピストンピン03からな
るクランク機構によって、ピストン01がシリンダライ
ナ02内面に沿って往復摺動運動を行う。ビス)yol
の上昇行程において、ピストン01とシリンダライナ0
2にて形成される燃焼室空間07内のガスは圧縮され温
度。
05 is a crank pin, 06 is a crankshaft, and 07 is a combustion chamber space. Corresponding to the rotation of the crankshaft 06, the crank pin 05. A crank mechanism consisting of a connecting rod 04 and a piston pin 03 causes the piston 01 to perform reciprocating sliding motion along the inner surface of the cylinder liner 02. bis) yol
In the upward stroke of , piston 01 and cylinder liner 0
The gas in the combustion chamber space 07 formed at 2 is compressed and the temperature drops.

圧力が上昇する。ピストン01の上死点近傍より燃料が
着火、燃焼を、開始し、燃焼室空間07内の圧力を高め
つつ、引続く下降行程前半まで燃焼を継続する。ピスト
ンO1の下降行程に伴ない、空間07内の圧力、温度が
降下し、さらに吸排気過程を経た後、1サイクルを完了
する。上記サイクルを経過することにより高温、高圧下
で発生した燃料の熱エネルギの一部が機械エネルギとし
てクランク軸06に取シ出される。
Pressure increases. The fuel starts to ignite and burn near the top dead center of the piston 01, and continues to burn until the first half of the subsequent downward stroke while increasing the pressure within the combustion chamber space 07. As the piston O1 moves downward, the pressure and temperature within the space 07 decrease, and after an intake and exhaust process, one cycle is completed. Through the above cycle, a part of the thermal energy of the fuel generated under high temperature and high pressure is extracted to the crankshaft 06 as mechanical energy.

しかし上記のものには次の欠点がある。However, the above method has the following drawbacks.

従来のものにおけるピストン01のクランク軸06の回
転角度θに対する往復運動の軌跡はクランクアーム半径
とコンロッド04の長さによって幾何学的に決まる。は
ぼ正弦波に近い運動を行う。
In the conventional piston, the trajectory of the reciprocating motion of the piston 01 relative to the rotation angle θ of the crankshaft 06 is determined geometrically by the crank arm radius and the length of the connecting rod 04. The robot moves in a manner similar to a sine wave.

このため、クランク軸06が一定回転数で回転している
ときの時間に対する運動も同一であり、その結果、燃焼
室空間07内の容積の時間に対する変化は、第4図に破
線にて示すように、上死点TDCクランク角で最小、下
死点BDCクランク角で最大となる。はぼ正弦波に近い
単純な変化を行っている。燃焼室空間07内で生じる燃
焼による熱発生は1通常第5図下段に示すように、上死
点TDC近傍から開始され膨張行程中ばまでほぼ三角形
の形状をした熱発生・ぐターンで進行するが、特に燃焼
の後半は後添えと称して、緩慢な燃焼速度となることが
避けられない。
Therefore, when the crankshaft 06 rotates at a constant rotational speed, its motion with respect to time is also the same, and as a result, the change in the volume within the combustion chamber space 07 with respect to time is as shown by the broken line in FIG. It is minimum at the top dead center TDC crank angle and maximum at the bottom dead center BDC crank angle. This is a simple change similar to a sine wave. Heat generation due to combustion occurring within the combustion chamber space 07 normally starts near the top dead center TDC and progresses in a roughly triangular shaped heat generation pattern until the middle of the expansion stroke, as shown in the lower part of Figure 5. However, especially in the latter half of combustion, it is called auxiliary combustion, and it is inevitable that the combustion speed will be slow.

一方、第5図上段に破線にて示すように従来のものにお
いて、燃焼室07容積の増大速度は上死点後、膨張行程
の中ば位にかけて一様に増大して行くため、この後添え
を含めた燃焼による熱発生の可成シの部分が、容積の大
きくなった膨張がかなり進んだ状態で生じることになる
。その結果。
On the other hand, as shown by the broken line in the upper part of Fig. 5, in the conventional combustion chamber, the rate of increase in the volume of the combustion chamber 07 increases uniformly after the top dead center until about the middle of the expansion stroke. A considerable portion of the heat generation by combustion, including the amount of heat generated by combustion, occurs in a state where the expansion of the volume has progressed considerably. the result.

