JPS6021381A - Thin film forming reaction furnace of photo-cvd apparatus - Google Patents

Thin film forming reaction furnace of photo-cvd apparatus

Info

Publication number
JPS6021381A
JPS6021381A JP12556383A JP12556383A JPS6021381A JP S6021381 A JPS6021381 A JP S6021381A JP 12556383 A JP12556383 A JP 12556383A JP 12556383 A JP12556383 A JP 12556383A JP S6021381 A JPS6021381 A JP S6021381A
Authority
JP
Japan
Prior art keywords
film
reaction
chamber
quartz window
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12556383A
Other languages
Japanese (ja)
Other versions
JPS6152231B2 (en
Inventor
Masuo Suzuki
鈴木 増雄
Shigeru Takeda
茂 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP12556383A priority Critical patent/JPS6021381A/en
Publication of JPS6021381A publication Critical patent/JPS6021381A/en
Publication of JPS6152231B2 publication Critical patent/JPS6152231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase a thin film forming velocity, and to improve the quality by stretching a film having high heat resistance and good ultraviolet ray transmissivity, and preventing the reaction product from depositing on a quartz window. CONSTITUTION:The titled reaction furnace consists of a reaction chamber 12, a light source unit 2 for irradiating ultraviolet ray into the chamber 12 through a quartz window 1, a heat source unit 6 for heating a substrate 4 through a quartz window 11 and a susceptor 5, a film roller apparatus 17, and a reaction gas introducing and discharging groove. Said reaction chamber 12 is sealed with the upper and the lower transparent quartz windows 1 and 11 and side walls, and a group of the substrates 4 is contained therein. Said film roller apparatus 17 rolls in and out a film having high heat resistance and good ultraviolet ray transmissivity which is situated directly under said window 1 and movable in one direction in the chamber 12. The reaction product is not deposited on the window 1 by said reaction furnace, and a good-quality thin film can be obtained on the surface of the substrate 4 by light CVD.

Description

【発明の詳細な説明】 半導体のデバイスプロセス技術は、常に進歩しているが
特に薄++V生成の技術は生成温度の低温化を指向して
いる。低温化の手段としてプラズマCVD(化学的気相
成長)膜生成技術がすでに知られているが、最近うqO
vDpの生成技術が注目されている。本発明は光CVD
装置の薄膜生成反応炉の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Semiconductor device processing technology is constantly progressing, and in particular, thin ++V generation technology is directed toward lowering the generation temperature. Plasma CVD (chemical vapor deposition) film production technology is already known as a means of lowering the temperature, but recently UqO
The generation technology of vDp is attracting attention. The present invention is based on optical CVD
This paper relates to improvement of the thin film production reactor of the device.

まず光CVD法について説明する。光CVD法は反応ガ
スが光エネルギで反応し、生成温度を低温化できるのみ
ならず、プラズマCVD法におけるイオンや電子などの
高いエネルギ粒子がR在しないので、生長膜へのイオン
などによイ損傷が少なく、また光の照射強度を均一にす
ることが容易なため、生長膜の膜厚の均一化が容易で、
がっ大口径クエへの処理が容易という特長があり、ステ
ップカパリージも良いこと、(基板」二の薄膜のパター
ンに生ずる段差のくぼみが少ないこと)から、今後のC
VD膜生成技術の重要な部門として期待されている。
First, the optical CVD method will be explained. In the photo-CVD method, the reaction gas reacts with light energy, and not only can the generation temperature be lowered, but also there is no high-energy particles such as ions and electrons in the plasma CVD method, so there is no possibility of irradiation of the grown film by ions, etc. Since there is little damage and it is easy to make the irradiation intensity of light uniform, it is easy to make the thickness of the grown film uniform.
It has the advantage of being easy to process large-diameter curves, has good step coverage, and has fewer step depressions that occur in the pattern of the thin film on the substrate.
It is expected to be an important branch of VD film production technology.

)1′、CV’ D法の反応式は次式で表わされる。)1', CV' The reaction formula of method D is expressed by the following formula.

