JPS60213815A - Optical interference angular velocity meter - Google Patents

Optical interference angular velocity meter

Info

Publication number
JPS60213815A
JPS60213815A JP59070452A JP7045284A JPS60213815A JP S60213815 A JPS60213815 A JP S60213815A JP 59070452 A JP59070452 A JP 59070452A JP 7045284 A JP7045284 A JP 7045284A JP S60213815 A JPS60213815 A JP S60213815A
Authority
JP
Japan
Prior art keywords
output
light
terminal
optical path
synchronous detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59070452A
Other languages
Japanese (ja)
Other versions
JPH0361889B2 (en
Inventor
Kenichi Okada
健一 岡田
Chigusa Oouchi
千種 大内
Aritaka Ono
有孝 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP59070452A priority Critical patent/JPS60213815A/en
Publication of JPS60213815A publication Critical patent/JPS60213815A/en
Publication of JPH0361889B2 publication Critical patent/JPH0361889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve the linearity of the output, by inserting a phase modulator between an optical path and a light distributor, receiving the interference light of clockwise light and counterclockwise light, detecting the phase difference, and using the sine or cosine component as the gyroscope output in correspondence with the phase difference. CONSTITUTION:Light 12 from a light source 11 is distributed to clockwise light 14 and counterclockwise light 15 by a light distributor 13 and inputted to both ends of an optical path 16. Output light beams 17 and 18 are interfered by an light coupler 13. A phase modulator 22 is inserted between the light distributor coupler 13 and one end of the optical path 19. The interference light is detected by a light receiver 21 and supplied to synchronous detectors 24 and 27 having the same frequencies as the driving frequencies f0 and 2f0 of the modulator 22. The output voltage, which is outputted to a gyroscope output terminal 46 is compared with a reference voltage. When the phase difference is within the range of about + or -pi/4 with respect to + or -mx, the sine component outputted from a terminal 34 is guided to the terminal 46. When the phase difference is within the range of about + or -pi/4 with respect to + or -(2m+1)pi/2, the cosine component of a terminal 43 is guided to the terminal 46. The output has the excellent linearily over the entire range.

Description

【発明の詳細な説明】 この発明は例えはループ状に構成された光ファイバの光
学路の両端から右回シ光及び左回シ光を入射して互に逆
方向に通った光を互に干渉させ、その干渉光の強度から
その光学路の周方向に与えられた角速度を検出する光干
渉角速度計に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention, for example, allows right-handed light and left-handed light to be input from both ends of an optical path of an optical fiber configured in a loop shape, and to mutually combine the lights that have passed in opposite directions. The present invention relates to an optical interference angular velocity meter that detects the angular velocity given in the circumferential direction of an optical path from the intensity of the interference light.

く従来技術〉 従来のこの種の光干渉角速度計は第1図に示すようにレ
ーザなどの光源11からの光12が光分配結合器13に
より右回シ光14と左回シ光15よシ出射光17.18
として出射され、これら出射’/l、xr、xsは分配
結合器13によシ結合されて互に干渉され、干渉光19
として受光器21に受光される。光学路16は例えば光
ファイバを複数回ループ状に巻回したもので構成される
。光学路16にその周方向の角速度が印加されない状態
においては出射光17及び18の位相差ははソゼロであ
るが、光学路16の周方向に沿う角速度、つ19光学路
16の軸心回シの角速度Ωが印加されるとこの角速度に
よっていわゆるサグナック効果が生じ、光学路16を伝
搬した出射光17.18の間に位相差Δφが生じる。こ
の位相差ΔφはΔφ=4“RLΩ ・・・−・・・・・
・・・・・・・・・・・・・・・・・・・・・(1>λ
C で表わされる。こ\でRはループ状に構成された光学路
16の半径、Lはループ状に構成された光学路16の長
さ、λは光@iiの党の波長、Cは光の速度を示す。健
って干渉光19の光強[1゜1は Io oc l−cogΔφ ・e・・−・・・・・・
・−一・−・・惨・−・・・ (2)となる。干渉光ヌ
9の強度IOを測定することによりて角速度Ωを検出す
ることができる。入力角速度Ωが小さな場合においては
位相差Δφが小さく、CO8Δφの変化が僅かであり、
感度が極端に低くなる。
Prior Art> As shown in FIG. 1, in a conventional optical interference gyrometer of this type, light 12 from a light source 11 such as a laser is split into a clockwise beam 14 and a counterclockwise beam 15 by an optical splitter/coupler 13. Output light 17.18
The output '/l, xr, and xs are coupled to the distribution coupler 13 and interfered with each other, resulting in interference light 19.
The light is received by the light receiver 21 as a light beam. The optical path 16 is composed of, for example, an optical fiber wound in a loop shape a plurality of times. When no angular velocity is applied to the optical path 16 in its circumferential direction, the phase difference between the emitted light beams 17 and 18 is zero; When an angular velocity Ω of Ω is applied, a so-called Sagnac effect occurs due to this angular velocity, and a phase difference Δφ occurs between the output lights 17 and 18 propagated through the optical path 16. This phase difference Δφ is Δφ=4"RLΩ...
・・・・・・・・・・・・・・・・・・・・・(1>λ
It is represented by C. Here, R is the radius of the loop-shaped optical path 16, L is the length of the loop-shaped optical path 16, λ is the wavelength of the light @ii, and C is the speed of the light. The light intensity of the interference light 19 [1゜1 is Io oc l-cogΔφ ・e・・・・・・・・・・・
・-1・-・misery・−・・・ (2) becomes. By measuring the intensity IO of the interference light beam 9, the angular velocity Ω can be detected. When the input angular velocity Ω is small, the phase difference Δφ is small and the change in CO8Δφ is small,
Sensitivity becomes extremely low.

