JPS6021591A - Method of producing conductive circuit - Google Patents

Method of producing conductive circuit

Info

Publication number
JPS6021591A
JPS6021591A JP13058183A JP13058183A JPS6021591A JP S6021591 A JPS6021591 A JP S6021591A JP 13058183 A JP13058183 A JP 13058183A JP 13058183 A JP13058183 A JP 13058183A JP S6021591 A JPS6021591 A JP S6021591A
Authority
JP
Japan
Prior art keywords
copper
conductive
cured coating
resin
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13058183A
Other languages
Japanese (ja)
Other versions
JPH0358196B2 (en
Inventor
功 師岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Laboratory Co Ltd
Original Assignee
Asahi Chemical Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Laboratory Co Ltd filed Critical Asahi Chemical Laboratory Co Ltd
Priority to JP13058183A priority Critical patent/JPS6021591A/en
Publication of JPS6021591A publication Critical patent/JPS6021591A/en
Publication of JPH0358196B2 publication Critical patent/JPH0358196B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、銅導電ペーストによる導電回路の製造方法に
係り、特に絶縁基板に塗布されて加熱硬化された硬化塗
膜の表面に無電解金属めっき処理を施すことによって導
電性を著しく向上させることができる導電回路の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a conductive circuit using a copper conductive paste, and in particular, the present invention relates to a method for manufacturing a conductive circuit using a copper conductive paste. The present invention relates to a method for manufacturing a conductive circuit that can significantly improve performance.

従来、銅を導電回路に用いる方法としては、銅箔をプリ
ント基板全体に貼り、エツチング法により回路部分を残
して他の筒所を溶解させてプリント回路を作成する方法
があるが、これによると、銅の使用量が多く、製造に要
する時間も長いため製造コストが高くつくという欠点が
あった。捷り厚膜回路には銀、パラジウム導電ペースト
等の金属ペーストを用いて焼結して回路を作成する方法
があるが、銀Fi最近非常に高価となり、一般電子機器
には、コストの点で使用できない状態となりつつある。
Conventionally, the method of using copper for conductive circuits is to create a printed circuit by pasting copper foil over the entire printed circuit board and using an etching method to leave the circuit part and melt the other parts. However, there were disadvantages in that the amount of copper used was large and the manufacturing time was long, resulting in high manufacturing costs. There is a method of creating a circuit by sintering a metal paste such as silver or palladium conductive paste to create a twisted thick film circuit, but silver-fi has recently become very expensive and is not suitable for general electronic devices due to cost. It is becoming unusable.

そこで上記した方法の欠点を改良するものとして、銅粉
末と合成樹脂を混合した銅導電ペーストの使用が考えら
れるが、これによると、ペーストを硬化させるための加
熱が必要となるが、銅はその特性から釧とは逆に極めて
酸化し易いため、この加熱によってペースト中の銅粉末
が酸化して電気抵抗が大きくなると共に半田付は性が悪
化するという欠点があり、末だ実用化されていない。
Therefore, as a way to improve the shortcomings of the above-mentioned method, it is possible to use a copper conductive paste that is a mixture of copper powder and synthetic resin, but according to this method, heating is required to harden the paste. Due to its characteristics, it is extremely easy to oxidize, contrary to the paste, so this heating oxidizes the copper powder in the paste, increasing the electrical resistance and worsening solderability, so it has not been put into practical use. .

本願1)16人においては1上記の欠点をすべて除去し
得る銅導電ペーストの開発に成功した。そfiは、銅粉
末と合成樹脂に加えて特殊添加剤を微址添加Lfcもの
であね、(株)アサヒ化学研究所製銅導電ペーストAC
P−020及びACI)−(+30として実用化の段階
に至らしめた。ACP−020なる銅導電ペーストは、
銅粉末80重11−チ、合成樹脂2()重tチを主成分
とし、導電性の極めて良好なものであるが、半田付は性
がやや劣るものである。ACP−030なる銅導電ペー
ストは、銅粉末85重tチ、合成樹脂15重量%を主成
分とI/%導電性はACP−020より若干劣るが半田
付は性が良好なものである。
1) The 16 researchers succeeded in developing a copper conductive paste that can eliminate all of the above-mentioned drawbacks. Sofi is copper conductive paste AC made by Asahi Chemical Laboratory Co., Ltd., which is made by adding a small amount of special additives in addition to copper powder and synthetic resin.
P-020 and ACI)-(+30) have reached the stage of practical use.The copper conductive paste called ACP-020 is
The main components are copper powder 80 times 11 times thick and synthetic resin 2 times thick, and has extremely good electrical conductivity, but its soldering properties are somewhat poor. The copper conductive paste called ACP-030 is mainly composed of 85% by weight of copper powder and 15% by weight of synthetic resin, and its I/% conductivity is slightly inferior to that of ACP-020, but it has good soldering properties.