1〕シー1−H,9は光エイ・ルギとして水銀ランプに
よる紫外線のエネルギを利用し、かつ触媒的にp(y(
ガス)を使用することを意味し、100−200℃はウ
ェハ+の薄膜の生成温度を表わしている。上記いずれの
反応においても、目下は第1図に示される発光スペクト
ラムを有する低圧水銀灯を光源としているものが多い。
1] Sea 1-H,9 uses the energy of ultraviolet light from a mercury lamp as a light beam and catalytically converts p(y(
100-200° C. represents the temperature at which the thin film of the wafer+ is formed. In any of the above reactions, a low-pressure mercury lamp having the emission spectrum shown in FIG. 1 is currently used as the light source in many cases.

第2図は従来の光(j V I)反応炉の代表的な一例
の+l111I造桐、要因である。図中の1は紫外線を
よく通ずための石英窓板で、これより十部が光源室、こ
れより下部が反応室をそれぞれ形成している。2は紫外
線用水銀ランプユニ、ト、3は反則板、4はウェハ(基
板)群でサセプタ5」−に載せである。
FIG. 2 shows a typical example of a conventional optical (j V I) reactor. Reference numeral 1 in the figure is a quartz window plate for transmitting ultraviolet rays, and the area below this forms a light source chamber, and the area below it forms a reaction chamber. Reference numeral 2 denotes a mercury lamp unit for ultraviolet light, 3 denotes a fouling plate, and 4 denotes a group of wafers (substrates) placed on a susceptor 5''.

6は赤外線ランプユニット、7は熱電対、8は補助ヒー
タ、9は反応室内へのガス人口、]0は真空ポンプへの
排気1]である。この反応炉では基板4を赤外線ランプ
ユニット6にて加熱する(補助ヒータ8は基板に直接赤
外光が照射されることを防ぎ、基板の温度分布を良好に
する補助板である)と共に、基板」−に生成する薄膜に
よって定まる材料の反応ガスをガス入]]9から反応炉
内に流通させ、他方水銀ランプユニット2より石英窓板
1を透過して来る紫外線のエネルギをとり入れて、基板
上に低温にて薄膜を生成させるものである。
6 is an infrared lamp unit, 7 is a thermocouple, 8 is an auxiliary heater, 9 is a gas supply into the reaction chamber, ] 0 is an exhaust port to a vacuum pump 1]. In this reactor, the substrate 4 is heated with an infrared lamp unit 6 (the auxiliary heater 8 is an auxiliary plate that prevents the substrate from being directly irradiated with infrared light and improves the temperature distribution of the substrate). A reactant gas of a material determined by the thin film produced in the 2000-2000 film is introduced into the reactor from the mercury lamp unit 2, and the energy of ultraviolet light transmitted through the quartz window plate 1 is taken in from the mercury lamp unit 2. This method produces thin films at low temperatures.

しかしこのような構造の炉では石英板1の入射窓面(反
応室側の面、図では下面)に生成膜が次第に付着し、照
射光量が減少するという欠点がある。
However, a furnace having such a structure has the drawback that a produced film gradually adheres to the entrance window surface (the surface facing the reaction chamber, the bottom surface in the figure) of the quartz plate 1, and the amount of irradiated light decreases.

この現象はボ9 (Poly) シリコン膜の場合、生
成膜が300λ以上になると極端に生成速度が低下する
という報告があるが、現状ではこの問題を解決する装置
は未だ見出されない。本発明はこの問題を解決するため
に行ったもので、以下詳細に説明する。
In the case of polysilicon films, this phenomenon has been reported to show that the production rate is extremely reduced when the produced film exceeds 300λ, but at present no device has been found that can solve this problem. The present invention was made to solve this problem, and will be described in detail below.

第3図は本発明を実施した光CVD反応:l;i’iの
+Wr造例Jl!!l; :51″図である37図中の
記吟1.2.4.5. 6しj弔)図にJl、通である
が、〃1の構造、従って自己1市番ま異/、’H7−、
>ている。すなわちlは無水石%ov:t(J反)で、
紫外線などの光エイ・ルギな反応室コ2内(二;=、 
l、)透過イ(て)4過させる。反応室上部レオこの、
石英窓lと0リンクにjニリ外気と遮断されてET−)
>:シールさ、lt。
FIG. 3 shows a +Wr formation example Jl! of photoCVD reaction in which the present invention was implemented: l;i'i! ! 1.2.4.5.6 in Figure 37, which is Figure 51''. 'H7-,
>There are. That is, l is anhydrite %ov:t (J anti),
Inside reaction chamber 2 (2;=,
l,) Pass through 4. This is the upper part of the reaction chamber.
It is blocked from the outside air by the quartz window l and the 0 link (ET-)
>: Seal, lt.

