JPS60215645A - Synthetic method of p-hydroxybenzaldehyde - Google Patents

Synthetic method of p-hydroxybenzaldehyde

Info

Publication number
JPS60215645A
JPS60215645A JP59073300A JP7330084A JPS60215645A JP S60215645 A JPS60215645 A JP S60215645A JP 59073300 A JP59073300 A JP 59073300A JP 7330084 A JP7330084 A JP 7330084A JP S60215645 A JPS60215645 A JP S60215645A
Authority
JP
Japan
Prior art keywords
phenol
cyclodextrin
catalyst
groups
chloroform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59073300A
Other languages
Japanese (ja)
Inventor
Hidefumi Hirai
平井 英史
Makoto Komiyama
真 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59073300A priority Critical patent/JPS60215645A/en
Priority to EP85901054A priority patent/EP0173748B1/en
Priority to DE8585901054T priority patent/DE3575127D1/en
Priority to AU39385/85A priority patent/AU576457B2/en
Priority to PCT/JP1985/000057 priority patent/WO1985003701A1/en
Priority to US06/725,360 priority patent/US4663478A/en
Priority to CA000478691A priority patent/CA1234393A/en
Publication of JPS60215645A publication Critical patent/JPS60215645A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound in high yield and selectivity with easy separating operation and saved raw material, by reacting a phenol with chloroform in the presence of an alkali and a specific solid catalyst. CONSTITUTION:A phenol is reacted with chloroform in the presence of a solid obtained by crosslinking hydroxyl groups in cyclodextrin with hydroxypropyl groups as a catalyst and sodium or potassium hydroxide to give the aimed compound. The phenol includes phenol, 2-substituted phenol, etc. The solid obtained by crosslinking the hydroxyl groups in the cyclodextrin with hydroxypropyl groups is e.g. a solid obtained by reacting the cyclodextrin with epichlorohydrin or epibromohydrin in an aqueous solution of an alkali. The amount of the catalyst to be added is preferably >=0.5 molar ratio of the cyclodextrin to the phenol.

Description

【発明の詳細な説明】 本発明はバラヒドロキンベンズアルデヒド類の合成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing rosehydroquine benzaldehydes.

パラヒドロキシベンズアルデヒド類は、抗ガン剤として
、あるいは医薬、農薬および染料などの中間体として、
その重要性が最近とみに増している。
Parahydroxybenzaldehydes are used as anticancer agents or as intermediates for pharmaceuticals, agricultural chemicals, dyes, etc.
Its importance has been increasing recently.

従来、アルカリの存在下にフェノールとクロロホルムを
反応せしめることによりバラヒドロキシベンズアルデヒ
ドを合成する方法は公知であった。
Conventionally, a method for synthesizing parahydroxybenzaldehyde by reacting phenol and chloroform in the presence of an alkali has been known.

しかしながら、この反応におけるバラヒドロキシベンズ
アルデヒドの生成の選択率は30%程度で。
However, the selectivity for producing parahydroxybenzaldehyde in this reaction is about 30%.

大量のサリチルアルデヒドが副生ずる。従って。A large amount of salicylaldehyde is produced as a by-product. Therefore.

この方法でバラヒドロキシベンズアルデヒドを得るには
、大量の原料が必要であると同時に9分離操作を必要と
した。
Obtaining parahydroxybenzaldehyde by this method required a large amount of raw materials and nine separation operations.

本発明は、アルカリの存在下にフェノール類とクロロホ
ルムを反応させるにあたり、シクロデキストリンの水酸
基をヒドロキシプロピル基で架橋した固体を添加するこ
とにより、目的生成物であるパラヒドロキシベンズアル
デヒド類の収率および選択性を顕著に向上させ、省原料
と分離操作の簡素化を実現したものである。
In the present invention, when reacting phenols and chloroform in the presence of an alkali, by adding a solid in which the hydroxyl groups of cyclodextrin are crosslinked with hydroxypropyl groups, the yield and selection of parahydroxybenzaldehydes, which are the target products, are improved. This has significantly improved performance, saved raw materials, and simplified separation operations.

すなわち1本発明者らは、フェノール類と水酸化ナトリ
ウムまたは水酸化カリウムの水溶液に。
Namely, the present inventors used an aqueous solution of phenols and sodium hydroxide or potassium hydroxide.

