JPS6021440A - Method for measuring distribution of local void rate - Google Patents
Method for measuring distribution of local void rateInfo
- Publication number
- JPS6021440A JPS6021440A JP58128920A JP12892083A JPS6021440A JP S6021440 A JPS6021440 A JP S6021440A JP 58128920 A JP58128920 A JP 58128920A JP 12892083 A JP12892083 A JP 12892083A JP S6021440 A JPS6021440 A JP S6021440A
- Authority
- JP
- Japan
- Prior art keywords
- time
- projection data
- distribution
- measurement
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/12—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
Landscapes
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は例えば原子炉内の気液二相流の局所ボイド率分
布を測定する局所がイド率分布の測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring a local void fraction distribution of a gas-liquid two-phase flow in a nuclear reactor, for example.
例えば原子炉内の伝熱流動現象の解明のために管内にお
ける気液二相流のボイド率を正確に測定することは、原
子炉機器の設計上きわめて重要なことである。気液二相
流では気液各相の流量や管状などによって様々な流れの
態様をとる。このときの気泡全体の面積の管断面の面積
に対して占める割合を通常αで表わしてこれをボイド率
と称している。For example, it is extremely important for the design of nuclear reactor equipment to accurately measure the void fraction of gas-liquid two-phase flow in tubes in order to elucidate heat transfer flow phenomena in nuclear reactors. In gas-liquid two-phase flow, various flow patterns occur depending on the flow rate of each gas-liquid phase and the shape of the tube. At this time, the ratio of the area of the entire bubble to the area of the cross section of the tube is usually expressed as α, and this is called the void ratio.
上記ボイド率の測定方法の1つとして従来探針法がある
。この探針法は先端に2つの電極をもつ探針を二相流内
に突入させ、気液間の電極間における電気型導度の差を
利用し、探針の先端が気泡に接している時間の割合から
局所ボイド率をめる方法である。One of the methods for measuring the void ratio is the conventional probe method. In this probe method, a probe with two electrodes at its tip is plunged into a two-phase flow, and the tip of the probe is brought into contact with a bubble by utilizing the difference in electrical type conductivity between the gas-liquid electrodes. This method calculates the local void rate from the time ratio.
上記探針性以外にX線透過法がある。このX線透過法に
ついて第1図を参照して説明する。In addition to the above-mentioned probe method, there is an X-ray transmission method. This X-ray transmission method will be explained with reference to FIG.
図中符号1はボイドVよシなる気相と液相りとが混合す
る気液二相流が流通する流路管を示す。Reference numeral 1 in the figure indicates a flow path pipe through which a gas-liquid two-phase flow in which a gas phase and a liquid phase are mixed, such as a void V, flows.
この流路管1の一方には間隔を有してX線管2が配置さ
れておシ、このX線管2と相対する側には検出器3およ
び計数器4が設置されている。An X-ray tube 2 is disposed at one side of the flow pipe 1 with a space therebetween, and a detector 3 and a counter 4 are disposed on the side facing the X-ray tube 2.
すなわち上記X線管2からX線を照射して気液二相流を
透過させ、透過したX線の強度を検出器3により検出し
計数器4により計数する構成である。例えば測定された
X線強度をエエとし、同じ流路管1で液相りだけ流れた
場合の測定X線強度を■ノ、 同様に気相Vだけ流れた
場合の測定X線強度を■、とすると、ボイド率αは次の
式で表わされる。That is, the configuration is such that X-rays are irradiated from the X-ray tube 2 to transmit the gas-liquid two-phase flow, and the intensity of the transmitted X-rays is detected by the detector 3 and counted by the counter 4. For example, let the measured X-ray intensity be E, the measured X-ray intensity when only the liquid phase flows in the same flow path pipe 1 is ■, and similarly the measured X-ray intensity when only the gas phase V flows is ■, Then, the void ratio α is expressed by the following formula.