ている。石英窓jには紫外線の透過率力11憂、ltた
フ1!(水の(IO′!AAを使用する。2はウエノ・
4のジ乏1r11近1帝に紫外線の光エネルギを供給す
る水銀ランプユニ・I・、4はウニ)X(基板)でこの
表面(二fi41’II反1.L:(二よるA!f: 
II’;:が形成される。5はフェノ・(主にシリコン
)を間接加熱するサセプタで、SIOを勿ν覆したカー
ボン+4が1口いられる。6はサー【イブタ5を力11
熱する赤外線ランプユニットで、ランク(二番J)・ロ
ゲンランブが通常用いられ、またランプ〕覧をiij 
iTi+;二照射させるためリフレクタがイー1属し−
C1,=る。このランプユニットは反応室外に設けてラ
ンプの交換を容易(二すると共に、上下左右の移動機構
カ一般けである。11は赤外線の光エネルギを気相反応
が行われる反応室12内のサセプタ5に透過させる第2
の石英窓(板)で、反応室下部はこの石英窓とOリング
によって外気と遮断されている。コ3はPFAフィルム
で、反応生成物および反応カスを石英窓1に付着させな
いように、反応室]2内を石英窓1側と反応室]2側に
空間性νItする役目を持っている。PFAフィルン、
は後にさらに説明するが、耐熱性があり紫外線の1フク
過率の良いフィルムである。]4はPFAフィルムのロ
ーニル、]、5はロール14に回乾運動をJXiえるた
めのフィルレノ・ローラ、]6は補助ローラで、P F
’ Aフィルl・]3の巻取りおよび供給を円11′1
に1jうためのものである。17はフィルム供給室20
aおよびフィルム収納室20bのチャンバ、]8はカス
パーンボーI・て、反応生成物および反応ガスが石英窓
1に11j目つりこむのを防止する。この部分は第4図
のパージノ7ヌおよび反応ガスのaしれ図に詳細に示し
である。第4図中に示した19aは士iJイド、19b
は下ノコイド22は反応ガス、23はパージガス、24
は排気である。第3図にJノサって20aはフィルム供
給室°で補助ローラ16、フィルムローラ15、PFA
フィルン\(1−ル14を収納する。20bはフィル7
・1反納室で補助ローラ16、フィルムローラ15J”
 l’l” ’A フィルムロール]4を収納する。2
1は水//l″iジャケットで、反応室コ2内のC〕シ
リング過熱防止、フィルムおよびフィルム伊給室20a
1 フィルム収納室20bの過熱防止を行う。
ing. The quartz window has an ultraviolet transmittance of 11% and 1%! (Water (IO'! Use AA. 2 is Ueno
A mercury lamp that supplies ultraviolet light energy to the 4's deficiency 1r11 Kin 1 Emperor, 4 is Uni I) X (substrate) on this surface (2 fi 41' II anti 1. L: (2 A! f:
II';: is formed. 5 is a susceptor that indirectly heats phenol (mainly silicon), and it takes one piece of carbon +4, which is a substitute for SIO. 6 is Sir [Ibuta 5 to force 11
A rank (No. 2 J) Rogen lamp is usually used as an infrared lamp unit that heats.
iTi+: The reflector belongs to E1 for double irradiation.
C1,=ru. This lamp unit is installed outside the reaction chamber to facilitate lamp replacement (2), and there is also a general movement mechanism for vertical and horizontal movement. The second to be transmitted to
The lower part of the reaction chamber is isolated from the outside air by the quartz window (plate) and the O-ring. 3 is a PFA film, which has the role of creating a spatial dimension νIt in the reaction chamber 2 between the quartz window 1 side and the reaction chamber 2 side so as to prevent reaction products and reaction residue from adhering to the quartz window 1. PFA firn,
As will be further explained later, it is a film that is heat resistant and has a high ultraviolet ray transmittance. ] 4 is a roller of PFA film, ], 5 is a fill reno roller for imparting re-drying motion to the roll 14, ] 6 is an auxiliary roller, P F
' Winding and feeding of A fill l. ] 3 11'1
This is for the purpose of 1j. 17 is the film supply chamber 20
a and the chamber of the film storage chamber 20b,] 8 prevents reaction products and reaction gas from entering the quartz window 1. This part is shown in detail in the page number 7 and the reaction gas aperture diagram of FIG. 19a shown in Figure 4 is ShiiJid, 19b
22 is a reaction gas, 23 is a purge gas, 24
is the exhaust. In Fig. 3, 20a is a film supply chamber with an auxiliary roller 16, a film roller 15, and a PFA.
Fill \ (1-Store 14. 20b is fill 7
・16 auxiliary rollers and 15 J film rollers in one storage room
l'l"'A Film roll] 4 is stored. 2
1 is water//l''i jacket, C] Schilling overheat prevention, film and film supply chamber 20a in reaction chamber 2.
1. Prevent overheating of the film storage chamber 20b.