シクロデキストリンの水酸基をヒドロキシプロピル基で
架橋した固体を加え、しかる後にクロロホルムを加える
ことによシ、パラヒドロキシベンズアルデヒド類を高収
率、高選択性で合成することに成功した。本発明におけ
る目的物であるバラヒドロキンベンズアルデヒド類の収
率および選択率はいずれもほぼ100%である。
By adding a solid in which the hydroxyl groups of cyclodextrin are cross-linked with hydroxypropyl groups, and then adding chloroform, we succeeded in synthesizing para-hydroxybenzaldehydes in high yield and with high selectivity. Both the yield and selectivity of rosehydroquine benzaldehyde, which is the target product of the present invention, are approximately 100%.

明細書に記載するフェノール類とは、たとえばフェノー
ル、2位置換フェノール、3位置換フェノール、3位、
5位二置換フェノール、および。
The phenols described in the specification include, for example, phenol, 2-substituted phenol, 3-substituted phenol, 3-substituted phenol,
5-position disubstituted phenol, and.

2位、5位二置換フェノールなどである。ここに。These include disubstituted phenols at the 2- and 5-positions. Here.

フェノールの置換基は、たとえば炭素数1〜6の飽和な
らびに不飽和炭化水素基、アリール基、水酸基、カルボ
キシル基、スルホン酸基、およびハロゲンなどである。
Substituents for phenol include, for example, saturated and unsaturated hydrocarbon groups having 1 to 6 carbon atoms, aryl groups, hydroxyl groups, carboxyl groups, sulfonic acid groups, and halogens.

明細書に記載する。シフロブキス) IJンの水酸基を
ヒドロキシプロピル基で架橋した固体とは。
Describe it in the specification. What is a solid whose hydroxyl groups are crosslinked with hydroxypropyl groups?

たとえば、シクロデキストリンとエビクロロヒドリンま
たはエビブロモヒドリンとをアルカリ水溶液中で反応す
ることにより得られる固体である。
For example, it is a solid obtained by reacting cyclodextrin with shrimp chlorohydrin or shrimp bromohydrin in an alkaline aqueous solution.

シクロデキストリンとしては、α−シクロデキストリン
とβ〜シクロデキストリンのいずれも用いることができ
るが、β−シクロデキストリンの方が、より効果が大き
い。シクロテギストl)ンの水酸基をヒドロキシプロピ
ル基で架橋した固体ノ添加号としては、はぼ100%に
近い選択率でバラヒドロキシベンズアルデヒド類を得る
ためには。
As the cyclodextrin, both α-cyclodextrin and β-cyclodextrin can be used, but β-cyclodextrin is more effective. As a solid additive in which the hydroxyl groups of cyclotegistone are crosslinked with hydroxypropyl groups, in order to obtain parahydroxybenzaldehydes with a selectivity close to 100%.

含まれるシクロデキストリンのフェノール類に対するモ
ル比が0.5以上であることが望ましいが。
It is desirable that the molar ratio of the cyclodextrin contained to the phenol is 0.5 or more.

これ以下の量でもバラヒドロキシベンズアルデヒド類の
生成の選択・跣の向上は達成される。
Even if the amount is less than this, selection and improvement in the production of parahydroxybenzaldehydes can be achieved.

本発明において、シクロデキストリンの水酸基をヒドロ
キシプロピル基で架橋した固体は2粒状の固体で2反応
系に溶解せず、また反応中に化学変化しない。したがっ
て1反応波、/ことえば遠心シア 分離あるいは′/濾過などの方法により1反応系より容
易に分離回収される。分離回収した固体を、再度触媒と
して使用した際にも2選択性に劣化は認められなかった
In the present invention, the solid in which the hydroxyl groups of cyclodextrin are cross-linked with hydroxypropyl groups is a two-particulate solid that does not dissolve in the two reaction systems, and does not chemically change during the reaction. Therefore, one reaction wave can be easily separated and recovered from one reaction system by methods such as centrifugal shear separation or filtration. Even when the separated and recovered solid was used again as a catalyst, no deterioration in the two-selectivity was observed.