内燃機関の燃焼サイクル効率の低下を招いており。This causes a decrease in the combustion cycle efficiency of internal combustion engines.

これを避けるために各種の改善によシ、後添えの減少や
熱発生期間の短縮を得るべく試みられているが、十分な
効果は得られていない。
In order to avoid this, various improvements have been made to reduce the number of side effects and shorten the heat generation period, but no sufficient effect has been achieved.

また、上記のサイクル効率の低下を避けるために、燃焼
の開始を早め熱発生の開始時期を進めれば、膨張が進ま
ない間に熱発生を完了でき、サイクル効率は改善される
が、この場合には作動ガスの圧力上昇が過大となりすぎ
、最高圧力の上昇を招く。
In addition, in order to avoid the above-mentioned decrease in cycle efficiency, if the start of combustion is brought forward and the start time of heat generation is advanced, heat generation can be completed before expansion progresses, and cycle efficiency will be improved. In this case, the pressure of the working gas increases too much, leading to an increase in the maximum pressure.

本発明の目的は上記の点に着目し、ピストンの膨張行程
の途中で副ピストンの下降運動の速度を−たん減じるこ
とによシ、膨張の速度をとめ、そこで燃焼が完了するま
での時間をかせぐことにより、見かけ上の熱発生の後添
えを減じ、また見かけ上燃焼期間の短縮を得ることによ
シサイクル効率の向上を実現し、さらに作動ガスの最高
圧力を高めることなく、理想的にはディーゼルサイクル
に近いサイクルを描くことによる低PmaXで低燃費の
内燃機関を提供することであり、その特徴とするところ
は、クランク軸、コンロッド、ピストンピンからなる往
復動機構とシリンダライナ内を往復動するピストンとを
有する往復動内燃機関において、上記ピストン内に凹設
された円筒状の摺動面を往復動可能に設けられた副ピス
トン、上記コンロッド小端の上部に設けられたカム、上
記コンロッドの上記ピストンまわりの揺動に連動する上
記カムによる上記副ピストンを上記ピストンに対し相対
往復運動させる副ピストン駆動機構を備えたことである
The purpose of the present invention is to focus on the above point, and to reduce the speed of the downward movement of the sub-piston during the expansion stroke of the piston, thereby stopping the speed of expansion and thereby increasing the time until combustion is completed. This reduces the apparent aftereffects of heat generation, improves cycle efficiency by shortening the apparent combustion period, and ideally improves cycle efficiency without increasing the maximum pressure of the working gas. is to provide an internal combustion engine with low PmaX and high fuel consumption by drawing a cycle similar to the diesel cycle. Its features are a reciprocating mechanism consisting of a crankshaft, connecting rod, and piston pin, and a reciprocating mechanism that moves inside the cylinder liner. A reciprocating internal combustion engine having a reciprocating piston, a sub-piston provided to be able to reciprocate on a cylindrical sliding surface recessed in the piston, a cam provided at the upper part of the small end of the connecting rod, and the above-mentioned The present invention includes a sub-piston drive mechanism that causes the sub-piston to reciprocate relative to the piston by the cam which is interlocked with the swinging of the connecting rod around the piston.

本発明は往復動内燃機関及び圧縮機に適用できる。The present invention is applicable to reciprocating internal combustion engines and compressors.

以下図面を参照して本発明による実施例につき説明する
Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明による1実施例の往復動内燃機関を示す
断面図、第3図はコンロッドを示す断面図である。
FIG. 2 is a sectional view showing a reciprocating internal combustion engine according to one embodiment of the present invention, and FIG. 3 is a sectional view showing a connecting rod.

図において、1〜7は従来例を示す第1図の01〜07
とそれぞれ同じものである。
In the figure, 01 to 7 in Fig. 1 indicate the conventional example.
and each are the same.

10は摺動面で、ピストン1内に円筒状に凹設されてい
る。11は副ピストンで、摺動面lOと側面が摺動する
ように往復動自在に設けられている。副ピストン11に
設けられたロッドllaはピスト/クラウンを貫通して
下方に伸びている。
Reference numeral 10 denotes a sliding surface, which is recessed in the piston 1 in a cylindrical shape. Reference numeral 11 denotes an auxiliary piston, which is provided so as to be reciprocally movable so that its side surface slides on the sliding surface lO. A rod lla provided on the secondary piston 11 extends downward through the piston/crown.