上記探針法の場合には、探針を気液二相流内に挿入する
為内部の流れを乱すうえに電極間の′電気伝導度による
信号処理が難かしく正確な測定を行なうことができなか
った。またX線透過法は探針法に比べて精度は高いが算
出されるボイド率αは流路管1内のX線が通過するx−
x′線上でのディト率でおり、流路管1の断面のボイド
率あるいは局所ボイド率でもなく、所望の局所ボイド率
分布の測定を行なうことはできなかった。In the case of the above-mentioned probe method, since the probe is inserted into the gas-liquid two-phase flow, the internal flow is disturbed, and signal processing based on the electrical conductivity between the electrodes is difficult, making it difficult to perform accurate measurements. There wasn't. Although the X-ray transmission method has higher accuracy than the probe method, the calculated void ratio α is
This is the Dito ratio on the x' line, and is not the void ratio of the cross section of the flow path pipe 1 or the local void ratio, so it was not possible to measure the desired local void ratio distribution.
本発明の目的は、局所ボイド率分布を精度良く測定する
ことを可能にする局所ボイド率分布の測定方法を提供す
ることにある。An object of the present invention is to provide a method for measuring a local void fraction distribution that makes it possible to measure the local void fraction distribution with high accuracy.
本発明による局所ボイド率分布の測定方法は、X線ある
いはγ線を発する線源と、この線源と被検体を挾んで相
対する側に設けられた検出器と、この検出器および上記
線源を移動させる駆動装置と、この駆動装置を制御する
制御装置とを備え、上記駆動装置により検出器および線
源を走査させて被検体の局所ボイド率分布を測定する局
所ボイド率分布測定方法において、測定を開始する前に
あらかじめ投影データの収集時間を決定し、上記決定さ
れた収集時間をもとに前記制御装置により駆動装置を制
御して線源および検出器を走査させて局所ボイド率分布
の測定を行なう構成である。The method for measuring a local void fraction distribution according to the present invention includes a radiation source that emits X-rays or γ-rays, a detector provided on a side facing the radiation source and a subject, and the detector and the radiation source. A method for measuring local void fraction distribution, comprising: a drive device for moving the drive device; and a control device for controlling the drive device; Before starting the measurement, the projection data acquisition time is determined in advance, and based on the determined acquisition time, the control device controls the drive device to scan the radiation source and the detector to obtain the local void fraction distribution. This is the configuration for performing measurements.
すなわち気液二相流の場合には流動条件(流量・圧力・
温度)が一定である限シどのような流れでも局所ボイド
率の時間平均値が存在し、投影データもある時間経過後
には一定値に収束する。したがって測定を開始する前に
上記一定値に収束する投影時間を決定し、この投影時間
に合せて駆動装置を制御し線源および検出器を走査させ
る構成である。In other words, in the case of gas-liquid two-phase flow, the flow conditions (flow rate, pressure,
As long as the temperature (temperature) is constant, there is a time-averaged value of the local void fraction in any flow, and the projection data also converges to a constant value after a certain period of time. Therefore, the projection time for converging to the above-mentioned constant value is determined before starting the measurement, and the driving device is controlled in accordance with this projection time to scan the radiation source and the detector.
したがって測定毎に変動する流動物体に対しても時間平
均の投影データを得ることができ局所ボイド率分布を精
度良く測定することができる。Therefore, it is possible to obtain time-average projection data even for a flowing object that changes with each measurement, and to measure the local void fraction distribution with high accuracy.
以下第2図ないし第6図を参照して本発明の第1の実施
例を説明する。まず第2図ないし第4図を参照してX線
コンビーータ断層撮影装置(以後CTスキャナと称す)
の測定原理について説明する。一般にCTスキャナでは
X線管とX線検出器(NaI、BGO等のシンチレータ
と光電子増倍管を組合せたもの)は被検体を中心に対向
して配置され、ペンシルビームと呼ばれる細い一本のX
線ビームが被検体を通過してX線検出器に入射する。そ
して第2図:に示すようにX線管102と検出器103
が一体となって被検体101に対し直線走査(tran
slate動作)し、平行等間隔に分布した多数のxg
投影データ(projection data)を得る
。次に第3図に示す様に被検体101に対して微小角度
回転(Rotate動作)する。そして再び直線走査し
投影データを収集する。この2つの動作は以後交互に繰
り返され最終的にX線管102と検出器103が被検体
10ノに対し180°回転したところで測定は終了する
。この測定力法は並進・回転(translate〜r
otate)方式と称されている。この並進・回転方式
以外にも回転方式があるが現在開発されているCTスキ
ャナは全て異なる角度の投影データを異なる時間に測定
する方式のものである。A first embodiment of the present invention will be described below with reference to FIGS. 2 to 6. First, with reference to Figures 2 to 4, an X-ray combinator tomography device (hereinafter referred to as a CT scanner)
The measurement principle will be explained. Generally, in a CT scanner, an X-ray tube and an X-ray detector (a combination of a scintillator such as NaI or BGO and a photomultiplier tube) are placed facing each other with the subject at the center, and a thin X-ray beam called a pencil beam is placed.