さて第3図の本発明の反応炉の特長は、前記従来の問題
点を解決するため水銀ランプの光を透過する石英窓]の
直下に設けた使用酬熱ハ、(度が高くかつ紫外線の透過
率の良いPFAブイルt・を介して反応室J2と石英窓
コの間にガスバージ室(ガスパーt7ポートコ8を含む
中間排気がi、iJ能となっている)を設けて、第4図
に示すようにガスの出入を行い、石英窓1に反応生成物
が伺71シないように41−1成して、反応生成物はp
 x;’Δフィルムにのみ付着するようにし、反応生成
物が(4着したフィルムは任意時間に自動的に巻取って
、常に新しいフィルムを反応室内に供給し、ランプユニ
ット2上りの入射光用の低下を防いでいること(二ある
Now, the feature of the reactor of the present invention shown in Fig. 3 is that, in order to solve the above-mentioned conventional problems, a heat exchanger (with high intensity and ultraviolet rays) is installed directly under the quartz window that transmits the light of the mercury lamp. A gas barge chamber (intermediate exhaust including gas par t7 and port 8 is equipped with i and ij functions) is provided between the reaction chamber J2 and the quartz window via a PFA bubble with good transmittance, as shown in Fig. 4. As shown in the figure, the gas is introduced and released, and the quartz window 1 is made 41-1 so that the reaction products do not come into contact with the quartz window 1.
x; 'Δ The reaction product should be attached only to the film. (There are two.

第5図は無水石英板の光の波長に対する透過率特性を厚
さ1.5*m、1. Q II+1+1.30 mmの
石英板(二ついて示したもので、厚さによる相違は小さ
し)。第6図はPFAフィルムの光の波長に対する透過
率特性で、フィルムの厚さはAが7071.Bカー90
μの場合である。PFAフィルムは4フツ化エチレンと
パーフロロアルコキンエチレンとの共重合体からなるフ
ッ素フィルムで、従来からあるP ’I”FE(通亦テ
フロン)を特に熱1jJ塑性を強化したものと考えられ
る。わが国においてtj市[υ!品としてトヨフロンP
FAフィルム(商品名)など力19る。このフィルムは
高温時の機械的強度はフッ素フィルム中最高、化学的に
も安定でほとんどすべての化学蘂品や溶剤、油脂に侵さ
れない。またその性質は次表のようである。←弊什Φ脅
→÷一般にPFAフィルムのような合成樹脂性のフィル
ムでは、紫外線を照射した場合フィルム自身が発熱固化
する性質があるが、本発明構造の反応炉ではこのような
性質は致命的な欠陥をもたらすのて、PIi” Aフィ
ルム(二l)いて紫外線照射テストをi」つ人−6、番
</!uVでのテストの&li 、!4!、フィルl、
のンへλ)長は40°C以1ミ゛であって固化は全く見
ら]tず、実用に十分耐えることが実証された。
Figure 5 shows the transmittance characteristics of an anhydrous quartz plate with respect to the wavelength of light at a thickness of 1.5*m and a thickness of 1.5 m. Q II+1+1.30 mm quartz plate (two are shown, the difference in thickness is small). Figure 6 shows the transmittance characteristics of the PFA film with respect to the wavelength of light, and the thickness of the film is A = 7071. B car 90
This is the case for μ. PFA film is a fluorine film made of a copolymer of tetrafluoroethylene and perfluoroalcoquine ethylene, and is considered to be a version of the conventional P'I''FE (commonly known as Teflon) with particularly enhanced thermal plasticity. In our country, TJ city [υ!Toyoflon P as a product]
FA film (product name) etc. 19 times. This film has the highest mechanical strength among fluorine films at high temperatures, is chemically stable, and is not attacked by almost all chemicals, solvents, and oils. Its properties are shown in the table below. ←Problems → ÷Generally, synthetic resin films such as PFA films have the property of exothermic solidification when irradiated with ultraviolet rays, but in the reactor with the structure of the present invention, this property is fatal. The PIi" A film (2L) was subjected to an ultraviolet irradiation test to cause serious defects. &li of testing with uV,! 4! , Phil l,
The length λ) was 1 mm above 40°C, and no solidification was observed, proving that it was sufficiently durable for practical use.