このような点から従来において入力感度を最適化するた
め第2図に示すように光学路16の一端と光分配結合器
13との間に位相変調器22を直列に挿入し、変調信号
源23からの駆動信号により互に逆方向に伝搬する両光
14..15を位相変調する方法がとられている、この
場合干渉光190強度Ioは Io =C(1+ cogΔψ(Jo(#)+zJ寞(
”)cos2ωt′+・・・・・・+2 Jam (g
) cot 2mωt’ +・−・) + sinΔψ
(2Jt (#)sinωt’+2Jm(g)ain3
ωt’ +−・”・・+ 2 J * m−覗(s) 
sin (2m−リωt’+・・・・・・・・・)) 
・・・・・・・・・ (3)となる。
In order to optimize the input sensitivity from this point of view, conventionally, as shown in FIG. Both lights propagating in opposite directions due to drive signals from 14. .. In this case, the interference light 190 intensity Io is Io = C(1+ cogΔψ(Jo(#)+zJ寞(
”)cos2ωt′+・・・・・・+2 Jam (g
) cot 2mωt' +・−・) + sinΔψ
(2Jt (#) sinωt'+2Jm(g) ain3
ωt' +-・”・・+ 2 J * m-peek (s)
sin (2m-riωt'+・・・・・・・・・))
・・・・・・・・・(3)

こ\で C:定 数 Jn:n次のベッセル関数(n = o r 1121
 a・・・)g : 2Aainπfoτ A : 変調指数、 τ : 光学路16を通る光の伝搬時間fo: 位相変
調器22の駆動周波数 t’:を一τ/2 式(3鵡−ら明らかなように干渉光190強度IOには
coaΔφに比例する項と、sinΔφに比例する項と
が含まれている。従来においては低入力角速度域の感度
を高めるため、受光器21の出力を同期検シ出していた
。仁のため入力角速度Ωが大きくなりて右回p光14と
左回シ光15との位相差Δφがπ/2近くになると他端
に感度が悪くなり、ダイナミックレンジが制限されてい
た。
Here C: Constant Jn: Bessel function of nth order (n = o r 1121
a...) g: 2Aainπfoτ A: modulation index, τ: propagation time of light through the optical path 16 fo: drive frequency t' of the phase modulator 22: -τ/2 Equation (as is clear from 3) The interference light 190 intensity IO includes a term proportional to coa Δφ and a term proportional to sin Δφ. Conventionally, in order to increase the sensitivity in the low input angular velocity range, the output of the optical receiver 21 is synchronously detected. Because of this, when the input angular velocity Ω increases and the phase difference Δφ between the right-handed P light 14 and the left-handed P light 15 approaches π/2, the sensitivity at the other end becomes poor and the dynamic range is limited. Ta.

〈発明の目的〉 この発明の目的はダイナミックレンジが広く、高い精度
で全範囲にわたって直線性よく測定することができ、か
つ全作動温度範囲にわたって入力感度を一定に保つこと
ができる光干渉角速度計を提供する仁とにある。
<Object of the Invention> The object of the invention is to provide an optical interference gyrometer that has a wide dynamic range, can perform measurements with high accuracy and good linearity over the entire range, and can maintain constant input sensitivity over the entire operating temperature range. It is in the interest of providing.

〈発明の概要〉 この発明によれば光学路と光分配結合器との間に位相変
調器を挿入し、右回シ元と左回り光との干渉光を受光器
で受光し、その受光器の出力を位相変調器の駆動周波数
で第1同期検波器において同期検波し、また前記受光器
の出力管前記駆動周狭数02倍の周波数で第2同期検波
器に訃いて同期検波する。右回シ光と左回り光との位相
差が土mπ(m++=0+1e2・・・・・・・・・)
に対し釣上π/4の範囲に多ることを検出し、その検出
出力によシ前記第1同期検波器の出力をジャイロ出力端
子へ送出し、右回り光と左回シ光との位相差が±(2m
 ” 1 ) 2(m=o+it2・・・・・・)に対
し釣上π/4の範囲であることを検出してその出力で前
記第2同期検波器の出力を前記ジャイロ出力端子へ送出
する。
<Summary of the Invention> According to the present invention, a phase modulator is inserted between the optical path and the optical distribution coupler, the interference light between the clockwise beam and the counterclockwise beam is received by a light receiver, and the light receiver The output of the optical receiver is synchronously detected in a first synchronous detector at the driving frequency of the phase modulator, and synchronously detected in a second synchronous detector at a frequency that is 02 times the driving frequency of the output tube of the light receiver. The phase difference between the clockwise and counterclockwise lights is mπ (m++=0+1e2...)
The detection output is used to send the output of the first synchronous detector to the gyro output terminal, and calculate the position of the clockwise light and counterclockwise light. The phase difference is ±(2m
1) Detect that the range is within π/4 for 2 (m=o+it2...), and send the output of the second synchronous detector to the gyro output terminal. .

更に必要に応じて前記第1同期検波器、第2同期検波器
の各出力を2乗して加算し、その加算出力によシその出
力が一定になるように位相変調器の駆動電圧又は受光器
の出力を帰還制御する。
Furthermore, if necessary, each output of the first synchronous detector and the second synchronous detector is squared and added, and the driving voltage of the phase modulator or the light receiving voltage is adjusted so that the output becomes constant according to the added output. feedback control of the output of the device.