A beam of rays passes through the object and is incident on an x-ray detector. And as shown in Fig. 2, the X-ray tube 102 and the detector 103
unite to perform a linear scan (tran) on the subject 101.
slate operation) and a large number of xg distributed at equal intervals in parallel.
Obtain projection data. Next, as shown in FIG. 3, the subject 101 is rotated by a small angle (Rotate operation). Then, linear scanning is performed again to collect projection data. These two operations are then repeated alternately, and the measurement ends when the X-ray tube 102 and detector 103 are finally rotated by 180 degrees with respect to the subject 10. This measurement force method uses translation/rotation (translate ~ r
This method is called the "rotate" method. In addition to this translation/rotation method, there are rotation methods, but all currently developed CT scanners are of a method that measures projection data at different angles at different times.
測定された投影データを元に画像再構成アルゴリズムに
よって7オトンの線吸収係数分布をれを基準とするX−
7座標系を考える。この座標(X、y)においてX線吸
収係数の分布なf(X、y)とし、また上記被検体10
1をいくつかの画素(i、j)105に分割しその画素
(i、j)711J5でのX線吸収係数をμijとする
。次にx−y座標系に対して角度θだけ傾いたX−Y座
標系を考える。そしてY軸に平行に強度1.のX線ビー
ム106を照射すれば被検体101を通過した後のX線
強度を■とすると、ここで91.j、RJIiX線ビー
ム106が各画素を通過する面¥に107に比例する係
数である。このX線強度の減衰率の自然対数変換p(x
、θ)108は
となる。このp(x、θ)を投影データと称しこの投影
データから逆投影法あるいは重畳積分法等の画像再構成
アルゴリズムによ、6X線吸収係数分布町jをめる。そ
の際X線吸収係数分布μljと密度分布ρljあるいは
局所ボイド率分布αijに相流の場合とには線形な関係
がある。Based on the measured projection data, an image reconstruction algorithm is used to calculate the linear absorption coefficient distribution of 7 otons using the X-
Consider a 7-coordinate system. At this coordinate (X, y), the distribution of the X-ray absorption coefficient is f(X, y), and the above-mentioned object 10
1 is divided into several pixels (i, j) 105, and the X-ray absorption coefficient at the pixel (i, j) 711J5 is assumed to be μij. Next, consider an X-Y coordinate system that is tilted by an angle θ with respect to the x-y coordinate system. And the strength is 1 parallel to the Y axis. If the X-ray beam 106 is irradiated, the X-ray intensity after passing through the subject 101 is 91. j, RJIi is a coefficient proportional to 107 in the plane through which the X-ray beam 106 passes through each pixel. Natural logarithm transformation of the attenuation rate of this X-ray intensity p(x
, θ)108 becomes. This p(x, θ) is referred to as projection data, and from this projection data, an image reconstruction algorithm such as a back projection method or a convolution method is used to calculate the 6 X-ray absorption coefficient distributions j. In this case, there is a linear relationship between the X-ray absorption coefficient distribution μlj and the density distribution ρlj or the local void fraction distribution αij in the case of a phase flow.