本発明は、上記L7?:従来技術の欠点を除くと共に、
上記新開発された銅導電ペーストを有効に用いるために
ηさ1lfCもので、その目的とするところは、−設電
子機器用の導電回路を、銅導電ペース)?絶縁基板に塗
布して加熱硬化させ、硬化塗膜の表面に導電性の良好な
無電解金属めっき処理を施すことによって、銅導電ペー
ストのみの硬化塗膜よりも導電性を大幅に向上させ、1
だ導電性を安定化させ、従来の銅箔回路に比べて何ら孫
色のない導体回路を得ることにある。また他の目的は、
このような導体回路の実用化を可能とすることによって
、高価な銀導電ペーストの使用やエツチング法を不要と
し、プリント回路の低コスト化を図ると共に、その生産
性を飛躍的に向上させることである。
The present invention is based on the above L7? : In addition to eliminating the drawbacks of the conventional technology,
In order to effectively use the newly developed copper conductive paste mentioned above, the purpose is to create conductive circuits for electronic equipment (copper conductive paste). By applying it to an insulating substrate and curing it by heating, and applying an electroless metal plating treatment with good conductivity to the surface of the cured coating, the conductivity is significantly improved compared to a cured coating made only of copper conductive paste.
The object of this invention is to stabilize conductivity and obtain a conductor circuit that has no traces compared to conventional copper foil circuits. In addition, other purposes are
By making it possible to put such conductor circuits to practical use, we can eliminate the need for expensive silver conductive paste and etching methods, reduce the cost of printed circuits, and dramatically improve productivity. be.

要するに本発明は、絶縁板に半田付は性の良好な銅導電
ペーストを塗布し、これを加熱して硬化させて硬化塗膜
による導電回路を形成し、これを弱酸性溶液に浸漬して
前記硬化塗膜の表面を活性化状■にし、しかる後に該硬
化塗膜の表面に導電性の良好な無電解金屑めっき処理を
施すことを特徴とするものである。
In short, the present invention involves coating an insulating plate with a copper conductive paste that has good solderability, heating and curing it to form a conductive circuit with a cured coating, and immersing it in a weakly acidic solution to form a conductive circuit. The method is characterized in that the surface of the cured coating film is activated (1), and then the surface of the cured coating film is subjected to electroless gold dust plating treatment with good conductivity.

以下本発明を実施例に基いて説明する。銅粉人導電塗料
を実用化するためには、その塗膜完成時の電気抵抗値が
lXl0−”〜lXl0 ”Ω−副となることが必要で
あり、しかも湿度に対する耐久性が大きく、高湿雰囲気
中の経時変化が小さく、かつ常温(20℃)を中心とす
る低温及び高温における抵抗温度特性が、在来の銀導電
塗料に匹敵するものでなければならない。
The present invention will be explained below based on examples. In order to put copper powder conductive paint into practical use, it is necessary that the electrical resistance value at the time of completion of the coating film be between lXl0-'' and lXl0''Ω-, and that it also has great resistance to humidity, and can withstand high humidity. It must show little change over time in the atmosphere, and its resistance-temperature characteristics at low and high temperatures centered around room temperature (20°C) must be comparable to conventional silver conductive paints.

単に銅粉末にフェノール樹脂を混合塗布1−1これを加
熱乾燥させるだけでは、この加熱によって銅粉末が酸化
し1酸化銅となるためlXl0”Ω−m乃至それ以上の
電気抵抗値となってしまう。
Simply mixing and applying phenolic resin to copper powder 1-1 If this is simply heated and dried, the copper powder will oxidize and become copper monoxide due to this heating, resulting in an electrical resistance value of lXl0"Ω-m or more. .