〈実施例〉 第3図はこの発明の実施例を示し、第2図と対応する部
分に同一符号を付けてるる。受光器21の出力は、通過
周波数帯を位相変調器22のlIAwJ周波数fo及び
2foとした帯域通過f波器25及び26をそれぞれ通
じて同期検波器24及び27へ供給される。駆動周波数
foの2倍の周波数の1d号源28の出力が変調信号源
23としての2分の1分周器へ供給され、その出力は電
圧調整器31゜32へ供給される。電圧調整器31.3
2の出力はスイッチ33で一方が選択され、位相変調器
32へ駆動信号として供給される。また分局器23の出
力はスイッチ34に直接供給すると共に、インバー夕3
5を通じて供給し、スイッチ34は分局器23、インバ
ータ35の一方の出力を参照信号として同期検波器24
へ供給する。信号源28の出力は移相器36を通じてス
イッチ37へ直接供給されると共にインバータ38を通
じて供給される。スイッチ37は移相器36、インバー
タ38の一方の出力を同期検波器27に参照信号として
供給される。
<Embodiment> FIG. 3 shows an embodiment of the present invention, and parts corresponding to those in FIG. 2 are given the same reference numerals. The output of the photoreceiver 21 is supplied to the synchronous detectors 24 and 27 through bandpass f-wave devices 25 and 26 whose pass frequency bands are the lIAwJ frequencies fo and 2fo of the phase modulator 22, respectively. The output of the 1d signal source 28 having a frequency twice the drive frequency fo is supplied to a 1/2 frequency divider as a modulation signal source 23, and its output is supplied to voltage regulators 31 and 32. Voltage regulator 31.3
One of the two outputs is selected by a switch 33 and supplied to the phase modulator 32 as a drive signal. Further, the output of the branching device 23 is directly supplied to the switch 34, and the output of the branching device 23 is directly supplied to the switch 34.
5, and the switch 34 uses the output of one of the branching device 23 and the inverter 35 as a reference signal to the synchronous detector 24.
supply to The output of signal source 28 is fed directly to switch 37 through phase shifter 36 and through inverter 38 . The switch 37 supplies the output of one of the phase shifter 36 and the inverter 38 to the synchronous detector 27 as a reference signal.

同期検波器24の出力は端子39へ供給されると共にス
イン41へ供給され、また同期検波器27の出力は利得
調整器42を通じてスイッチ41及び端子43へ供給さ
れる。スイッチ41は端子39又は43の出力を低域通
過1波器44へ供給し、低域通過f波器44の出力は直
線性補正回路45を通じてジャイロ出力端子46へ供給
される。
The output of the synchronous detector 24 is supplied to the terminal 39 and also to the switch 41, and the output of the synchronous detector 27 is supplied to the switch 41 and the terminal 43 through the gain adjuster 42. The switch 41 supplies the output of the terminal 39 or 43 to the low-pass single-wave generator 44 , and the output of the low-pass f-wave generator 44 is supplied to the gyro output terminal 46 through the linearity correction circuit 45 .

ジャイロ出力端子46の出力は制御回路47内の比較器
48.49の非反転入力側、反転入力側へ供給され、そ
れぞれ基準電源51.52の基準電圧+ Vr−Vrと
比較される。比較器48.49の出力はそれぞれ可逆カ
ウンタ53のアクプヵウ/ト端子UP、ダウンカウント
端子Doへ供給されてそれぞれアップカウント、ダウン
カウントされる。可逆力9ン夕53の重みが2°の出力
端子の出力はスイッチ33.41に切替え制御信号とし
て供給され、宜みが21の出力端子の出力はスイッチ3
4.37に切替え制御信号として供給される。スイッチ
33゜34.37.41はそれぞれ初期状態(切替え制
御信号が論理10″)で端子NC側、りまシミ圧調整器
31、分周器23、移相器36、端子39側に接続され
、切替え制御信号が論理@l―でそれぞれ端子NO側、
つまシミ圧調整器32、インバータ35、インバータ3
8、端子43に接続される。可逆カウンタ53の計数値
は出力端子54がら堆出すことができる。
The output of the gyro output terminal 46 is supplied to the non-inverting input side and the inverting input side of comparators 48 and 49 in the control circuit 47, and is compared with the reference voltage +Vr-Vr of the reference power supply 51 and 52, respectively. The outputs of the comparators 48 and 49 are respectively supplied to an up count/to terminal UP and a down count terminal Do of a reversible counter 53, and are counted up and down, respectively. The output of the output terminal with a weight of 2° of the reversible force 9 and 53 is supplied to the switch 33 and 41 as a switching control signal, and the output of the output terminal with a weight of 21 is supplied to the switch 3.
4.37 as a switching control signal. The switches 33, 34, 37, and 41 are connected to the terminal NC side, the rim stain pressure regulator 31, the frequency divider 23, the phase shifter 36, and the terminal 39 side in the initial state (switching control signal is logic 10''), respectively. , the switching control signal is logic @l-, respectively on the terminal NO side,
Toe stain pressure regulator 32, inverter 35, inverter 3
8, connected to terminal 43. The count value of the reversible counter 53 can be output from the output terminal 54.

この第3図に示した構成によれば帯域通過f波器25か
ら駆動周波afo成分が取出され、従って(3)式よル
(4)式に示すように ■1伽sinΔφ・Js(すginωt′ ・聞・曲曲
曲(4)sinΔφに比、例した成分が取出される。こ
れが同期検波器24で検波され、sinΔφに比例した
出力が端子39に得られる。(4)式でJ+ (x) 
= 0.53の時感度が最大となるから、5=2Asi
nxf□τ=1.84となるよりに位相変調器22を駆
動することが好ましい。このためこの実施例では駆動周
波数fot−適切な値に選定し、電圧調整器31を#I
4!1シて変調指数A′t−調整し、感度が最大になる
ようにした場合である。
According to the configuration shown in FIG. 3, the driving frequency afo component is extracted from the bandpass f-wave generator 25, and therefore, as shown in equation (3) and equation (4), ' ・Listen/Song (4) A component proportional to sin Δφ is extracted. This is detected by the synchronous detector 24, and an output proportional to sin Δφ is obtained at the terminal 39. In equation (4), J+ ( x)
Since the sensitivity is maximum when = 0.53, 5 = 2Asi
It is preferable to drive the phase modulator 22 so that nxf□τ=1.84. Therefore, in this embodiment, the drive frequency fot is selected to an appropriate value, and the voltage regulator 31 is set to #I.
This is the case where the modulation index A't is adjusted to maximize the sensitivity.