いま二相流のような流動物体に対して上述した並進・回
転力式OCTスキャナを用いて測定した場合、画像再構
成アルゴリズムによって得られたX線吸収系数分布μi
jまたボイド率分布α1jには再現性が見られない。つ
まり各測定において、値にばらつきが見られる。これは
CT測測定基礎となる投影データが二相流の流れによる
時間的変動でゆらぎを起しているからである。つまり異
なる角度に対する投影データp(x、θn)とp(x、
θm)とは二相流は刻々と変化している流れであるため
異なる断面の像なのである。しかしながら前述したよう
に気液二相流では流動条件(流量・圧力・温度)が一定
である限りどのような流れでも局所ボイド率の時間平均
値が存在する。本実施例はこの点に着目して局所ボイド
率分布の測定を行なうもので、投影データが一定値に収
束する時間をあらかじめ測定し、この時間に合せて測定
を行なうものである。When measuring a fluid object such as a two-phase flow using the above-mentioned translational/rotational force OCT scanner, the X-ray absorption coefficient distribution μi obtained by the image reconstruction algorithm
j Also, no reproducibility is observed in the void fraction distribution α1j. In other words, in each measurement, variations can be seen in the values. This is because the projection data, which is the basis of the CT measurement, fluctuates due to temporal fluctuations due to the flow of the two-phase flow. In other words, projection data p(x, θn) and p(x,
θm) is an image of a different cross section because the two-phase flow is a flow that changes every moment. However, as mentioned above, in a gas-liquid two-phase flow, as long as the flow conditions (flow rate, pressure, temperature) are constant, a time average value of the local void fraction exists in any flow. The present embodiment focuses on this point and measures the local void ratio distribution.The time for the projection data to converge to a constant value is measured in advance, and the measurement is performed in accordance with this time.
第5図は本実施例による局所ディト率分布測定装置の概
略構成を示す図である。図中符号111は被検体として
の配管を示しこの配管11ノ内には気相としてのボイド
を含む二相流が流通している。この配管111の二相流
の局所ボイド率分布を測定する為にCTスキャナ装置1
12が設けられている。すなわち前記配管1110半径
方向の一方の側には所定の間隔を有してX線あるいはγ
線を発する線源113が設置されてお夛、この線源11
3と配管111を挾んで相対する側には検出器114が
設置されている。これら線源113および検出器114
は架台フレーム115を介して一体化されておシ、この
架台フレーム115に接続された駆動装置116によシ
並進・回転運動(あるいは回転運動のみ)する構成であ
る。また上記線源113、検出器114および駆動゛装
置116は制御回路117に接続されている。この制御
回路117は上記駆動装置116を制御して線源113
および検出器114を移動させるとともに画像再構成ア
ルゴリズムによって、収集した投影データからフォトン
の、線吸収分布を算出する機能を有する。FIG. 5 is a diagram showing a schematic configuration of a local det rate distribution measuring device according to this embodiment. In the figure, reference numeral 111 indicates a pipe as an object to be inspected, and a two-phase flow including voids as a gas phase flows within this pipe 11. In order to measure the local void fraction distribution of the two-phase flow in this piping 111, a CT scanner device 1 is used.
12 are provided. That is, on one side of the pipe 1110 in the radial direction, X-rays or γ
A radiation source 113 that emits radiation is installed, and this radiation source 11
A detector 114 is installed on the opposite side with the pipe 111 in between. These radiation sources 113 and detectors 114
are integrated via a pedestal frame 115, and are configured to perform translational and rotational movement (or only rotational movement) by a drive device 116 connected to this pedestal frame 115. Further, the radiation source 113, detector 114, and drive device 116 are connected to a control circuit 117. This control circuit 117 controls the drive device 116 to control the radiation source 113.
It also has a function of moving the detector 114 and calculating the linear absorption distribution of photons from the collected projection data using an image reconstruction algorithm.
上記CTヌキャナ装置112とは別にX線(あるいはγ
線)萱度計118が設置されている。この密度計118
によシ測定を開始する前あらかじめ投影データ測定時間
を決定する構成である。上記X線(あるいはγ線)密度
計LすはX線あるいはγ線を発する線源119と、この
線源119と配管111を挾んで相対する側に設置され
た検出器120とから構成される装る。これら線源11
9および検出器120も前記制御回路117に接続され
ている。In addition to the CT scanner device 112, X-ray (or
Line) A 萱meter 118 is installed. This density meter 118
The configuration is such that the projection data measurement time is determined in advance before starting the measurement. The X-ray (or γ-ray) density meter L is composed of a radiation source 119 that emits X-rays or γ-rays, and a detector 120 installed on the opposite side of the radiation source 119 and the piping 111. dress up These sources 11
9 and a detector 120 are also connected to the control circuit 117.
以上の構成をもとにその測定方法を説明する。The measurement method will be explained based on the above configuration.