即ち一般的に導電塗料の導電機構は、そこに含有される
金属粉末の粒子の相互接触によって形成される導電経路
によるものであるが、構成導電粒子の表面は常に酸化物
によって覆われているのでそれらの電気抵抗は酸化物に
よって極めて高い値になって実用には供し得ないのが常
識である。但し銀のように表面酸化被膜が極めて少ない
貴金属については、酸化物の懸念がなく、酸化物による
電気抵抗の上昇は考えられなかったが、銀以外の例えば
本発明の対象となる・銅粉末その他の賎金属の場合には
、その粉末は空気中において、瞬時に表面酸化被膜を生
成することはよく知られている。
In other words, the conductive mechanism of conductive paint is generally based on the conductive path formed by the mutual contact of the metal powder particles contained therein, but the surface of the constituent conductive particles is always covered with oxide. It is common knowledge that their electrical resistance becomes extremely high due to the presence of oxides and cannot be put to practical use. However, with respect to noble metals such as silver, which have a very small surface oxide film, there is no concern about oxides, and an increase in electrical resistance due to oxides was not considered. It is well known that in the case of powdered metals, a surface oxide film is instantaneously formed when the powder is exposed to air.

従って第1VC1導電塗刺中において、銅粉!末の粒5
− 子の接触抵抗を低減させることが必要である。それには
酸化物を導電被膜を形成する過程において除去して正常
な金属原子面の接触による導電経路を形成させる必要が
ある。そのためには、銅粉末の表面に存在する酸化物を
何らかの方法によって除去しなければならない。第2に
、酸化物を除去された正常な面の銅粉末による導電機構
が完成された後に、加熱中又は使用中にその銅粉末が外
部からの酸紫の影響によって酸化して電気抵抗が再び上
昇するのを防がなければならない。
Therefore, during the first VC1 conductive coating, copper powder! final grain 5
- It is necessary to reduce the contact resistance of the child. To do this, it is necessary to remove the oxide during the process of forming a conductive film to form a conductive path through normal contact between metal atomic surfaces. For this purpose, oxides present on the surface of the copper powder must be removed by some method. Second, after the conductive mechanism is completed by copper powder on a normal surface from which oxides have been removed, the copper powder is oxidized by the influence of acid purple from the outside during heating or use, and the electrical resistance increases again. must be prevented from rising.

従って、上記第1及び第2の要件を満足させ、常温での
保存中、加熱中及び使用中における銅粉末の酸化をいか
にして防止1−るかが銅粉人導電塗料実用化の鍵となる
ものである。即ち銅粉末と樹脂からなるものに添加する
特殊添加剤の選・択とその添加量がこの種材料の性能の
成否に係る最重要課題−となる。 ゛ 本願出願人において、上記2つの要件を満足させる理想
的な添加剤を得るため多年にわたり多くの実験研究を行
なって米たが、遂にその際加削と6一 その添加量を定めることに成功し、従来の銅箔や銀導霜
′塗料に代ヌて実用に十分供L7得る銅粉入導市塗料の
開発に成功し7た。M1述のように、これは(41つア
ツヒ化学?tll兜所製銅粉人導電塗相A、CP −0
20及びACJ)−030と1.て実用化の段階に至ら
しめたものである。
Therefore, the key to practical application of copper powder conductive paint is how to satisfy the first and second requirements above and prevent copper powder from oxidizing during storage at room temperature, heating, and use. It is what it is. That is, the selection and amount of special additives to be added to a material consisting of copper powder and resin is the most important issue in determining the performance of this type of material.゛The applicant of this application has conducted many experimental studies over many years in order to obtain the ideal additive that satisfies the above two requirements, and finally succeeded in determining the amount of machining and addition thereof. However, we succeeded in developing a copper powder-introducing paint that can be used in practical use in place of conventional copper foil and silver frost-conducting paints. As mentioned in M1, this is (41 Atsuhi Chemical?tll Kabuto Copper Powder Conductive Coating Phase A, CP-0
20 and ACJ)-030 and 1. This has led to the stage of practical application.

添加剤と[7では、アントラセン又りその誘導体が最良
の結味イ「示1、その中でも、特にアントラセン(C+
t1’+ol及びアントラセンカルボン酸(C14HI
l(C00I月)が特に優れている。次にアントラジン
(C2g”’+nNz)も優れている。これに次いでア
ントラニル酸(Cf111. (Nl(、) (C00
トI))も有効である。
When using additives and [7], anthracene or its derivatives provide the best results.
t1'+ol and anthracenecarboxylic acid (C14HI
l (C00I month) is particularly excellent. Next, anthrazine (C2g''+nNz) is also excellent. Next to this is anthranilic acid (Cf111. (Nl(,) (C00
I)) is also valid.