ヒドロキシプロピル基で架橋していないシフロブキス)
 +7ンを触媒として用いた場合には、触媒は可醪であ
る。そのため1反応後、シクロテキストリンを回収する
ためには1反応系に酸を加えて酸性にし、シクロデキス
トリンの溶解度を減少させる必要があり2通常、10〜
20%の損失を生じる。このことから、シクロデキスト
リンの水酸基をヒドロキシプロピル基で架橋した触媒を
用いる本発明の方法は、触媒分離の容易さ、ならびに省
資源の点で優れていることは明白である。
sifurobukis (non-crosslinked with hydroxypropyl groups)
When +7ton is used as a catalyst, the catalyst is smeltable. Therefore, in order to recover cyclodextrin after one reaction, it is necessary to add acid to the reaction system to make it acidic and reduce the solubility of cyclodextrin.
This results in a loss of 20%. From this, it is clear that the method of the present invention using a catalyst in which the hydroxyl groups of cyclodextrin are crosslinked with hydroxypropyl groups is superior in terms of ease of catalyst separation and resource saving.

また、シクロデキストリンの水酸基をヒドロキシプロピ
ル基で架橋した固体を固定床とし、フェノール類のアル
カリ水#液ならびにクロロホルムをこの固定床を通過さ
せるか、または固定床と接触させることによっても1本
発明を実施することつぎに2本発明を具体的に実施例を
あげて説明するが、これにより本発明を制限するもので
はない。
The present invention can also be carried out by using a fixed bed of a solid obtained by crosslinking the hydroxyl groups of cyclodextrin with hydroxypropyl groups, and passing an alkaline aqueous solution of phenol and chloroform through this fixed bed or bringing it into contact with the fixed bed. EXAMPLES Next, the present invention will be described in detail with reference to two examples, but the present invention is not limited thereto.

〔実施例1〕 Journal of Macromolecular
 5cience、 −Che−mistry誌、A第
7巻5号、1973年発行、第1149頁に記載された
手法により、β−7クロデキストリンの水酸基をヒドロ
キシプロピル基で架橋した固体を調製した。
[Example 1] Journal of Macromolecular
A solid in which the hydroxyl group of β-7 clodextrin was crosslinked with a hydroxypropyl group was prepared by the method described in 5science, -Che-mistry magazine, Vol. A, No. 5, 1973, page 1149.

50.9のβ−シクロデキストリン(半井化学薬品株式
会社製、特級試薬)を50%水酸化ナトリウム水溶液8
0m1に溶解し、50m9の水素化ポウ素ナトリウム(
米山薬品工業株式会社製、特級試薬)を加えた。この溶
液を磁気がくけん器を用いてかくはんしつつ、エビクロ
ロヒドリン(東京化成株式会社製、特級試薬)34ml
を滴下し、50’Cで40分反応させた。生成した固体
をアセトンで3回、さが得られた。これが触媒である。
50.9 β-cyclodextrin (manufactured by Hanui Chemical Co., Ltd., special grade reagent) in a 50% sodium hydroxide aqueous solution 8
0ml dissolved in 50ml of sodium borohydride (
Yoneyama Pharmaceutical Co., Ltd., special grade reagent) was added. While stirring this solution using a magnetic stirrer, add 34 ml of shrimp chlorohydrin (manufactured by Tokyo Kasei Co., Ltd., special grade reagent).
was added dropwise and reacted at 50'C for 40 minutes. The resulting solid was washed three times with acetone. This is the catalyst.

この触媒4.50gと0.50!!のフェノール(小宗
化学薬品株式会社製。
This catalyst 4.50g and 0.50! ! phenol (manufactured by Koso Chemical Co., Ltd.).

−級試薬)とを50m1の20%水酸化ナトリウム水溶
液に加え2反応溶液を磁気がくけん器を用いてかくはん
しつつ、60℃に加熱した。3mlのクロロホルム(東
京化成工業株式会社製、特級試薬)を滴下しつつ12時
間反応せしめた。反応後、触媒をデカンチー/コンで除
去した。得られた反応液を塩酸で酸性にした後、5or
nllのエーテルで3回抽出し、エーテル層を水洗した
後に乾燥し、0.58gの生成物を得た。生成物をガス
クロマトグラフ(Tenax GCカラム、2m、 3
00℃)で分析したところ、生成物は056Iの4−ヒ
ドロキシベンズアルデヒドと0.02,9のフェノール
の混合物であシ。
- grade reagent) was added to 50 ml of 20% aqueous sodium hydroxide solution, and the two reaction solutions were heated to 60° C. while stirring using a magnetic stirrer. The reaction was allowed to proceed for 12 hours while dropping 3 ml of chloroform (manufactured by Tokyo Chemical Industry Co., Ltd., special grade reagent). After the reaction, the catalyst was removed with Decanchi/Con. After making the obtained reaction solution acidic with hydrochloric acid, 5or
The extract was extracted three times with nll of ether, and the ether layer was washed with water and dried to obtain 0.58 g of product. The product was analyzed using a gas chromatograph (Tenax GC column, 2 m, 3
Analysis at 0.000C revealed that the product was a mixture of 056I 4-hydroxybenzaldehyde and 0.02.9% phenol.