次に第4図によって本発明反応炉の一部の構造について
更に説明を加える。石英窓工の下1Tiii二反応生成
物が付着することをできるだけ少なくするため、反応室
部12と石英窓1の間は紫外線の入射路以外はP 、F
 Aフィルムカイト19a、]、9b翰44図の斜線を
施した部分)で仕切られてU)る。さらに石英窓lには
反応ガスが回りこまなl、Aよう(二石英窓l側のフラ
ンジには内周、外周(11個ずつの溝が設けてあり、こ
の溝の内周側からiJスノク−ジ18をし、外周側より
排気24をすること(二よって、反応ガスが石英窓]に
流れこむのを防lJ: 1−るようになっている。しか
も石英窓]側の圧力を反応室12の圧力より少しでも高
くしC−T6+す+i、このガスバルジ方式の反応ガス
ノく−ジ効果番よよ()高くなるので、反応ガスが石英
窓1(:到達する確率は極めて小さい。従って石英窓]
の面への反1.コ;生成物の付着はほとんど起らない。
Next, the structure of a part of the reactor of the present invention will be further explained with reference to FIG. In order to minimize adhesion of reaction products to the bottom of the quartz window, P and F are used between the reaction chamber 12 and the quartz window 1 except for the path of incidence of ultraviolet rays.
A film kites 19a, 9b are separated by diagonally shaded areas in Figure 44). In addition, the quartz window L has 11 grooves on the inner and outer peripheries (11 grooves each) on the flange on the quartz window L side, so that the reaction gas can circulate around the quartz window L. 18 and exhaust gas 24 from the outer circumferential side (thereby preventing the reaction gas from flowing into the quartz window).In addition, the pressure on the quartz window side is If the pressure of the reactant gas is increased even slightly than the pressure of the chamber 12, the effect of the reactant gas in this gas bulge method will be higher, so the probability that the reactant gas will reach the quartz window 1 is extremely small. Quartz window]
Against the side of 1. C: Adhesion of the product hardly occurs.

またCvD膜生成中にはPFAフイルム:二反ルこ二生
成物が付着し、紫外線の照n、1光量力1少し41モ1
戊jSし川の低トが見られるが、フィルム−1−に一定
膜厚の反応生1ノシ物が付イ′1した1侍には、フィル
ム13を;’、i! t、’1図右端のフィル7・収納
室20bのロール14に7ち取り、フィルム供給室20
aのロールから新しいフィルムを供給ずれば、]Ijひ
紫外線の照射光h)が長ノ活し生成速度が増大する。そ
してこのような動作を繰返すことにより、所望の117
1!74 (通常5.000Å・〜10.ooo7、 
)のCVD膜を得ることができる。
Also, during CvD film formation, PFA film: 2-tank 2 product adheres,
Although the low point of the river is seen, the film 13 was applied to the 1 Samurai in which a certain thickness of reaction product 1 was added to the film 1-;', i! t, '1 Fill 7 at the right end of the figure - Take 7 pieces to the roll 14 in the storage chamber 20b, film supply chamber 20
If a new film is supplied from the roll a, the ultraviolet irradiation light h) is kept active for a long time, increasing the production rate. By repeating this operation, the desired 117
1!74 (usually 5.000Å・~10.ooo7,
) can be obtained.