その他では安息香酸(C,H,・r:oOH)はアント
ラセン及びその誘導体よりも1ケタ大きい電気抵抗値l
Xl0−2Ω−mを示1.ており、実用化は困難である
In other cases, benzoic acid (C, H, .r:oOH) has an electrical resistance l that is an order of magnitude higher than that of anthracene and its derivatives.
Xl0-2Ω-m1. Therefore, it is difficult to put it into practical use.

本発明方法に用いる釧粉入導を塗料は、銅粉末70乃至
85重量%とフェノール系樹脂、エポキシ系樹脂、ボ1
)ニスチル系樹脂及びキシレン系樹脂からなる群から選
ばれた少なくとも1種の樹脂15乃至30重量%とを混
会し、これに上記したアントラセン又はその誘導体を微
量(好1しくは0.23乃至1.6重量%、実用可能な
添加量としてに02乃至5重量%)を添加剤とL7て添
7JlI して混付し、流動状のものとして作成するも
のである。
The paint used in the method of the present invention contains 70 to 85% by weight of copper powder, phenolic resin, epoxy resin, and bottle powder.
) 15 to 30% by weight of at least one resin selected from the group consisting of nistyl resins and xylene resins, and a trace amount (preferably 0.23 to 30%) of the above-mentioned anthracene or its derivatives. It is made into a fluid by mixing 1.6% by weight (02 to 5% by weight as a practical addition amount) with an additive.

本発明において用いる添加剤であるアントラセン又はそ
の誘導体は、加熱中に銅粉末の表面に存在する酸化@等
の化合物を溶解させ、併存する樹脂質に相溶可能な化合
物となるので、導電性を増大させるだけでなく、樹脂η
に相溶した添加剤と銅の化合物は樹脂質の水分透過率及
び酸素の透過率を低下させる作用があることが判明した
。即ちアントラセン又はその誘導体VCよる銅粉末の酸
化防止機構は、次のようである。
Anthracene or its derivatives, which are additives used in the present invention, dissolve compounds such as oxidized @ present on the surface of copper powder during heating and become a compound that is compatible with the coexisting resin, so it improves conductivity. In addition to increasing the resin η
It has been found that the additive and copper compound that are compatible with each other have the effect of lowering the moisture permeability and oxygen permeability of the resin. That is, the anti-oxidation mechanism of copper powder by anthracene or its derivative VC is as follows.

例えに、アントラセンカルボン酸(C04H,C00)
l )についでは、以下の作用により良好な導′I!塗
料膜が形成されるものと考えらフする。即ちアントラセ
ンカルボン酸は、銅粉末粒子の表面に存在又は形成され
る酸化銅と次式により反応し、アントラセンカルボン酸
鋼塩を生成する。
For example, anthracenecarboxylic acid (C04H, C00)
1), the following effects lead to good conduction 'I! It is assumed that a paint film is formed. That is, anthracenecarboxylic acid reacts with copper oxide present or formed on the surface of copper powder particles according to the following formula to produce anthracenecarboxylic acid steel salt.

Cuo+2c、4H0COOII→(C,、)T、Co
o)、Cu十H,0そして併存する樹脂により大気と遮
断されている塗膜中で起こる上ml化学反応により、銅
粉末の表面は酸化物が除去された清浄な金属表面が露出
し、これが相互に接触屹列して導筒、性が良好な、即ち
笥気抵ぢ1のイバい導電経路が形成される。
Cuo+2c, 4H0COOII → (C,,)T, Co
o) Due to the chemical reaction that occurs in the coating film, which is shielded from the atmosphere by Cu1H,0 and the coexisting resin, the surface of the copper powder is exposed as a clean metal surface from which oxides have been removed. The conductive tubes are arranged in contact with each other, forming a conductive path with good properties, that is, high resistance to heat.