第6図のフローチャート図に示すようにまず前記密度計
118によって連続しである角度θ0に対する投影デー
タを測定し制御回路117に入力する。制御回路117
はこの投影データをもとに投影データの時間積算値を各
測定時間に対してめる。その際時間積算値は数mBeQ
程度の間隔の離散的なデータとして算出し次の段階で時
間平均値がある値(ε)以内で収束しているならばその
時の時間を投影データの収集時間とする。すなわち時間
的に隣り合う2つの投影デーとした場合
I P s (X’θo)Pg(X・θo)1くεXI
P、(X−θo)まただし 0.001<εり0.1
が成立する場合にはこのときのT2を投影データの測定
時間と決定するものである。なお上記判定値(ε)はX
線(あるいはγ線)フォトンの統計誤差と被検体の流動
条件の変動を考慮して決定される。このようにして投影
データの測定時間が決定されたら、測定を開始する。ま
ず制御回路117は駆動装置116を制御して架台フレ
ーム115の並進運動あるいは回転運動の速度を制御し
て投影データ一点の測定時間を前記決定された測定時間
に合わせるようにして測定を行なう。そして各投影点で
検出されるデータは時間平均の投影データであシ、制御
回路117はこれらのデータをもとに時間平均の局所フ
ォトン吸収係数分布、局所密度分布、局所がイド率分布
をめる。As shown in the flowchart of FIG. 6, projection data for a continuous angle θ0 is first measured by the density meter 118 and inputted to the control circuit 117. Control circuit 117
Based on this projection data, calculate the time integrated value of the projection data for each measurement time. At that time, the time integrated value is several mBeQ
If the time average value converges within a certain value (ε) in the next step, the time at that time is set as the collection time of the projection data. In other words, when two projection data are temporally adjacent, I P s (X'θo)Pg(X・θo)1×εXI
If P, (X-θo) 0.001<ε 0.1 holds true, then T2 at this time is determined as the measurement time of the projection data. The above judgment value (ε) is
It is determined by taking into account statistical errors in ray (or γ-ray) photons and variations in flow conditions of the object. Once the measurement time of the projection data is determined in this way, the measurement is started. First, the control circuit 117 controls the drive device 116 to control the speed of the translational or rotational movement of the gantry frame 115 to perform measurement so that the measurement time of one point of projection data matches the determined measurement time. The data detected at each projection point is time-averaged projection data, and the control circuit 117 uses this data to calculate the time-averaged local photon absorption coefficient distribution, local density distribution, and local id rate distribution. Ru.
すなわち測定を開始する前に密度計118によシ投影デ
ータの測定時間を測定し、制御回路117によシ駆動装
置116を制御して上記測定時間に合うように架台フレ
ーム115の並進運動あるいは回転運動のヌビードを制
御して測定を行なっているので、各投影点で得られるデ
ータは時間平均の投影データであシしたがってこの投影
データをもとに時間平均のフォトン線吸収係数分布、局
所密度分布、局所ボイド率分布を精度良くめることがで
きる。 □
次に第7図および第8図を参照して第2の実施例を説明
する。すなわち前記第1の実施例では投影データ測定時
間を測定する手段として、密度剖118を設け、この密
度計118によって測定していたが、この第2の実施例
ではCTスキャナ装置112を用いて投影データの測定
時間を測定する構成である。すなわち第8図のフローチ
ャート図に示すようにCTスキャナ112を適当な位置
で停止させて連続である角度θ0の投影データを測定し
制御回路117に入力する。制御回路1ノアはこの入力
されたデータを元に投影データの時間積算値を各測定時
間に対してめる。その際積算値は数m5ec程度間隔の
離散的なデータとしてめる。そして時間的に隣シ合う2
つの投影データ啼比較し両者がある判定値以内で一致し
ておれば積算値は一定値に収束したと判断しこのときの
測定時間をCTスキャナ装に1120投影デ一タ点の測
定時間と決定する。投影データの測定時間が決定したら
前記第1の実施例同様測定を開始し制御回路117は駆
動装置116を制御して架台フレーム115の並進運動
あるいは回転運動の速度を制御して投影データ点の測定
時間を前記決定された測定時間に合わせるようにして測
定を行なう。そして得られた時間平均の投影データをも
とに時間平均の局所7才トン吸収係数分布、局所密度分
布、局所ボイド率分布をめる。したがって前記実施例と
同様の効果を奏することができる。That is, before starting the measurement, the measurement time of the projection data is measured by the density meter 118, and the control circuit 117 controls the drive device 116 to perform translational or rotational movement of the gantry frame 115 to match the measurement time. The data obtained at each projection point is time-averaged projection data, and therefore, based on this projection data, the time-averaged photon line absorption coefficient distribution, local density distribution, The local void fraction distribution can be adjusted with high precision. □ Next, a second embodiment will be described with reference to FIGS. 7 and 8. That