2−ヒドロキシベンズアルデヒドは検出されなかった。2-Hydroxybenzaldehyde was not detected.

すなわち、4−ヒドロキシベンズアルデヒドの収率は8
4モルチであシ22選択率100%であった。
That is, the yield of 4-hydroxybenzaldehyde is 8
The Ashi 22 selectivity was 100% with 4 molti.

次に、上記の反応後1分離した触媒と0.50.9のフ
ェノールとを50m1の20%水酸化ナトリウム水溶液
に加え1反応溶液を磁気かくはん器を用いてかくはんし
つつ、60℃に加熱した。3mlのクロロホルムを滴下
しつつ12時間反応せしめた。反応後、触媒をデカンテ
ーションで除去した。得られた反応液を塩酸で酸性にし
た後、 50m1のエーテルで3回抽出し、エーテル層
を水洗した後に乾燥し。
Next, the catalyst separated after the above reaction and 0.50.9 phenol were added to 50 ml of 20% sodium hydroxide aqueous solution, and the reaction solution was heated to 60°C while stirring using a magnetic stirrer. . The reaction was continued for 12 hours while adding 3 ml of chloroform dropwise. After the reaction, the catalyst was removed by decantation. The resulting reaction solution was made acidic with hydrochloric acid, extracted three times with 50 ml of ether, and the ether layer was washed with water and then dried.

065gの生成物′を得た。生成物をガスクロマトグラ
フで分析したところ、生成物は062gの4−ヒドロキ
シベンズアルデヒドと0.03gのフェノールの混合物
であり、2−ヒドロキシベンズアルデヒドは検出されな
かった。すなわち、4−ヒドロキシベンズアルデヒドの
収率は94モル係であり。
065 g of product' were obtained. When the product was analyzed by gas chromatography, the product was a mixture of 062 g of 4-hydroxybenzaldehyde and 0.03 g of phenol, and no 2-hydroxybenzaldehyde was detected. That is, the yield of 4-hydroxybenzaldehyde was 94 moles.

選択率は100チであった。The selectivity was 100.

〔実施例2〕 実施例1に記載したフェノールの代わりにo −クレゾ
ール(東京化成株式会社製、特級試薬)を使用した以外
は、実施例1と同一の試薬および触媒を使用した。
[Example 2] The same reagents and catalysts as in Example 1 were used except that o-cresol (manufactured by Tokyo Kasei Co., Ltd., special grade reagent) was used instead of the phenol described in Example 1.

実施例1で、β−7クロデキストリンとエビクロロヒド
リンより調製した触媒450gと0.50.9の0−ク
レゾールを501nlの20%水酸化ナトリウム水溶液
を加え2反応溶液を磁気かくはん器を用いてかくはんし
つつ、60℃に加熱した。3mlのクロロホルム(東京
化成工業株式会社製、特級試薬)を滴下しつつ12時間
反応せしめた。反応後、触媒をデカンテーションで除去
した。得られた反応液を塩酸で酸性にした後、 50+
++A’のエーテルで3回抽出し、エーテル層を水洗し
た後に乾燥し、 0.65gの生成物を得た。生成物を
ガスクロマトグラフで分析したところ、生成物は0.6
1gの4−ヒドロキシ−3−メチルベンズアルデヒドと
004gの〇−クレゾールの混合物であった。すなわち
、4−ヒドロキシ−3−メチルベンズアルデヒドの収率
は82モル係であり2選択率は100 %であった。
In Example 1, 450 g of the catalyst prepared from β-7 clodextrin and shrimp chlorohydrin and 0.50.9 0-cresol were added to 501 nl of a 20% aqueous sodium hydroxide solution, and the two reaction solutions were mixed using a magnetic stirrer. While stirring, the mixture was heated to 60°C. The reaction was allowed to proceed for 12 hours while dropping 3 ml of chloroform (manufactured by Tokyo Chemical Industry Co., Ltd., special grade reagent). After the reaction, the catalyst was removed by decantation. After making the obtained reaction solution acidic with hydrochloric acid, 50+
++A' was extracted three times with ether, and the ether layer was washed with water and dried to obtain 0.65 g of product. When the product was analyzed by gas chromatography, the product was 0.6
It was a mixture of 1 g of 4-hydroxy-3-methylbenzaldehyde and 0.04 g of 0-cresol. That is, the yield of 4-hydroxy-3-methylbenzaldehyde was 82 mol, and the 2 selectivity was 100%.