他方、上記化学反応により生成されにアントラセンカル
ボン酔銅地は、併存するフェノール樹脂、エポキシ樹脂
、ポリエステル樹脂又はキシレン樹脂と相客し、て樹脂
1@中に均一に溶解分ルし、銅粒子の配列並びに樹脂の
硬化反応等を伴う塗膜の形成をいをさかも1里害し、な
い。またアントラセン誘導体の銅化合物は、こjが樹脂
中に適量混和したものは、むし、ろ樹脂の水分透過率及
び酸素の透過率を低下させ、耐湿性及び酸化性が若干向
上する効果が認められ、本発明の効果を一層助長するも
のである。
On the other hand, the anthracene carbon-intoxicated copper base produced by the above chemical reaction mixes with the coexisting phenol resin, epoxy resin, polyester resin, or xylene resin, and is uniformly dissolved and fractionated in the resin, resulting in the formation of copper particles. There is no harm to the alignment or formation of a coating film accompanied by the curing reaction of the resin. Furthermore, when an appropriate amount of anthracene derivative copper compound is mixed into the resin, it has been found that it actually reduces the moisture permeability and oxygen permeability of the filter resin, and slightly improves the moisture resistance and oxidation resistance. , which further enhances the effects of the present invention.

ここで当該添加剤の添加量・が0.23乃至1.5重量
%の範囲において最も効果的であり、ま′fC実用的に
は、0.2乃至51我−Vニーの添加量でよいことが火
験9− 的に確認されており、アントラセン又はその誘導体の添
加量を種々変えて、膜厚を40μとしたとき、アントラ
セン又はその誘導体の添加量が0,23乃至1.5v量
チにおいては、電気抵抗仙はlXl0’−’Ω−onで
ほぼ一定であり、極めて良好な納采が得られ、1f?:
添加量が0.2市量ヅ・で、電気抵抗値け1.3 X 
10=’Ω−mとなり、また添加量51t%では2X]
O−”Ω−mとなり、この範囲の添加量であれば実用可
能であることがわかった。しかL7添加lが0.2重量
%より少なくなると電気抵抗値は急激Kitil犬し、
01重量%では、電毎抵抗値け1×10−20−渕とな
り、実用V−ならず、才た添加量が5重f−を超え′f
rc場合も電気抵抗は急激に増大し、添加量が8重にチ
となると、電気抵抗値に1×10−2となって[7まい
、実用にならないことがわかった。
Here, it is most effective when the amount of the additive added is in the range of 0.23 to 1.5% by weight, and in practical terms, the amount added is 0.2 to 51% by weight. It has been experimentally confirmed that when the amount of anthracene or its derivatives added was varied and the film thickness was set to 40μ, the amount of anthracene or its derivatives added was 0.23 to 1.5V. In the case of 1f?, the electric resistance is almost constant at lXl0'-'Ω-on, and an extremely good solution is obtained. :
When the amount added is 0.2%, the electrical resistance value is 1.3X.
10='Ω-m, and 2X at addition amount of 51t%]
O-''Ω-m, and it was found that it is practical if the amount added is within this range.However, when the amount of L7 added is less than 0.2% by weight, the electrical resistance value sharply decreases.
At 01% by weight, the electric resistance value becomes 1 x 10-20-Fuchi, which is not practical V-, and the additive amount exceeds 5-fold f-'f.
In the case of rc, the electrical resistance increases rapidly, and when the amount added is 8 times higher, the electrical resistance value becomes 1 x 10-2 [7], making it impractical.

また以上の実験値は、アントラセン又はその誘導体以外
の、アントラニル酸及びアントラジンについても同様に
得られている。
Further, the above experimental values have been similarly obtained for anthranilic acid and anthrazine other than anthracene or its derivatives.

上記添加量の臨界値が実験により確認された理10− 由としては、次の機構が考えられる。即ち、上記アント
ラセンカルボン酸を用いた場合の作用機構に示したよう
に、当該添加剤が導電銅粉末粒子表面に存在する酸化物
等と化学的に反応してこれを溶解除去する場合、轟然添
加剤と該酸化物との間に化学量論が成立する。従って、
酸化物の比較的少ない銅粉を用いfc場合でも、空気中
で銅粉を取り扱う以上酸化を完全に防ぐことは不可能で
ある。
The following mechanism is considered to be the reason why the critical value of the above-mentioned addition amount was confirmed through experiments. That is, as shown in the mechanism of action when anthracenecarboxylic acid is used, when the additive chemically reacts with oxides etc. present on the surface of the conductive copper powder particles and dissolves and removes them, the additive is added rapidly. Stoichiometry is established between the agent and the oxide. Therefore,
Even in the case of fc using copper powder with relatively low oxide content, it is impossible to completely prevent oxidation as long as the copper powder is handled in the air.