is, in the first embodiment, a density analyzer 118 is provided as a means for measuring the projection data measurement time, and the measurement is performed using the density meter 118, but in the second embodiment, the projection data is measured using the CT scanner device 112. This configuration measures data measurement time. That is, as shown in the flowchart of FIG. 8, the CT scanner 112 is stopped at an appropriate position, and continuous projection data at an angle θ0 is measured and input to the control circuit 117. The control circuit 1 NOA calculates a time integrated value of projection data for each measurement time based on this input data. At this time, the integrated value is treated as discrete data at intervals of about several m5ec. and two that are adjacent in time
Compare the two projection data and if they match within a certain judgment value, it is determined that the integrated value has converged to a constant value, and the measurement time at this time is determined as the measurement time of 1120 projection data points on the CT scanner equipment. do. Once the projection data measurement time is determined, the measurement is started in the same way as in the first embodiment, and the control circuit 117 controls the drive device 116 to control the speed of the translational or rotational movement of the gantry frame 115 to measure the projection data points. Measurement is performed by adjusting the time to the determined measurement time. Then, based on the obtained time-averaged projection data, time-averaged local 7-year-old absorption coefficient distribution, local density distribution, and local void fraction distribution are calculated. Therefore, the same effects as in the embodiment described above can be achieved.
なお前記実施例と同一部分には同一符号を付して示し同
一構成部分についてはその説明を省略した。It should be noted that the same parts as in the previous embodiment are denoted by the same reference numerals, and the explanation of the same constituent parts is omitted.
以上詳述したように本発明による局所ボイド率分布の測
定力法によると、気液二相流の場合、流動条件(流量・
圧力・温度)が一定である限りどのような流れでも局所
ボイド率の時間平均値が存在し投影データもある時間経
過後には一定値に収束することに着目し、測定を開始す
る前にあらかじめ上記一定値に収速する投影時間を決定
しこの投影時間に合せて線源および検出器を走査させて
いるので測定毎に変動する流動物体に対しても時間平均
の投影データを得ることができ、局所ボイド率分布を精
度良く測定することができる。As detailed above, according to the measurement force method of local void fraction distribution according to the present invention, in the case of gas-liquid two-phase flow, the flow conditions (flow rate,
Focusing on the fact that as long as the pressure and temperature (pressure and temperature) are constant, there is a time-averaged value of the local void fraction for any flow, and that the projection data also converges to a constant value after a certain period of time, the above Since the projection time to converge to a constant value is determined and the radiation source and detector are scanned in accordance with this projection time, time-averaged projection data can be obtained even for flowing objects that fluctuate from measurement to measurement. Local void fraction distribution can be measured with high precision.
第1図は従来例を示すX線透過法の測定原理図、第2図
ないし第6図は本発明の第1の実施例を示す図で、第2
図ないし第4図は、CTスキャンの測定原理を示す測定
原理図、第5図は第1の実施例を実施する測定装置の概
略構成図、第6回目70−チャート図、第7図および第
8図は第2の実施例を示す図で第7図は測定装置の概略
構成図、第8図はフローチャート図である。
111・・・配管(被検体)、112・・・CTスキャ
ナ装置、113・・・線源、114・・・検出器、11
6・・・駆動装置、117・・・制御回路。
出願人代理人 弁理士 鈴 江 武 彦第11
第2m 第3図
一
第4図
■
第5図
ヒー J
第6wI
第7図
L J
第8図Fig. 1 is a diagram showing the measurement principle of the X-ray transmission method showing a conventional example, Figs. 2 to 6 are diagrams showing a first embodiment of the present invention, and Figs.