端子39の出力は先に述べたようにsinΔφに比例し
、#G4図Aの曲1M65に示すように右回り光と左回
シ光との位相差Δφに対してsinΔφ変化する。
As mentioned above, the output of the terminal 39 is proportional to sin Δφ, and changes by sin Δφ with respect to the phase difference Δφ between the clockwise light and the counterclockwise light, as shown in the song 1M65 in Figure A of #G4.

一方帯域通過P波器26からは駆動周波数foの2倍の
成分が取出され、これはく、3)式よシ(5)式で示す
ようにeollΔφに比例する二次成分である。
On the other hand, a component twice the drive frequency fo is extracted from the bandpass P-wave device 26, and this is a quadratic component proportional to eollΔφ as shown in equations 3 and 5.

1! oc ((BB Δφ・J諺(すcog 2 (
act’ =−−−−−−=(5)この場合J’s C
&)〜o、49の時感度が最大とをシ、この例では電圧
調整器32を調整して変調指数Aを調整し、最大感度が
得られるようにしである。
1! oc ((BB Δφ・J proverb (scog 2 (
act' =---------=(5) In this case, J's C
In this example, the voltage regulator 32 is adjusted to adjust the modulation index A to obtain the maximum sensitivity.

端子39t43の両出力が位相差Δφ=π/4 で同一
レベルになるように利得調整用増幅器42の利得が#I
4整される。端子43の出力はW、4図Aの曲線56に
示すように位相差Δψに対し008Δφに比例したもの
となる。
The gain of the gain adjustment amplifier 42 is set to #I so that both outputs of the terminal 39t43 are at the same level with a phase difference Δφ=π/4.
4 will be adjusted. The output of the terminal 43 is W, which is proportional to 008Δφ with respect to the phase difference Δφ, as shown by a curve 56 in FIG. 4A.

位相差Δφが0土π/4の範囲内におれば、スイッチ3
3.34,38.41は第3図に示した状態にあって端
子39よシのsinΔφに些例した出力がジャイロ出力
端子46に出力される。比較器48においてはその人力
つまシジャイロ出力端子46の出力が基準′畦圧vrt
−越えると第4図に示すようなパルスを発生する。この
パルスは可逆カウンタ53によって加算カウントされる
。一方ジャイロ出力端子46の出力が−Vrよりも負方
向に大きくなると比較器49よシ第4図Cに示すような
ノ(ルスが発生し、これは可逆カウンタ53で減算カウ
ントされる。可逆カウンタ53の重みが2°の出力は第
4図りに示すように変化し、重みが2′の出力は第4図
Eに示すように変化する。可逆カウンタ53の重みが2
°の出力が高レベル(論理“l”)の時スイッチ33,
41が切替えられ、端子43の信号即ちcooΔφに比
例した出力がジャイロ出力端子46に出力される。逆に
ジャイロ出力端子46の出力が基準電圧−Vrよシ負の
方向に大きくなると比較器49よシバルスが得られ、可
逆カウンタ53が減算カウントされて、それによシ重み
が2cの出力が高レベルとなシ、スイッチ33.41が
作動して先の場合と同様に端子43の信号即ちcogΔ
φに比例した出力がジャイロ出力端子46に出力される
If the phase difference Δφ is within the range of 0/π/4, switch 3
3.34 and 38.41 are in the condition shown in FIG. In the comparator 48, the output of the manual output terminal 46 is the reference ridge pressure vrt.
-If exceeded, a pulse as shown in FIG. 4 is generated. This pulse is added and counted by a reversible counter 53. On the other hand, when the output of the gyro output terminal 46 becomes larger than -Vr in the negative direction, the comparator 49 generates a voltage pulse as shown in FIG. The output with a weight of 2° of the reversible counter 53 changes as shown in Figure 4, and the output with a weight of 2' changes as shown in Figure 4E.
When the output of ° is high level (logic "L"), the switch 33,
41 is switched, and an output proportional to the signal at the terminal 43, ie, cooΔφ, is output to the gyro output terminal 46. Conversely, when the output of the gyro output terminal 46 becomes larger in the negative direction than the reference voltage -Vr, a signal is obtained from the comparator 49, and the reversible counter 53 performs subtraction counting, so that the output with a weight of 2c becomes a high level. Then, the switches 33 and 41 are activated and the signal at the terminal 43, that is, cogΔ, is activated as in the previous case.
An output proportional to φ is output to the gyro output terminal 46.