次にフィルムの交換を容易にする構造が望ましいことは
ILうまでもない。そのためP II’ Aフィル7・
カイト(第4図斜線部分)は19 a、」91〕の」二
Needless to say, a structure that facilitates film replacement is desirable. Therefore, P II' A fill 7.
Kite (shaded area in Figure 4) is 19a, ``2'' of ``91''.

1−゛ガイドに分離できる構造とし、フィルムを交換す
るには士ガイド]、 9 aが固定されているフランジ
および各ロール室]7の+フランジを開けば筒中に1j
われるようになっている。
1-゛It has a structure that can be separated into guides, and in order to replace the film, the flange to which 9 a is fixed and each roll chamber] If you open the + flange of 7, 1 j will be inserted into the cylinder.
It is becoming more and more popular.

またロール室1′7は反応室12との間で中間排気され
ているため、反応カスのl/lE人はほとんどない。従
って反応ガスによる汚れの問題は生じない。
Further, since the roll chamber 1'7 is evacuated intermediately between the roll chamber 1'7 and the reaction chamber 12, there is almost no reaction scum. Therefore, there is no problem of contamination due to reactive gases.

他方このロール室には駆動部があるため微量の微粉未発
生の危険性は多少あるが、排気24で中間排気が?jわ
れているため、この微粉末が反応室12に入りこむこと
はほとんどない。
On the other hand, since there is a drive unit in this roll chamber, there is a slight risk that a small amount of fine powder will not be generated, but is there an intermediate exhaust in the exhaust 24? Because of this, this fine powder hardly ever enters the reaction chamber 12.

最後にPFAフィルムの冷却に°ついて説明する。Finally, cooling of the PFA film will be explained.

PFAフィルムは111記の表に示したように、使用限
界温度は高温側260“Cであって、できるだけ低i’
71Aとすることが望ましい。このため反応室側面およ
びFガイド19 bの下面は水冷されている。
As shown in the table 111, the limit temperature for PFA film is 260"C on the high temperature side, and the lowest possible temperature is 260"C.
71A is desirable. Therefore, the side surface of the reaction chamber and the lower surface of the F guide 19b are water-cooled.

なおPFAフィルムはたとえは厚さ2.5,50゜75
.100,125(各μrn )の5種類、幅500.
1000(各mm )の2種類、フィルム長50mのも
のが市販されている。j9さ]25μmのPFAフィル
ムの平方メートル当りの単価は現在5600円程である
。試311によれは4インチのウェハに6000大のポ
リシリコン膜を生成した場合のウェハ1枚当りのフィル
11イい;l: ]、 0201+]となるが、PFA
フィルムは洗浄が6丁能である。
For example, PFA film has a thickness of 2.5,50°75
.. 5 types of 100, 125 (each μrn), width 500.
Two types of 1000 mm (each mm) and a film length of 50 m are commercially available. The unit price per square meter of 25 μm PFA film is currently about 5,600 yen. According to trial 311, when a polysilicon film of 6000 µm is formed on a 4-inch wafer, the fill per wafer is 11 y; l: ], 0201+], but PFA
The film can be washed 6 times.

なおフィルム]3はPFAフィルムに限定されることは
なく、耐熱温度が高く紫外線透過率の高いP’ F A
相当フィルムならば使用できることは言うまでもない。
Note that film] 3 is not limited to PFA film, and may be P'FA film, which has a high heat resistance and high ultraviolet transmittance.
Needless to say, any equivalent film can be used.