4 to 4 are measurement principle diagrams showing the measurement principle of CT scan, FIG. FIG. 8 is a diagram showing the second embodiment, FIG. 7 is a schematic configuration diagram of the measuring device, and FIG. 8 is a flowchart diagram. 111... Piping (subject), 112... CT scanner device, 113... Radiation source, 114... Detector, 11
6... Drive device, 117... Control circuit. Applicant's agent Patent attorney Suzue Takehiko No. 11 2m Figure 3 - Figure 4 ■ Figure 5 H J Figure 6wI Figure 7 L J Figure 8
Claims (1)
挾んで相対する側に設けられた検出器と、この検出器お
よび上記線源を移動させる駆動装置と、この駆動装置を
制御する制御装置とを備え、上記駆動装置によシ検出器
および線源を走査させて被検体の局所がイド率分布を測
定する局所ボイド率分布測定方法において、測定を開始
する前にあらかじめ投影データの収集時間を決定し、上
記決定された収集時間をもとに前記制御装置によシ駆動
装置を制御して線源および検出器を走査させて局所ボイ
ド率分布の測定を行なうことを特徴とする局所ボイド率
分布の測定方法。A radiation source that emits X-rays or gamma rays, a detector provided on the opposite side of the radiation source and the subject, a drive device that moves the detector and the radiation source, and a drive device that controls the drive device. In a local void ratio distribution measuring method in which a local void ratio distribution of a subject is measured by scanning a detector and a radiation source using the drive unit, the projection data is A collection time is determined, and the control device controls a drive device based on the determined collection time to scan the radiation source and the detector to measure the local void fraction distribution. A method for measuring local void fraction distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58128920A JPS6021440A (en) | 1983-07-15 | 1983-07-15 | Method for measuring distribution of local void rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58128920A JPS6021440A (en) | 1983-07-15 | 1983-07-15 | Method for measuring distribution of local void rate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6021440A true JPS6021440A (en) | 1985-02-02 |
Family
ID=14996640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58128920A Pending JPS6021440A (en) | 1983-07-15 | 1983-07-15 | Method for measuring distribution of local void rate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021440A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5225149A (en) * | 1991-09-30 | 1993-07-06 | Combustion Engineering, Inc. | Detection of core thermal hydraulic oscillations |
KR100726341B1 (en) | 2006-04-27 | 2007-06-11 | 한국원자력연구원 | Parallel beam industrial gamma-ray ct |
US9618648B2 (en) | 2003-04-25 | 2017-04-11 | Rapiscan Systems, Inc. | X-ray scanners |
US9638646B2 (en) | 2005-12-16 | 2017-05-02 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US9675306B2 (en) | 2003-04-25 | 2017-06-13 | Rapiscan Systems, Inc. | X-ray scanning system |
US9726619B2 (en) | 2005-10-25 | 2017-08-08 | Rapiscan Systems, Inc. | Optimization of the source firing pattern for X-ray scanning systems |
US9747705B2 (en) | 2003-04-25 | 2017-08-29 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US10007019B2 (en) | 2002-07-23 | 2018-06-26 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US10098214B2 (en) | 2008-05-20 | 2018-10-09 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
US10295483B2 (en) | 2005-12-16 | 2019-05-21 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for X-ray tomographic images |
US10483077B2 (en) | 2003-04-25 | 2019-11-19 | Rapiscan Systems, Inc. | X-ray sources having reduced electron scattering |
US10585207B2 (en) | 2008-02-28 | 2020-03-10 | Rapiscan Systems, Inc. | Scanning systems |
US10591424B2 (en) | 2003-04-25 | 2020-03-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58123950A (en) * | 1982-01-20 | 1983-07-23 | 天木瓦工業株式会社 | Roof tile |
-
1983
- 1983-07-15 JP JP58128920A patent/JPS6021440A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58123950A (en) * | 1982-01-20 | 1983-07-23 | 天木瓦工業株式会社 | Roof tile |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5225149A (en) * | 1991-09-30 | 1993-07-06 | Combustion Engineering, Inc. | Detection of core thermal hydraulic oscillations |
US10007019B2 (en) | 2002-07-23 | 2018-06-26 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US10670769B2 (en) | 2002-07-23 | 2020-06-02 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US10591424B2 (en) | 2003-04-25 | 2020-03-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