12はスプリングで、一端をピストン1の下面。12 is a spring, one end of which is connected to the bottom surface of piston 1.

他端を副ピストンロッドllaの下部に設けたローラ受
け13に当接し、副ピストン11を下方向へ押しさげる
ように設けられている。
The other end is provided so as to come into contact with a roller receiver 13 provided at the lower part of the sub-piston rod lla, and to press the sub-piston 11 downward.

ローラ受け13.ローラ14は副ピストン11の下部に
設けられている。
Roller receiver 13. The roller 14 is provided below the sub-piston 11.

15はカムで、コンロッド4の小端部に、ピストンピン
3の外周に沿って形成されている。ピストン1の下降行
程前半にてコンロッド4がピストンピン3のまわ)に揺
動するとき、カム面によってローラ14を押し上げ副ピ
ストン11を上方へ移動させるように設けられている。
A cam 15 is formed at the small end of the connecting rod 4 along the outer periphery of the piston pin 3. When the connecting rod 4 swings around the piston pin 3 in the first half of the downward stroke of the piston 1, the cam surface pushes up the roller 14 and moves the sub-piston 11 upward.

上記構成の場合の作用について述べる。The operation in the case of the above configuration will be described.

ピストンの上昇行程中には第2図にてコンロッドは左下
方向に傾いているため、カム15面はローラ14とは当
接せず、副ピストン11はピストン1と共に一体となっ
て上昇し燃焼室空間7は従来のもの同様に圧縮される。
During the upward stroke of the piston, the connecting rod is tilted to the lower left in FIG. The space 7 is compressed in a conventional manner.

上死点TDC後、ピストン1が下降行程に入ると。After top dead center TDC, piston 1 enters the downward stroke.

コンロッドは第2図のように右下方向に傾く揺動運動に
転するために、カム15面はローラ14に当接し、スプ
リング12の力に抗して副ピストン11を上方に押し上
げる。この様子を第4図にクランク軸60回転角度を横
軸として示す。上死点TDC後カムリフトに従って副ピ
ストン11はピストン1(実線)の動きに対して相対的
に一点鎖線のように上方へ移動し、その結果、燃焼室空
間7の容積は実線のようにTDCとBDCとの中間で、
その増大速度を減じほぼ時間的に一定容積に近い変化を
する期間が生じる。
Since the connecting rod undergoes a rocking motion tilting downward to the right as shown in FIG. 2, the surface of the cam 15 comes into contact with the roller 14 and pushes the sub-piston 11 upward against the force of the spring 12. This situation is shown in FIG. 4 with the crankshaft 60 rotation angle as the horizontal axis. Following the cam lift after top dead center TDC, the sub-piston 11 moves upward as shown by the dashed-dotted line relative to the movement of the piston 1 (solid line), and as a result, the volume of the combustion chamber space 7 becomes equal to TDC as shown in the solid line. In between BDC and
A period occurs in which the rate of increase is reduced and the volume changes approximately to a constant volume over time.

その後、コンロッド4の傾きが最大になった後。After that, the inclination of connecting rod 4 reaches its maximum.

同じくカム15リフトに従って、逆にfiljピストン
は下降し、下死点BDCまでに副ピストン11はピスト
ン1に対して最下端位置に戻る。
Similarly, the filj piston descends in accordance with the lift of the cam 15, and the sub piston 11 returns to the lowest position relative to the piston 1 by the bottom dead center BDC.

このときの燃焼室空間7のクランク角・に対する(即ち
時間に対する)変化速度dV/dθを第5図に示す。従
来のもの(破線)に比べて9丁度燃焼行程後半の燃焼速
度が緩慢となシ熱発生率dQ/dθが低下する時期にd
V/dljが低下し、見かけ1時間に対してピストンが
止まった形となる。
The rate of change dV/dθ of the combustion chamber space 7 at this time with respect to the crank angle (that is, with respect to time) is shown in FIG. Compared to the conventional one (dashed line), the combustion rate in the second half of the combustion stroke is slower and the heat generation rate dQ/dθ decreases.
V/dlj decreases, and the piston appears to stop for an hour.