す、十詳細に説明したように、本発明の光CVD装置反
応炉は、表面に薄++V・を生成する基板にその4″方
から石英窓を通じて紫外線を!ノえるようにした場合に
、反応室内の反応生成物が石英窓に付着し、反応室内に
入射する光エイ・ルギを減少させることを防止するため
に、P F’ Aフィルトを石英窓の的−1、反応室の
」二部に張りめぐらせたもので、薄++y・の生成速度
の向上および薄11つ1の品11′1向上に著しい効果
があり、また従来は石偉窓に細管する反応生成物の除去
にかなりの労力が必“皮であったのに対し、本発明では
フィルムの巻取り更新のみでよいので、労力はほとんど
不要(将来は自動巻取りとすることも可能)で経済的で
あるなど実用」二の効!1ろは大きい。
As explained in detail, the photo-CVD reactor of the present invention can cause a reaction when ultraviolet rays are emitted through the quartz window from the 4'' side of the substrate that produces a thin ++V on the surface. In order to prevent the reaction products in the chamber from adhering to the quartz window and reducing the amount of light entering the reaction chamber, a PF'A filter was installed at the target of the quartz window and the second section of the reaction chamber. It has a remarkable effect on improving the production rate of thin ++y・ and improving the quality of thin 11'1. Whereas labor was necessary, the present invention requires only the winding and renewal of the film, so labor is almost unnecessary (automatic winding may be possible in the future), making it economical and practical. The effect! 1 is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は低圧水銀灯の発光スペクトラムの一例図、第2
図は従来の光CV’D装置の反応炉の代表的昂li造側
、要因、第3図は本発明による光CVp装置の反応炉の
構造概要図、第4図は第3図中の一部の詳細図で、パー
ジガスと反応ガスの流れを示す。第5図は無水石英板の
光透過特性図、第6図はPFAフィルムの光透過特性図
である。 1・・・・石英窓(板)、 2・・・・紫外線ランプユニット、3・・・・反射板、
4・・・・基板(ウェハ)、 5・・・・サセプタ、6
・・・・赤外線ランプユニット、7・・・・熱電対、8
・・・・補助ヒータ、9・・・・ガス入1」、10・・
・・真空ポンプ入口、 11・・・・第2の石英窓(板)、 12・・・・反応
室、1311・・―PFAフィルム、 1−4@・Φ・フィルムロール、 15・・・・フィルムローラ、16・・・・補助ローラ
、1700フイルムチヤンバ(フィルム室20a、 2
0bを含む)、 18・・・・ガスパーンポート、19・・・・ガイド、
20a・・・・フィルム供給室、 20b・・・・フィルム収納室、 21・・・・水冷ジャケット、22・・・・反応ガス流
、23・・・・反応ガスへカ、 24・・・・jk気。 特許出願人 国際電気株式会社
Figure 1 is an example of the emission spectrum of a low-pressure mercury lamp, Figure 2
The figure shows the typical structure and factors of the reactor of a conventional photo-CV'D device, FIG. 3 is a schematic diagram of the structure of the reactor of the photo-CVp device according to the present invention, and FIG. Detailed view of the section showing the flow of purge gas and reactant gas. FIG. 5 is a light transmission characteristic diagram of an anhydrous quartz plate, and FIG. 6 is a light transmission characteristic diagram of a PFA film. 1...Quartz window (board), 2...Ultraviolet lamp unit, 3...Reflector plate,
4... Substrate (wafer), 5... Susceptor, 6
... Infrared lamp unit, 7 ... Thermocouple, 8
...Auxiliary heater, 9...Gas filler 1", 10...
...Vacuum pump inlet, 11...Second quartz window (plate), 12...Reaction chamber, 1311...PFA film, 1-4@・Φ・Film roll, 15... Film roller, 16... Auxiliary roller, 1700 Film chamber (film chamber 20a, 2
(including 0b), 18...Gaspan port, 19...Guide,
20a...Film supply chamber, 20b...Film storage chamber, 21...Water cooling jacket, 22...Reaction gas flow, 23...Reaction gas flow, 24... jk minded. Patent applicant: Kokusai Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1°ドの透明石英窓板と側壁によって刺止され、ザセブ
タとその十に並べた基板(ウェハ)群を収めた反応室と
、」二記七方の石英窓板な通じて反応室内に紫外線を照
射する光源ユニットと、」二記丁方の石英窓板とザセブ
タを通じて基板群を加熱する熱源ユニットと、上記上方
の石英窓の直下にあって反応室内を一方向に移動可能で
、移動後は反応室外に巻取られる耐熱性が高く紫外線透
過率の良IIfなフィルムとその巻込み、為取りを行う
フィルムローラ装置と、フィルムの反応室への人出口に
それぞれフィルムに沿った上下のガイドの途中に設けら
れた反応ガス導入溝と、パージガス排出溝とを具備して
基板面りに光CVDによる一様な薄膜を生成するように
したことを特徴とする、光CVD装置の薄膜生成反応炉
The reaction chamber is fixed by a transparent quartz window plate of 1° and the side wall, and contains a group of substrates (wafers) lined up in ten directions. a light source unit that irradiates the substrate, a heat source unit that heats the substrate group through the quartz window plate and the heater, and a heat source unit that is located directly below the above quartz window and can be moved in one direction within the reaction chamber, and after being moved. A film with high heat resistance and good UV transmittance is wound up outside the reaction chamber, a film roller device that winds it up and takes it out, and upper and lower guides along the film at the exit of the film into the reaction chamber. A thin film production reaction of a photo-CVD apparatus, characterized in that a reaction gas introduction groove and a purge gas discharge groove are provided in the middle of the photo-CVD apparatus to produce a uniform thin film on the surface of a substrate by photo-CVD. Furnace.
JP12556383A 1983-07-12 1983-07-12 Thin film forming reaction furnace of photo-cvd apparatus Granted JPS6021381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12556383A JPS6021381A (en) 1983-07-12 1983-07-12 Thin film forming reaction furnace of photo-cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12556383A JPS6021381A (en) 1983-07-12 1983-07-12 Thin film forming reaction furnace of photo-cvd apparatus

Publications (2)

Publication Number Publication Date
JPS6021381A true JPS6021381A (en) 1985-02-02
JPS6152231B2 JPS6152231B2 (en) 1986-11-12

Family

ID=14913286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12556383A Granted JPS6021381A (en) 1983-07-12 1983-07-12 Thin film forming reaction furnace of photo-cvd apparatus

Country Status (1)

Country Link
JP (1) JPS6021381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295373A (en) * 1985-06-25 1986-12-26 Canon Inc Method and apparatus for forming accumulated film by photochemical vapor phase growth method
JPS6274081A (en) * 1985-09-28 1987-04-04 Agency Of Ind Science & Technol Method and apparatus for producing thin film
JPH02230264A (en) * 1989-03-03 1990-09-12 Fujitsu Ltd Recording device
JPH03134171A (en) * 1989-10-19 1991-06-07 Inco Ltd Infrared ray window

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295373A (en) * 1985-06-25 1986-12-26 Canon Inc Method and apparatus for forming accumulated film by photochemical vapor phase growth method
JPS6274081A (en) * 1985-09-28 1987-04-04 Agency Of Ind Science & Technol Method and apparatus for producing thin film
JPH0257145B2 (en) * 1985-09-28 1990-12-04 Kogyo Gijutsu Incho
JPH02230264A (en) * 1989-03-03 1990-09-12 Fujitsu Ltd Recording device
JPH03134171A (en) * 1989-10-19 1991-06-07 Inco Ltd Infrared ray window

Also Published As

Publication number Publication date
JPS6152231B2 (en) 1986-11-12

Similar Documents

Publication Publication Date Title
TW200401043A (en) Dielectric-coated electrode, plasma discharge treatment and method for forming thin film
JP2003017422A (en) Method and equipment for manufacturing semiconductor device
TWI222133B (en) The method for forming the oxide film and the device thereof
US4816294A (en) Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes
JPS6021381A (en) Thin film forming reaction furnace of photo-cvd apparatus
JP3128554B2 (en) Method for forming oxide optical thin film and apparatus for forming oxide optical thin film
JPH01179410A (en) Method and apparatus for forming thin film by cvd
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JP5193488B2 (en) Method and apparatus for forming oxide film
JPS62158873A (en) Multi-layered structure of thin film and its formation
Comita et al. Pulsed ultraviolet laser deposition of SiO2 films at 248 nm
JP2020101667A (en) Image display device surface member
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS62139875A (en) Formation of deposited film
JPS5945907A (en) Method and apparatus for forming metallic oxide film
McSporran et al. Preliminary studies of atmospheric pressure plasma enhanced CVD (AP-PECVD) of thin oxide films
JPH04187592A (en) Device of preparing thin film
JPS6338581A (en) Functional deposited film forming device
JPS63232418A (en) Method and apparatus for forming deposit film
JPS59209643A (en) Photochemical vapor phase deposition device
JPS6118125A (en) Thin film forming apparatus
JPH04183869A (en) Device for forming built-up film due to microwave plasma cvd method
JPS62158876A (en) Formation of deposited film
JP2008144277A (en) Method for producing amorphous silicon thin film
JP2008047899A (en) Heating of film by uv of selective frequency