US9618648B2 (en) | 2003-04-25 | 2017-04-11 | Rapiscan Systems, Inc. | X-ray scanners |
US9747705B2 (en) | 2003-04-25 | 2017-08-29 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US11796711B2 (en) | 2003-04-25 | 2023-10-24 | Rapiscan Systems, Inc. | Modular CT scanning system |
US10175381B2 (en) | 2003-04-25 | 2019-01-08 | Rapiscan Systems, Inc. | X-ray scanners having source points with less than a predefined variation in brightness |
US10901112B2 (en) | 2003-04-25 | 2021-01-26 | Rapiscan Systems, Inc. | X-ray scanning system with stationary x-ray sources |
US10483077B2 (en) | 2003-04-25 | 2019-11-19 | Rapiscan Systems, Inc. | X-ray sources having reduced electron scattering |
US9675306B2 (en) | 2003-04-25 | 2017-06-13 | Rapiscan Systems, Inc. | X-ray scanning system |
US9726619B2 (en) | 2005-10-25 | 2017-08-08 | Rapiscan Systems, Inc. | Optimization of the source firing pattern for X-ray scanning systems |
US9638646B2 (en) | 2005-12-16 | 2017-05-02 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US10976271B2 (en) | 2005-12-16 | 2021-04-13 | Rapiscan Systems, Inc. | Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images |
US10295483B2 (en) | 2005-12-16 | 2019-05-21 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for X-ray tomographic images |
KR100726341B1 (en) | 2006-04-27 | 2007-06-11 | 한국원자력연구원 | Parallel beam industrial gamma-ray ct |
US10585207B2 (en) | 2008-02-28 | 2020-03-10 | Rapiscan Systems, Inc. | Scanning systems |
US11275194B2 (en) | 2008-02-28 | 2022-03-15 | Rapiscan Systems, Inc. | Scanning systems |
US11768313B2 (en) | 2008-02-28 | 2023-09-26 | Rapiscan Systems, Inc. | Multi-scanner networked systems for performing material discrimination processes on scanned objects |
US10098214B2 (en) | 2008-05-20 | 2018-10-09 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
US10317566B2 (en) | 2013-01-31 | 2019-06-11 | Rapiscan Systems, Inc. | Portable security inspection system |
US11550077B2 (en) | 2013-01-31 | 2023-01-10 | Rapiscan Systems, Inc. | Portable vehicle inspection portal with accompanying workstation |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Prasser et al. | Comparison between wire-mesh sensor and ultra-fast X-ray tomograph for an air–water flow in a vertical pipe | |
JPS6021440A (en) | Method for measuring distribution of local void rate | |
Shollenberger et al. | Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns | |
EP2662686B1 (en) | Multiphase flow positron tomography device and method | |
CN101772324A (en) | X-ray ct device | |
CN1119664C (en) | Indirect measurement of voltage applied to diagnostic X-ray tubes | |
CN102469975B (en) | X-ray examination device and method | |
JPS6015546A (en) | Method for measuring local void ratio distribution | |
US20020117613A1 (en) | Method of monitoring changes in the detective quantum efficiency of an x-ray detector | |
JP2006058296A (en) | Tomograph and method thereof | |
US11442030B2 (en) | Imaging system for industrial equipment and process | |
CN114236596A (en) | Nuclear waste packaging body self-adaptive scanning method based on dual-mode detector system | |
JPS59174744A (en) | Apparatus for measuring density distribution of two- phase fluid | |
JPH05217689A (en) | Method and device for x-ray photographing | |
US10070840B2 (en) | X-ray computed tomography apparatus and radiation medical imaging diagnostic apparatus | |
CN209513669U (en) | A kind of radioactive detector equipment and system | |
CN111736200B (en) | Scintillator surface array gamma ray waste bin scanning device and using method thereof | |
Hasegawa et al. | Quality control of scintillation cameras using a minicomputer | |
Maguire et al. | Positron emission tomography of large rock samples using a multiring PET instrument | |
Oumar et al. | Assessment of an in-house phantom for the quality control of a clinical gamma camera | |
CN208937517U (en) | X-ray covering of the fan drift detector and corresponding line scanning imagery equipment | |
JPH08271633A (en) | Radiation detection apparatus | |
CN105806857B (en) | Dual intensity ray inspection system material identification and its sorting parameter processing method and device | |
Martz et al. | Design, performance, and application of a CCD camera-based CT system | |
JP2000121734A (en) | Scintillation camera |