以上の状態から更に位相差Δφが絶対量として増加し、
CO8Δφに比例した出力が基準電圧+Vr又は−Vr
よシも絶対値で大きくなると比較器48又は49よシハ
ルスが得られて可逆カウンタ53が加算或は減算し、ス
イッチ33.41が復帰して端子39の信号、即ちsi
nΔφに比例した出力がジャイロ出力端子46に得られ
るようになる。これと共にsinΔφとcosΔφに比
例する出力が位相Δφに対し正の特性となるように可逆
カウンタ53の重みが2′の出力によって信号極性反転
指令(切替え制御信号)が出力され、スイッチ34.3
7が切替えられる。これにより同期検波器24.27の
参照信号の極性が反転され、同期検波器24.27の出
力の極性が反転される。上述において位相差Δφがπ/
4におけるsinΔφとcogΔφに比例するジャイロ
出力電圧が基準電圧Vrよル絶対値で僅かに少な目に設
定しておくと、第4図Aに示したsinΔφとcooΔ
φに比例する信号55.56を、制御回路47の制御に
よって第4図Gに示すように鋸歯状の出力として得るこ
とができる。かつsin 。
From the above state, the phase difference Δφ further increases as an absolute amount,
The output proportional to CO8Δφ is the reference voltage +Vr or -Vr
When the absolute value of si becomes larger, the comparator 48 or 49 obtains the si signal, the reversible counter 53 adds or subtracts, and the switch 33.41 returns to return the signal at the terminal 39, that is, si.
An output proportional to nΔφ can now be obtained at the gyro output terminal 46. At the same time, a signal polarity inversion command (switching control signal) is output by the output of the reversible counter 53 with a weight of 2' so that the output proportional to sin Δφ and cos Δφ has a positive characteristic with respect to the phase Δφ, and the switch 34.3
7 is switched. As a result, the polarity of the reference signal of the synchronous detector 24.27 is inverted, and the polarity of the output of the synchronous detector 24.27 is inverted. In the above, the phase difference Δφ is π/
If the gyro output voltage proportional to sin Δφ and cog Δφ in 4 is set to a slightly smaller absolute value than the reference voltage Vr, sin Δφ and coo Δ shown in FIG.
A signal 55,56 proportional to φ can be obtained as a sawtooth output as shown in FIG. 4G by control of the control circuit 47. Katsu sin.

ΔφとcogΔφに比例する信号の切替えにヒステリシ
スを持たせることができ安定に動作させるこしができる
。このようにして位相差Δφが土mπ、に対し釣上π/
4の範囲にある場合は、sinΔφ成分をジャイロ出力
として取シ出され、±(2m+1)iに対、し釣上π/
4の範囲にある場合はcogΔφ成分がジャイロ出力と
して取シ出され、全範囲にわたって直線性が最も好まし
い状態で出力が得られる。
It is possible to provide hysteresis in the switching of the signals proportional to Δφ and cogΔφ, thereby allowing stable operation. In this way, the phase difference Δφ is equal to mπ,
4, the sinΔφ component is taken out as the gyro output, and for ±(2m+1)i, the balance π/
4, the cogΔφ component is extracted as a gyro output, and an output is obtained with the most preferable linearity over the entire range.

この出力よシ角速fti次式でめることができる。This output can be determined by the following equation: angular velocity fti.

Cは光速、λは光源11の光の波長、Rは光学路160
半径、Lは光学路16の長さ、Kは比例定数(rad/
 V )、Voはジャイロ出力端子46の電 圧、mは
角度加算パルスの総数と角度減算パルスの総数との差、
つまシ町逆カウンタ53の計数値内容でろって、これは
端子54から取り出される。
C is the speed of light, λ is the wavelength of light from the light source 11, and R is the optical path 160
radius, L is the length of the optical path 16, K is the proportionality constant (rad/
V), Vo is the voltage of the gyro output terminal 46, m is the difference between the total number of angle addition pulses and the total number of angle subtraction pulses,
The contents of the count value of the Tsumashi Town reverse counter 53 are taken out from the terminal 54.

この角速度Ωの極性は、可逆カウンタ53の最上位ビッ
トの出力を用して判定される。
The polarity of this angular velocity Ω is determined using the output of the most significant bit of the reversible counter 53.

この実施例におけるダイナミックレンジは、位相差Δψ
で釣上64π、即ち約土32波長に相当するレンジであ
る。このダイナミックレンジは可逆カウンタ53のビッ
ト数を大きくすることによって広けることができる。制
御回路47としては、こ°のように論理回路で構成する
場合のみならずジャイロ出力端子46の出力をディジタ
ル信号に変換し、基準値と比較して可逆カウンタ53と
対応する計数動作などを計算機で処理して、先のように
位相差のそれぞれの範囲に対応してsinΔφとcog
Δψに比例したジャイロ出力を取り出すようにすること
もできる。
The dynamic range in this example is the phase difference Δψ
This is a range corresponding to 64π, that is, about 32 wavelengths. This dynamic range can be widened by increasing the number of bits of the reversible counter 53. The control circuit 47 can be configured not only by a logic circuit like this, but also by converting the output of the gyro output terminal 46 into a digital signal, comparing it with a reference value, and calculating the corresponding counting operation with the reversible counter 53. As before, sinΔφ and cog are calculated according to each range of phase difference.
It is also possible to extract a gyro output proportional to Δψ.

(4バ5)式から解かれるように入力感度はX(=2A
 ainπfoτ)の値に左右される。Xの値は変調指
数A1位相変調器22の駆動周波数fo及び光学路16
を通る光の伝搬時間τによって決まる。駆動周波数fO
及び伝搬時間τは温度による影響が比較的小さいが、変
調指数Aは温度による影響を受けやすい。位相変調器2
2は例えば電歪振動子に光学路16の一端部を巻きつけ
、その電歪振動子に周波数foの駆動電圧を印加して振
動させ、光学路16を伸縮させ、そこを通る右回シ光と
左回シ光とを位相変調させるようにしたものである。駆
動周波数foは、その電歪振動子を効率よく伸縮させる
ため電歪振動子の共振点に合せるのが一般的である。こ
の共振周波数は温度によって変化するため変調指数Aは
電歪振動子の機械的Q(共振周波数における機械的振動
の“するどさ“をさす)の高い程温度の影響を受ける。
As solved from equation (4-5), the input sensitivity is X (=2A
ainπfoτ). The value of X is the driving frequency fo of the modulation index A1 phase modulator 22 and the optical path 16.
is determined by the propagation time τ of light through . Drive frequency fO
and the propagation time τ are relatively less affected by temperature, but the modulation index A is easily affected by temperature. Phase modulator 2
2, for example, wraps one end of the optical path 16 around an electrostrictive vibrator, applies a driving voltage of frequency fo to the electrostrictive vibrator, causes it to vibrate, expands and contracts the optical path 16, and transmits clockwise light passing through it. and the left-handed light are phase-modulated. The drive frequency fo is generally set to match the resonance point of the electrostrictive vibrator in order to efficiently expand and contract the electrostrictive vibrator. Since this resonant frequency changes depending on temperature, the modulation index A is more influenced by the temperature as the mechanical Q (which refers to the "suddenness" of mechanical vibration at the resonant frequency) of the electrostrictive vibrator is higher.