最小量0.2重量%の添加剤を要する事実は、最小限度
の酸化物が存在していることを示すものである。″−!
fC最大添加量が実験から5重量%を限度としている事
実は、添加剤が併存する樹脂に相溶してその樹脂の特性
に好11−<ない影響を与えない限度を示すものであっ
て、これ以上の添加量は上記導電効果の助長に必要な添
加量を上回り、不必要であるばかりでなく、共存する樹
脂の特性を劣化させる恐れがある。
The fact that a minimum amount of 0.2% by weight of additive is required indicates that a minimum amount of oxide is present. ″−!
The fact that the maximum amount of fC added is limited to 5% by weight based on experiments indicates that the additive is compatible with the coexisting resin and does not have a negative effect on the properties of the resin. If the amount is more than this, it exceeds the amount necessary to promote the above-mentioned conductive effect, and is not only unnecessary, but may also deteriorate the properties of the coexisting resin.

上記のように構成された銅粉人導電塗料によると、膜厚
40μのプリント回路の場合、その電気特性は、電気抵
抗値でlXl0 ”Ω−譚という驚異的な導電性を得る
ことができ、添加剤を全く用いない場合に比べて電気抵
抗値は100万分の1とすることができる。しかも耐湿
特性は、わずかに電気抵抗値が増大するだけで、約50
4時間後に平衡状態となり、それ以上の経時変化は認め
られず、実用上全く問題がない。
According to the copper powder conductive paint configured as described above, in the case of a printed circuit with a film thickness of 40 μm, its electrical properties are astoundingly conductive, with an electrical resistance value of 1×10 Ω-tan. The electrical resistance value can be reduced to 1/1,000,000 times less than when no additives are used.Moreover, the moisture resistance is reduced by approximately 50% with only a slight increase in the electrical resistance value.
An equilibrium state was reached after 4 hours, and no further changes over time were observed, causing no practical problems.

また抵抗温度特性については、常温以下については、電
気抵抗変化率が銀導電塗料の約172と極めて優れてお
り、常温をこえる場合についても銀導電塗料とほぼ同程
度の結果が得られ、実用」二の温度である60℃位では
、はとんど体色なく使用できるものである。
In addition, regarding the resistance temperature characteristics, at temperatures below room temperature, the rate of change in electrical resistance is approximately 172, which is extremely superior to that of silver conductive paint, and even at temperatures above room temperature, the results are almost the same as silver conductive paint, making it practical. At the second temperature of about 60°C, it can be used without coloring.

次に、上記のような導粉入導電塗料を用いて導電回路を
製造する方法について説明すると、まず絶縁板の一例と
して、銅箔を除去した有機基板に、半田付は性の良好な
銅導電ペースト(例えば上記■アサヒ化学研究所製銅粉
人導電塗料ACP−030)を塗布し、これを温度13
0℃乃至180℃で、10分乃至60分間加熱して硬化
させ、硬化塗膜による導電回路を基板上に形成する。こ
の場合加熱温度は140℃、加熱時間は30分が最良で
あり、硬化塗膜の厚さit、25μが適当である。
Next, we will explain the method of manufacturing a conductive circuit using the above-mentioned powder-containing conductive paint. First, as an example of an insulating board, we will use copper conductive paint with good soldering properties on an organic board from which copper foil has been removed. Apply a paste (for example, the above-mentioned copper powder conductive paint ACP-030 manufactured by Asahi Chemical Research Institute) and heat it to a temperature of 13
It is cured by heating at 0° C. to 180° C. for 10 minutes to 60 minutes, and a conductive circuit is formed by a cured coating film on the substrate. In this case, the best heating temperature is 140°C, the heating time is 30 minutes, and the appropriate thickness of the cured coating is 25μ.

次に、この基板を弱酸性溶液に浸漬して硬化塗りの表面
を活性化状態にする。そして該硬化塗膜の表面に導1b
:性の良好な無電解金属めっき処理、例えば高速厚付は
タイプの無1!N銅めっき液を用いるめっき処理を施し
、硬化塗膜上にめっき銅の層を形成する。この場合、該
めっき銅の層の厚さは、25μ乃至35μが適当である
Next, the substrate is immersed in a weakly acidic solution to activate the surface of the cured coating. Then, conductor 1b is applied to the surface of the cured coating film.
: Electroless metal plating treatment with good properties, such as high-speed thickening, is the best of its kind! A plating treatment using an N copper plating solution is performed to form a layer of plated copper on the cured coating. In this case, the appropriate thickness of the plated copper layer is 25μ to 35μ.