燃焼後期の熱発生率の低下に合わせて燃焼室空間の膨張
速度が低下することにより、従来のものではサイクル効
率の低下を招いていた後添えの熱発生量もよシ有効に仕
事として変換されることになる。
As the rate of expansion of the combustion chamber space decreases in line with the decrease in the rate of heat release in the latter stages of combustion, the amount of additional heat generated, which would have led to a decrease in cycle efficiency in conventional systems, is more effectively converted into work. That will happen.

さらに、このdV/dθを熱発生率dQ/dθの変化に
合わせて変化させるようにカム形状を設定することによ
シ、熱力学の式(1)よシ明らかなように。
Furthermore, by setting the cam shape so that this dV/dθ changes in accordance with the change in the heat generation rate dQ/dθ, as is clear from the thermodynamic equation (1).

ここでP:圧力、に:比熱比 do k味Pdθ とすれば、(1)式よpdP=o、即ち、燃焼期間中の
圧力上昇が殆んどない理想的なディーゼルサイクルを描
かせることが可能となる。
Here, if P is pressure, and specific heat ratio is Pdθ, then according to equation (1), pdP=o, that is, an ideal diesel cycle with almost no pressure rise during the combustion period can be drawn. It becomes possible.

上述の場合には次の効果がある。The above case has the following effects.

(1)燃焼期間の後期にて従来後添えとじて避けること
のできない緩慢な熱発生をも有効に仕事として変換する
ことが可能とな9.内燃機関の熱効率向上、即ち低燃費
化を得ることができる。
(1) In the latter half of the combustion period, it is possible to effectively convert the slow heat generation that cannot be avoided by conventional addition into work.9. It is possible to improve the thermal efficiency of the internal combustion engine, that is, to achieve lower fuel consumption.

(2)さらに、燃焼室空間の膨張速度dV/dθを熱発
生率d Q/dθと一定の関係で変化するようにカムを
形成して副ピストンの動きを制御することによシ、理想
的なディーゼルサイクルに近いサイクルを描かせること
が可能で、低い最高圧力Pmaxでかつ低燃費の性能を
得ることができる。
(2) Furthermore, by controlling the movement of the sub-piston by forming a cam so that the expansion velocity dV/dθ of the combustion chamber space changes in a constant relationship with the heat release rate dQ/dθ, an ideal It is possible to draw a cycle close to a diesel cycle, and it is possible to obtain performance with a low maximum pressure Pmax and low fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の往復動内燃機関を示す断面図。 第2図は本発明による1実施例の往復動内燃機関を示す
断面図、第3図はコンロッドを示す断面図。 第4図は燃焼室空間容積の変化とピストン頂面位置及び
副ピストン頂面位置の変化を示す線図、第5図は容積変
化率及び熱発生率の変化を示す線図である。 1・・・ピストン、2・・・シリンダライナ、 3−’
・ピストンピン、4・・・コンロッド、6・・・クラン
ク軸。 10・・・円筒状の摺動面、11・・・副ピストン、1
5・・・カム。 牙3記 矛2図 クランク典度 θ吻 第4図 第5図
FIG. 1 is a sectional view showing a conventional reciprocating internal combustion engine. FIG. 2 is a sectional view showing a reciprocating internal combustion engine according to one embodiment of the present invention, and FIG. 3 is a sectional view showing a connecting rod. FIG. 4 is a diagram showing changes in the combustion chamber space volume and changes in the piston top surface position and sub-piston top surface position, and FIG. 5 is a diagram showing changes in the volume change rate and heat release rate. 1...Piston, 2...Cylinder liner, 3-'
・Piston pin, 4... connecting rod, 6... crankshaft. 10... Cylindrical sliding surface, 11... Sub-piston, 1
5...cam. Fang 3 Diary Spear 2 Crank standard θ proboscis 4th figure 5th figure

Claims (1)