その結果X値が変化し、人力感度が変動する。As a result, the X value changes, and the human power sensitivity fluctuates.

この問題を解決するには例えば次のようにすればよい。For example, you can solve this problem as follows.

即ちsinΔφに比例した同期検波後の出力をvl、C
O8Δψに比例した同期検波後の出力をVx とすると Ml = Ks sinΔφ、Vx = Kg cog
Δφ ・・・・・・・・・・・・(7)と表わすことが
できる。こ\でK r −K * は比例定数である。
That is, the output after synchronous detection proportional to sinΔφ is vl, C
If the output after synchronous detection proportional to O8Δψ is Vx, then Ml = Ks sinΔφ, Vx = Kg cog
Δφ can be expressed as (7). Here, K r −K * is a proportionality constant.

仮にK * =’K 雪= K とし、vlとV霊t−
2乗して加え合せるとその値は下式の通シ一定値をとる
Suppose that K * = 'K snow = K, and vl and V spirit t-
When squared and added together, the value takes a constant value as shown in the following formula.

・・・・・・・・・・・・・・・・・・(8)従ってこ
のVfの値が常に一定になるように変調指数A又は受光
器21からの出力電圧を制御すれば入力感度を一定に保
つことができる。第5図は位相変調器22に印加する周
波数foの駆動電圧を制御して変調指数Aを変え、入力
感度を一定に保′つ構成例を示したものである。
(8) Therefore, if the modulation index A or the output voltage from the photoreceptor 21 is controlled so that the value of Vf is always constant, the input sensitivity can be reduced. can be kept constant. FIG. 5 shows an example of a configuration in which the modulation index A is changed by controlling the drive voltage of frequency fo applied to the phase modulator 22 to keep the input sensitivity constant.

まずsinΔφに比例した端子39の出力と、cogΔ
φに比例した端子43の出力とはそれぞれスイッチ57
.58に直接供給されると共に利得調整用増幅器61.
62を通じて供給される。可逆カウンタ53の重みが2
°の出力が端子63を通じてスイッチ57.58.64
に制御信号として供給される。
First, the output of terminal 39 proportional to sinΔφ and cogΔ
The output of the terminal 43 proportional to φ is the output of the switch 57.
.. 58 and a gain adjustment amplifier 61.
62. The weight of the reversible counter 53 is 2
The output of the switch 57.58.64 through the terminal 63
is supplied as a control signal to

スイッチ64には基準電源65.66が接続されている
。端子63の制御信号が01の時はスイッチ57.58
.64は接点NCの位置にある。よって端子39に入力
された信号層は、そのまま2東回路67に供給され、端
子43に入力された信号は増幅器62によりて比例定数
Kmかに1と等しくなるように増幅されて2東回路68
に供給される。2東回路67.68でそれぞれ2乗され
た二つの信号は、加算回路69によって加算され、その
加算出力は差動増幅器71によりて基準電源65の基準
電圧と比較され、その誤差信号が増幅される。その増幅
された誤差信号は自動利414整回路72に供給され、
端子73に入力された周波数foの駆動電圧の振幅が制
御され、その出力は端子74から位相変調器22 (j
I3図)に供給される。
Reference power sources 65 and 66 are connected to the switch 64. When the control signal of terminal 63 is 01, switch 57.58
.. 64 is at the position of contact NC. Therefore, the signal layer input to the terminal 39 is supplied as is to the 2-east circuit 67, and the signal input to the terminal 43 is amplified by the amplifier 62 so that the proportionality constant Km is equal to 1.
is supplied to The two signals squared by the two east circuits 67 and 68 are added by an adder circuit 69, the added output is compared with the reference voltage of the reference power supply 65 by a differential amplifier 71, and the error signal is amplified. Ru. The amplified error signal is supplied to the automatic gain 414 rectifying circuit 72,
The amplitude of the drive voltage of frequency fo input to the terminal 73 is controlled, and its output is sent from the terminal 74 to the phase modulator 22 (j
Figure I3).

この一連の閉ループにおいて前記誤差信号が常に零にな
るようにされる。このため人力感度は常に一定に保たれ
るう 一方端子63の重みが2°の制御信号が“1“となりた
場合、スイッチ57.58*64はNO接点に切替えら
れる。その結果端子39に入力された信号は増幅器61
に供給され、比例に数KIがKmと等しくなるよう増幅
されて2東回路67に供給される。端子43に入力され
た信号はそのま\2乗回路68に供給される。2乗され
た二つの信号は加算回路69によって加算され、差動増
幅器71によって基準電源66の基準電圧と比較され、
誤差信号が増幅される。1.その増幅された誤差信号は
、自動利得調整回路72に供給され、端子73に入力さ
れた周波数foの駆動電圧の振幅が制御され、端子74
を通じて位相変調器22に供給される。
In this series of closed loops, the error signal is always zero. Therefore, the human sensitivity is always kept constant. When the control signal with a weight of 2 degrees at the other terminal 63 becomes "1", the switch 57.58*64 is switched to the NO contact. As a result, the signal input to the terminal 39 is transmitted to the amplifier 61.
The signal is supplied to the 2-east circuit 67 after being amplified so that the number KI becomes equal to Km. The signal input to the terminal 43 is directly supplied to the square circuit 68. The two squared signals are added by an adder circuit 69, and compared with a reference voltage of a reference power supply 66 by a differential amplifier 71.
The error signal is amplified. 1. The amplified error signal is supplied to an automatic gain adjustment circuit 72, which controls the amplitude of the driving voltage of frequency fo input to a terminal 74.
The signal is supplied to the phase modulator 22 through.