無電解鋼めっき工程においては、硬化塗膜中の銅粉の粒
子が核となって、銅めっき液から析出した銅の微粒子が
該核のまわりに付着1,7、硬化塗膜と銅めっきの層と
の間の境界においても銅の粒子が樹脂を完全に覆ってし
1つこととなって、導電性が一層向上すると共に、硬化
塗膜と空気との接触が断たれるので、銅粉の酸化が進行
しなくなる。
In the electroless steel plating process, the copper powder particles in the cured coating film serve as the core, and the fine copper particles precipitated from the copper plating solution adhere around the core1,7, causing a separation between the cured coating film and the copper plating. Even at the boundary between the layers, the copper particles completely cover the resin, further improving the conductivity and cutting off the contact between the cured coating and the air. oxidation will not proceed.

これらのことによって銅箔回路と実用上回等の高い導電
性が得られ、捷だ表面がめつき銅の層とな13− グ工程に比べて極めて簡易であり、製造コストも安く、
銅の無駄も比較にならないほど少なく、すべての点で有
利である。
These features provide a copper foil circuit with high conductivity that is practically practical, and the process is extremely simple and inexpensive compared to the gluing process, in which the thin surface becomes a plated copper layer.
Copper waste is incomparably less, and it is advantageous in all respects.

なお、上記実施例においては、無電解金属めっきは、無
電解銅めっきとして説明したが、これは無″i1.Wf
ニッケルめっき、無電解はんだめつき、無電解銀めっき
又は無電解金めっきによっても実施できることは言う1
でもなく、その応用範囲Fi極めて広範である。
In addition, in the above example, the electroless metal plating was explained as electroless copper plating, but this is
It is also possible to perform the process by nickel plating, electroless solder plating, electroless silver plating or electroless gold plating1.
However, its application range is extremely wide.

本考案は、上記のように構成されたものであるから、−
設電子機器用の導電回路を、銅導%f1ペーストを絶縁
メ板に塗布して加熱硬化させ、硬化塗膜の表面に導電性
の良好な無電解金属めっきを施すようにしたので、銅導
電ペーストのみの硬化塗膜よりも導電性を大幅に向上さ
せることができると共に、導電性を安定化させることが
可能となり、銅箔回路に比べて何ら体色のない導体回路
を得ることができる効果がある。またこのような導体回
路の実用化が可能となるので、高価な銀導電ペーストの
使用やエツチング法が不要となり、プリン14− ト回路の低コスト化を図ることができ、またその生産性
を飛躍的に向−ヒさせることかで六る効果が得られる。
Since the present invention is constructed as described above, -
A conductive circuit for installed electronic equipment is made by applying a copper conductive %f1 paste to an insulating plate and curing it by heating, and then applying electroless metal plating with good conductivity to the surface of the cured coating. It is possible to significantly improve conductivity compared to a cured coating film made of paste only, and it also makes it possible to stabilize conductivity, making it possible to obtain a conductor circuit with no body color compared to a copper foil circuit. There is. In addition, since it becomes possible to put such conductor circuits to practical use, the use of expensive silver conductive paste and etching methods become unnecessary, making it possible to reduce the cost of printed circuits and dramatically increasing their productivity. Six effects can be obtained by focusing on the target.

特許出願人 株式会社アザヒ化学研究所代理人 弁坤士
 内 1+1 和 男 15− 485−
Patent Applicant: Azahi Chemical Research Institute Co., Ltd. Agent: Attorney-at-Law 1+1 Kazuo 15- 485-

Claims (1)