特許出願人 平井英史Patent applicant Hidefumi Hirai

Claims (1)

【特許請求の範囲】[Claims] 水酸化ナトリウムまたは水酸化カリウムの存在下に、フ
ェノール類に対してクロロホルムを反応させるにあたり
、シクロデキストリンの水酸基をヒドロキシプロピル基
で架橋した固体を触媒として用いることにより、バラヒ
ドロキシベンズアルデヒド類を高選択的に製造する方法
When reacting phenols with chloroform in the presence of sodium hydroxide or potassium hydroxide, a solid in which the hydroxyl groups of cyclodextrin are cross-linked with hydroxypropyl groups is used as a catalyst, resulting in highly selective reaction to parahydroxybenzaldehydes. How to manufacture.
JP59073300A 1984-02-14 1984-04-12 Synthetic method of p-hydroxybenzaldehyde Pending JPS60215645A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59073300A JPS60215645A (en) 1984-04-12 1984-04-12 Synthetic method of p-hydroxybenzaldehyde
EP85901054A EP0173748B1 (en) 1984-02-14 1985-02-13 Process for producing substituted unsaturated six-membered ring compounds from phenol derivatives
DE8585901054T DE3575127D1 (en) 1984-02-14 1985-02-13 MANUFACTURE OF SUBSTITUTED UNSATURED SIX-PIECE RING CONNECTIONS FROM PHENOLA COMBINATIONS.
AU39385/85A AU576457B2 (en) 1984-02-14 1985-02-13 Process for preparing p-substituted phenol derivatives
PCT/JP1985/000057 WO1985003701A1 (en) 1984-02-14 1985-02-13 Process for preparing p-substituted phenol derivatives
US06/725,360 US4663478A (en) 1984-02-14 1985-02-13 Process for producing a para-substituted phenol derivative
CA000478691A CA1234393A (en) 1984-04-12 1985-04-10 Process for producing a para-substituted phenol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073300A JPS60215645A (en) 1984-04-12 1984-04-12 Synthetic method of p-hydroxybenzaldehyde

Publications (1)

Publication Number Publication Date
JPS60215645A true JPS60215645A (en) 1985-10-29

Family

ID=13514171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073300A Pending JPS60215645A (en) 1984-02-14 1984-04-12 Synthetic method of p-hydroxybenzaldehyde

Country Status (1)

Country Link
JP (1) JPS60215645A (en)

Similar Documents

Publication Publication Date Title
Wilger et al. Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system
EP0045959B1 (en) Process for preparing bisphenols
US4045379A (en) Process for preparation of modified ion-exchange resin
Abelló et al. Supported choline hydroxide (ionic liquid) as heterogeneous catalyst for aldol condensation reactions
SE7407170L (en)
JPS60215645A (en) Synthetic method of p-hydroxybenzaldehyde
US4663478A (en) Process for producing a para-substituted phenol derivative
JPH01106833A (en) Method for synthesizing p-hydroxymethylphenols
SU929630A1 (en) Process for producing di- or trioxydiphenyl sulfones
JPS6245216B2 (en)
JP2530985B2 (en) Method for separating cresol isomers
US2239232A (en) Production of monoaldehyde-ketone aldol condensates
JP3461014B2 (en) Method for producing tetrakis (hydroxyphenyl) alkane
Fedoroňko et al. Kinetics and mechanism of the acid-catalyzed reactions of methylated trioses
SU384333A1 (en) The method of producing propylene oxide
JPH0136815B2 (en)
JPS60222438A (en) Synthesis of hydroxy chalcone
JPS60169438A (en) Synthesis of p-hydroxybenzoic acid
JPS6232737B2 (en)
SU823379A1 (en) Method of cresols production
JPH03112940A (en) Production of (+-)-4-formyl-alpha-alkylbenzyl alcohol
JPS6314689B2 (en)
JPH03188036A (en) Preparation of parahydroxymethylphenols
US2483566A (en) Catalytic acylation of aromatic compounds
JPS648607B2 (en)