【特許請求の範囲】 1、 クランク軸、コンロッド、ピストンピンからなる
往復動機構とシリンダライナ内を往復動するピストンと
を有する往復動内燃機関において。 上記ピストン内に凹設された円筒状の摺動面を往復動可
能に設けられた副ピストン、上記コンロッド小端の上部
に設けられたカム、上記コンロッドの上記ピストンピン
まわりの揺動に連動する上記カムによシ上記副ピストン
を上記ピストンに対し相対往復運動させる副ピストン駆
動機構を備えたことを特徴とする往復動内燃機関。
[Claims] 1. A reciprocating internal combustion engine having a reciprocating mechanism consisting of a crankshaft, a connecting rod, and a piston pin, and a piston reciprocating within a cylinder liner. A sub-piston is provided to be able to reciprocate on a cylindrical sliding surface recessed in the piston, a cam is provided at the top of the small end of the connecting rod, and the connecting rod is linked to the swinging motion around the piston pin. A reciprocating internal combustion engine comprising a sub-piston drive mechanism that causes the cam to reciprocate the sub-piston relative to the piston.
JP59070132A 1984-04-10 1984-04-10 Reciprocating internal-combustion engine Pending JPS60216053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070132A JPS60216053A (en) 1984-04-10 1984-04-10 Reciprocating internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070132A JPS60216053A (en) 1984-04-10 1984-04-10 Reciprocating internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60216053A true JPS60216053A (en) 1985-10-29

Family

ID=13422730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070132A Pending JPS60216053A (en) 1984-04-10 1984-04-10 Reciprocating internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60216053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336030A (en) * 1985-12-27 1988-02-16 Watanabe Kikai Kogyo Kk Internal combustion engine provided with double piston
DE102006015265A1 (en) * 2006-04-01 2007-10-31 Audi Ag Internal combustion engine`s e.g. diesel engine, piston, for commercial vehicle, has piston shaft and piston head, whose part such as cap, dome or cavity is controlled in reversibly adjustable manner after installing piston into engine
CN103850790A (en) * 2014-03-18 2014-06-11 尹建 Reciprocating internal combustion engine without dead point
CN104265453A (en) * 2014-08-29 2015-01-07 尹建 Double-piston servo connecting-rod mechanism of dead-point-free internal combustion engine
RU2637587C1 (en) * 2016-06-21 2017-12-05 Александр Поликарпович Лялин Piston

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336030A (en) * 1985-12-27 1988-02-16 Watanabe Kikai Kogyo Kk Internal combustion engine provided with double piston
DE102006015265A1 (en) * 2006-04-01 2007-10-31 Audi Ag Internal combustion engine`s e.g. diesel engine, piston, for commercial vehicle, has piston shaft and piston head, whose part such as cap, dome or cavity is controlled in reversibly adjustable manner after installing piston into engine
CN103850790A (en) * 2014-03-18 2014-06-11 尹建 Reciprocating internal combustion engine without dead point
CN104265453A (en) * 2014-08-29 2015-01-07 尹建 Double-piston servo connecting-rod mechanism of dead-point-free internal combustion engine
RU2637587C1 (en) * 2016-06-21 2017-12-05 Александр Поликарпович Лялин Piston

Similar Documents

Publication Publication Date Title
US3774581A (en) Combination poppet and reed valve
US4211190A (en) Groove guided piston linkage for an internal combustion engine
GB2287766A (en) Crank mechanism for mutual conversion between rotation and reciprocation
CN107476886B (en) Gasoline engine compression ratio continuous variable cylinder and working method thereof
US4592309A (en) Internal combustion engine
JPS60216053A (en) Reciprocating internal-combustion engine
US4313403A (en) Internal combustion engine
WO2007088560A1 (en) An improved hybrid internal combustion engine with extended expansion
US2458111A (en) Multiple piston for internalcombustion engines
JP3939294B2 (en) Secondary combustion system for gasoline engine
US4664077A (en) Reciprocating internal combustion engine
JPH08338274A (en) Combustion control device for engine
JP2000080901A (en) Reciprocating internal combustion engine and compressor as well as those of pistons therewith
US6347610B1 (en) Engine
GB2219345A (en) Engine crankshaft arrangement
JP3849443B2 (en) Piston drive device for internal combustion engine
US3842812A (en) Four-cycle internal combustion engine without a camshaft
KR20130036740A (en) High speed engine
JP2009041388A (en) Internal combustion engine
GB1587842A (en) Internal combustion piston engine
RU2730195C1 (en) Internal combustion engine (yundin cycle)
RU2095586C1 (en) Engine
WO2002002918A1 (en) A working cycle for a heat engine, especially an internal combustion engine, and an internal combustion engine
US5156685A (en) Combustion promoter for internal combustion engines
JP2637311B2 (en) Internal combustion engine