【特許請求の範囲】 1 絶縁板に半田付は性の良好な銅導電ペーストを塗布
し、これを加熱(−2て硬化させて硬化塗膜による導電
回路を形成し、これを弱酸性溶液に浸漬して前記硬化塗
膜の表面を活性化状態にし、しかる後に該硬化塗膜の表
面に導電性の良好な無電解金属めっき処理を施すことを
特徴とする導電回路の製造方法。 2 前記無電解金属めっきは、無電解銅めっきであるこ
とを特徴とする特許請求の範囲第1項に記載の導電回路
の製造方法。
[Claims] 1 Copper conductive paste, which has good soldering properties, is applied to an insulating plate, heated (-2) to harden it to form a conductive circuit with a cured coating, and then soaked in a weakly acidic solution. A method for producing a conductive circuit, comprising immersing the cured coating film to activate the surface thereof, and then subjecting the cured coating film surface to electroless metal plating treatment with good conductivity. 2. 2. The method of manufacturing a conductive circuit according to claim 1, wherein the electrolytic metal plating is electroless copper plating.
JP13058183A 1983-07-17 1983-07-17 Method of producing conductive circuit Granted JPS6021591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13058183A JPS6021591A (en) 1983-07-17 1983-07-17 Method of producing conductive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13058183A JPS6021591A (en) 1983-07-17 1983-07-17 Method of producing conductive circuit

Publications (2)

Publication Number Publication Date
JPS6021591A true JPS6021591A (en) 1985-02-02
JPH0358196B2 JPH0358196B2 (en) 1991-09-04

Family

ID=15037633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13058183A Granted JPS6021591A (en) 1983-07-17 1983-07-17 Method of producing conductive circuit

Country Status (1)

Country Link
JP (1) JPS6021591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289179U (en) * 1985-11-22 1987-06-08
JPS62163387A (en) * 1986-01-14 1987-07-20 株式会社 アサヒ化学研究所 Method for forming capacitive circuit on circuit board
JPH03141683A (en) * 1989-10-27 1991-06-17 Furukawa Electric Co Ltd:The Printed circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865461A (en) * 1971-12-16 1973-09-08
JPS56142698A (en) * 1980-04-08 1981-11-07 Sumitomo Electric Industries Method of forming conductive circuit
JPS5790995A (en) * 1980-11-27 1982-06-05 Asahi Kagaku Kenkyusho Method of producing printed circuit
JPS57122597A (en) * 1981-01-23 1982-07-30 Hitachi Ltd Method of producing conductive pattern of printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865461A (en) * 1971-12-16 1973-09-08
JPS56142698A (en) * 1980-04-08 1981-11-07 Sumitomo Electric Industries Method of forming conductive circuit
JPS5790995A (en) * 1980-11-27 1982-06-05 Asahi Kagaku Kenkyusho Method of producing printed circuit
JPS57122597A (en) * 1981-01-23 1982-07-30 Hitachi Ltd Method of producing conductive pattern of printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289179U (en) * 1985-11-22 1987-06-08
JPS62163387A (en) * 1986-01-14 1987-07-20 株式会社 アサヒ化学研究所 Method for forming capacitive circuit on circuit board
JPH03141683A (en) * 1989-10-27 1991-06-17 Furukawa Electric Co Ltd:The Printed circuit board

Also Published As

Publication number Publication date
JPH0358196B2 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
CN104575937B (en) Chip electronic component and its manufacturing method
JPS6136796B2 (en)
WO2014024976A1 (en) Magnetic material composition and coil component
JPS612202A (en) Soldable electroconductive composition, method of producing same, method of treating substrate applied with said composition, method of coating metal and article applied with same composition
JPS6276600A (en) Forming method for conductive circuit on substrate
KR900003158B1 (en) Method for producing electric circuits an a base board
JP2023534343A (en) Nanoparticulate copper pastes suitable for high-precision write-through 3D printing, production and applications
JPS62104878A (en) Copper-containing conductive paint for magnetized metal substrate
JPS6021591A (en) Method of producing conductive circuit
JPH0373503A (en) Formation of circuit
JPS62163389A (en) Method of forming conductive circuit on board
JPH0931419A (en) Anisotropic conductive adhesive film
JPS60217694A (en) Method of producing circuit substrate
JPH10340625A (en) Conductive paste, its manufacture, and printed wiring board using the paste
JP2002100501A (en) Electronic component and its packaging body
JPS6387795A (en) Method of forming conductive circuit on substrate
JP2005190907A (en) Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
JPS60244093A (en) Method of producing circuit board
JPS6035386B2 (en) Conductive paint using Ni powder
JPS58105536A (en) Solid electrolytic condenser
JPS62259303A (en) Conducting material
JPS61179261A (en) Electrically conductive resin paste
JPS6387797A (en) Method of forming conductive circuit on substrate
JPS59106175A (en) Method of producing circuit board for switch
JPS6185703A (en) Conductor material composition