その結果前述と同様、入力感度が一定に保たれる。As a result, the input sensitivity is kept constant as described above.

なお基準電源65は(4)式におけるsinΔφに比例
する入力感度が最大となるよう設定された基準電圧を出
力し、一方基準電源66は(5ン式におけるCO8Δφ
 に比例する入力感度が最大となるよう設定され九基準
電圧金出力する。第5図で*励信号の電圧を差動増幅器
71の出力で制御したが、前記受光器21の出力を差動
増幅器71の出力で自動制御してもよい。
Note that the reference power supply 65 outputs a reference voltage set so that the input sensitivity proportional to sinΔφ in equation (4) is maximized, while the reference power supply 66 outputs a reference voltage set so that the input sensitivity proportional to sinΔφ in equation (4) is
It is set so that the input sensitivity proportional to is maximum and outputs nine reference voltages. Although the voltage of the excitation signal is controlled by the output of the differential amplifier 71 in FIG. 5, the output of the photodetector 21 may be automatically controlled by the output of the differential amplifier 71.

く効 果〉 第2図に示した従来方式においては、前述の遥シ右回シ
光と左1gIシ光間の位相差がπ/2近くになると極端
に感度が悪くなり、ダイナミックレンジが制限されてい
たが、この発明によれは先に示した(6)式においてm
の値が変化してもmが0の場曾の時と直線性は第4図G
に示したように同一であり、偏差値は高レンジにおいて
増加することはない。直線性補正回路45を設けること
によって計測範囲全域にわたって直線性の高いものを得
ることができる。又この発明においてはダイナミックレ
ンジを理論的には限シなく広げることができる。
Effect> In the conventional method shown in Figure 2, when the phase difference between the far right-handed beam and the left 1-gram I beam approaches π/2, the sensitivity becomes extremely poor and the dynamic range is limited. However, according to the present invention, in equation (6) shown above, m
Even if the value of changes, the linearity when m is 0 is shown in Figure 4 G.
As shown in Figure 3, they are the same, and the deviation value does not increase in the high range. By providing the linearity correction circuit 45, high linearity can be obtained over the entire measurement range. Further, in this invention, the dynamic range can theoretically be expanded without any limit.

更に位相変調器22の駆動電圧又は受光器21の出力を
eoaΔφ に比例する信号とsinΔψに比例する信
号によって制御することにより、作動温度範囲にわたっ
て入力感度を一定に保つことができる。
Further, by controlling the drive voltage of the phase modulator 22 or the output of the photodetector 21 by a signal proportional to eoaΔφ and a signal proportional to sinΔφ, the input sensitivity can be kept constant over the operating temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来の光干渉角速に計を示
すブロック図、第3図はこの発明による光干渉角速度計
の一例を示すブロック図、第4図は七の動作の説明に供
するだめの波形図、第5図はこの発明による光干渉角速
度計の一部を示すブロック図である。 lに光源、13:光分配結合器、16:光学路、二21
:受光器、22:位相変調器、24.27:同期検波回
路、25.26 :帯域通過P波器。 42+61+62 :利得調整用増幅器、28:値号源
、 23 : V2分周器、31.32 :電圧調整器
。 36;移相器、44:低域通過f′lHL器、45:直
線性補正回路、・35.38:インバータ、46:ジヤ
イ四出力端子、47:制御回路、 48.49=比較器
、 51.52,65.66: 基準電源、53:可逆
カウンタ、67.68 : 2乗回路、69:加算回路
、72:自動利得調整回路。 特許出纏人 日本航空電子工業株式会社代理人 草野 
FIGS. 1 and 2 are block diagrams showing a conventional optical interference angular velocity meter, FIG. 3 is a block diagram showing an example of an optical interference angular velocity meter according to the present invention, and FIG. 4 is an explanation of the operation of step 7. FIG. 5 is a block diagram showing a part of the optical interference gyrometer according to the present invention. 1: light source, 13: optical distribution coupler, 16: optical path, 221
: Photoreceiver, 22: Phase modulator, 24.27: Synchronous detection circuit, 25.26: Bandpass P-wave device. 42+61+62: gain adjustment amplifier, 28: value signal source, 23: V2 frequency divider, 31.32: voltage regulator. 36; Phase shifter, 44: Low-pass f'lHL unit, 45: Linearity correction circuit, 35.38: Inverter, 46: JAI 4 output terminal, 47: Control circuit, 48.49 = Comparator, 51 .52, 65.66: Reference power supply, 53: Reversible counter, 67.68: Square circuit, 69: Addition circuit, 72: Automatic gain adjustment circuit. Patent issuer: Japan Aviation Electronics Industry, Ltd. Agent Kusano
table

Claims (2)

【特許請求の範囲】[Claims] (1) 少なくとも一周する光学路と、その光学路に対
し右回シ光及び左回シ光を通す手段と、その光学路を伝
搬してきた右回り光と左回り光を干渉させる干渉手段と
、その干渉手段と上記光学路の一端との間にこれらに縦
続的に配されて右回り光と左回シ光に位相変化を与える
位相変調器と、上記干渉光の光強度を電気信号として検
出する受光器と、その受光器の出力を上記位相変調器の
駆動周波数と同じ周波数で同期検波する第1同期検波器
と、上記受光器からの出力を上記位相変調器の駆動周波
数の2倍の周波数で同期検波する第2同期検波器と、上
記右回シ光と左回シ光の位相差が±mπ(m=o+i+
2・・・・・・)に対し釣上π/4の範囲であることを
検出する第1範囲検出手段と、上記右回ル光と左回り光
の位相差が±(2m+1)π/2(m=0.1.2・・
・・・・)に対し釣上π/4の範囲であることを検出す
る第2範囲検出手段と、上記第1範囲検出手段の出力に
よシ上記第1同期検波器の出力をジャイロ出力端子へ導
く手段と、上記第2範囲検出手段の検出出力によシ上゛
記g2同期検波器の出力を上記ジャイロ出力端子へ導く
手段とを具備した光干渉角速度計。
(1) an optical path that goes around at least once; a means for passing clockwise light and counterclockwise light on the optical path; and an interference means for interfering with the clockwise light and counterclockwise light that have propagated through the optical path; A phase modulator is disposed in series between the interference means and one end of the optical path to change the phase of the clockwise light and the counterclockwise light, and the optical intensity of the interference light is detected as an electrical signal. a first synchronous detector that synchronously detects the output of the optical receiver at a frequency that is the same as the driving frequency of the phase modulator; The second synchronous detector performs synchronous detection based on the frequency, and the phase difference between the right-handed beam and the left-handed beam is ±mπ (m=o+i+
a first range detection means for detecting that the range is within the range of π/4 with respect to (m=0.1.2...
), the output of the first synchronous detector is connected to a gyro output terminal. and means for guiding the output of the g2 synchronous detector to the gyro output terminal according to the detection output of the second range detection means.
(2)上記第1同期検波器の出力を2乗する第1の2乗
回路と、上記第2同期検波器の出力を2乗する第2の2
乗回路と、これら第1、I@2の2乗回路の出力を〃0
見合せる加算手段と、その加算手段の出力によシ七の出
力が一定となるように上記位相変調器の駆動電圧又は上
記受光器の出力を制御する手段とを有する特許請求の範
囲第1項記載の光干渉角速度計。
(2) a first squaring circuit that squares the output of the first synchronous detector; and a second squaring circuit that squares the output of the second synchronous detector.
The outputs of the multiplication circuit and the first and I@2 square circuits are set to 〃0
Claim 1, further comprising an adding means for adjusting the amount of time, and means for controlling the drive voltage of the phase modulator or the output of the photodetector so that the output of the receiver becomes constant depending on the output of the adding means. The optical interference gyrometer described.
JP59070452A 1984-04-09 1984-04-09 Optical interference angular velocity meter Granted JPS60213815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070452A JPS60213815A (en) 1984-04-09 1984-04-09 Optical interference angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070452A JPS60213815A (en) 1984-04-09 1984-04-09 Optical interference angular velocity meter

Publications (2)

Publication Number Publication Date
JPS60213815A true JPS60213815A (en) 1985-10-26
JPH0361889B2 JPH0361889B2 (en) 1991-09-24

Family

ID=13431908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070452A Granted JPS60213815A (en) 1984-04-09 1984-04-09 Optical interference angular velocity meter

Country Status (1)

Country Link
JP (1) JPS60213815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239014A (en) * 1986-04-11 1987-10-19 Agency Of Ind Science & Technol Phase modulation type optical fiber gyro
JPH0231167A (en) * 1988-07-20 1990-02-01 Japan Aviation Electron Ind Ltd Light interference angular velocity meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239014A (en) * 1986-04-11 1987-10-19 Agency Of Ind Science & Technol Phase modulation type optical fiber gyro
JPH0545162B2 (en) * 1986-04-11 1993-07-08 Kogyo Gijutsuin
JPH0231167A (en) * 1988-07-20 1990-02-01 Japan Aviation Electron Ind Ltd Light interference angular velocity meter

Also Published As

Publication number Publication date
JPH0361889B2 (en) 1991-09-24

Similar Documents

Publication Publication Date Title
US5398111A (en) Optically-locked fiber-optic resonant gyro
JP2863009B2 (en) Reduction of Kerr effect error of resonator optical fiber gyroscope
JPS62108110A (en) Optical fiber gyro
US4825261A (en) Method for reading out rotation rate with a passive optical resonator
US4382681A (en) Measurement of rotation rate using Sagnac effect
JP2724915B2 (en) Interferometer signal analysis with modulation switching
US5031988A (en) Fiber optic gyro
EP0635117B1 (en) Determining optical signal transit delay time in an optical interferometer
JPS60213815A (en) Optical interference angular velocity meter
EP0185385A2 (en) Phase modulation fiber optic gyroscope
US4491413A (en) Fiber optic gyroscope with alternating output signal
JP2909513B2 (en) Ring resonant gyro
US7369248B2 (en) Device for measuring an optical path length difference
JP4306843B2 (en) Resonance point tracking system and ring resonance type optical fiber gyro using this system
JPH0352003B2 (en)
CA1301894C (en) Apparatus and method for phase modulating optical signals in a fiber optic rotation sensor
US5396327A (en) Fiber-optic gyroscope having angular velocity correction
RU2160885C1 (en) Method of stabilization of scale factor of fiber-optical gyroscope
RU2793727C1 (en) Angular rate sensor
JPS585365B2 (en) Rotation speed measuring device
JPH0511763B2 (en)
US7068872B2 (en) Signal processing for passive interferometry
JPH0352004B2 (en)
JPS61235719A (en) Fiber interferometer
Auch et al. Environmental Testing of Prototype-Like Fiber-Optic Gyroscopes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees