JPS6021328B2 - thermography device - Google Patents

thermography device

Info

Publication number
JPS6021328B2
JPS6021328B2 JP3485077A JP3485077A JPS6021328B2 JP S6021328 B2 JPS6021328 B2 JP S6021328B2 JP 3485077 A JP3485077 A JP 3485077A JP 3485077 A JP3485077 A JP 3485077A JP S6021328 B2 JPS6021328 B2 JP S6021328B2
Authority
JP
Japan
Prior art keywords
infrared
emissivity
subject
infrared rays
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3485077A
Other languages
Japanese (ja)
Other versions
JPS53120482A (en
Inventor
守 入月
芳郎 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP3485077A priority Critical patent/JPS6021328B2/en
Publication of JPS53120482A publication Critical patent/JPS53120482A/en
Publication of JPS6021328B2 publication Critical patent/JPS6021328B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Image Processing (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は被写体の放射率に関係ない正確な温度分布像を
得ることのできるサーモグラフィー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermography apparatus that can obtain an accurate temperature distribution image regardless of the emissivity of a subject.

一般にサーモグラフィー装置は被写体から放射される赤
外線を光学的走査手段により二次元的に走査集光し、該
集光せしめた赤外線を赤外線検出器にて検出してその出
力信号を前記光学的走査手段と同期した陰極線管に導入
せしめることにより被写体の温度分布像を得るものであ
る。
Generally, a thermography device scans and focuses infrared rays emitted from an object two-dimensionally using an optical scanning means, detects the focused infrared rays with an infrared detector, and transmits the output signal to the optical scanning means. By introducing it into a synchronized cathode ray tube, a temperature distribution image of the object is obtained.

ところで被写体となる物質には固有の放射率があり、た
とえば同一温度であっても物質が異なると放射する赤外
線量が異なる。
By the way, the material that is the subject has its own emissivity; for example, even if the temperature is the same, different materials emit different amounts of infrared rays.

ところで従来のサーモグラフィー装置では赤外線検出器
からの信号を増幅する増幅器のゲインを放射率に応じて
変化させる放射率補正機構が設けられていた。しかして
測定にあたっては予じめ被写体の放射率がわかるものに
ついては放射率補正機構のつまみをその放射率の値に設
定すればよい。しかし乍ら予じめ放射率がわからないも
のについては実際に放射率を測定しなければならず、そ
のため測定時間が長くなると共に取扱いが面倒である。
又たとえ放射率が測定によりわかったとしても、この放
射率は被写体の一部のみの測定により得られた値であり
、表面の荒さ、酸化や汚れ等の表面状態によって放射率
が各部分ごとに異なるような場合には必ずしも正確な放
射率の補正がなされていない。本発明は斯様な不都合を
解決するために、被写体の放射率に関係なく正確な温度
分布像を得ることのできるサーモグラフイー装置を提供
するもので、以下図面に基づき詳説する。第1図は本発
明の一実施例を示す構成図であり、1は人体の如き被写
体2より放射される赤外線を走査集光して赤外線検出器
3へ導くための光学的走査手段で、該光学的走査手段は
走査回路4から発生する水平及び垂直走査信号により駆
動される。
By the way, conventional thermography devices are provided with an emissivity correction mechanism that changes the gain of an amplifier that amplifies a signal from an infrared detector in accordance with the emissivity. When measuring, if the emissivity of the subject is known in advance, the knob of the emissivity correction mechanism may be set to the value of the emissivity. However, if the emissivity is not known in advance, it is necessary to actually measure the emissivity, which requires a long measurement time and is cumbersome to handle.
Furthermore, even if the emissivity is known through measurement, this emissivity is a value obtained by measuring only a part of the object, and the emissivity may vary depending on the surface conditions such as surface roughness, oxidation, dirt, etc. In such cases, accurate emissivity correction is not necessarily performed. In order to solve such problems, the present invention provides a thermography apparatus that can obtain an accurate temperature distribution image regardless of the emissivity of the subject, and will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of the present invention, in which numeral 1 denotes an optical scanning means for scanning and condensing infrared rays emitted from a subject 2 such as a human body and guiding them to an infrared detector 3; The optical scanning means is driven by horizontal and vertical scanning signals generated by the scanning circuit 4.

該光学的走査手段2と赤外線検出器3との間の光路上に
はフィルター板5がおかれており、該フィルター板は前
記走査回路4からの水平走査信号と同期したモーター6
により等速で回転(断続的に回転させてもよい)され、
又該フィルター板には第2図にその正面図を示すように
近接した波長入,及び入2の赤外線を夫々通す二つのフ
ィルター7a及び7bが設置されている。従って赤外線
検出器3にはフィルター7aを通過した赤外線とフィル
夕−7bを通過した赤外線が交互に検出される。該赤外
線検出器より得られた検出信号は増幅器8により増幅さ
れた後二分割される。その分割された一方はそのまま割
算回路9に導入され、又他方はA−D変換器10‘こよ
りデジタル信号に変換された後記億制御回路11を介し
て記憶回路12の所定番地に順次記憶される。該記憶制
御回路11は前記走査回路4からの水平及び垂直走査信
号と同期して駆動される。即ち記憶制御回路11は光学
的走査手段1が後述する第1回目の水平走査を行うとき
に得られる赤外線検出器3からの出力信号を記憶回路1
2に記憶させ、光学的走査手段の第2回目の水平走査の
ときには、該走査に同期して記憶回路12に記憶されて
いる第1回目の出力信号を読み出すという動作を繰返す
。該読み出されたデジタル信号はD−A変換器13によ
ってアナログ信号に変換された後、前記割算回路9に導
入される。該割算回路では前記二つの信号の割算を行い
(比をとり)、得られた出力信号はリニアリティ補正回
路14を経て陰極線管15のグリッド‘こ供給される。
該陰極線管の水平及び垂直偏向コイル16×,16Yに
は走査回路4からの水平及び垂直走査信号が夫々供給さ
れている。上述した如き構成において、走査回路4から
は光学的走査手段1に第3図aで示すような鏡歯状波の
水平走査信号と同図中bで示すようなこの水平走査信号
の二個分ごとに一定しベルづつ変化する垂直走査信号が
供給され、従って光学的走査手段1は被写体2の同一場
所を2回水平走査を行う。
A filter plate 5 is placed on the optical path between the optical scanning means 2 and the infrared detector 3, and the filter plate is driven by a motor 6 synchronized with the horizontal scanning signal from the scanning circuit 4.
Rotates at a constant speed (may be rotated intermittently) by
Further, as shown in the front view of FIG. 2, the filter plate is provided with two filters 7a and 7b that respectively pass infrared rays of wavelengths close to each other. Therefore, the infrared detector 3 alternately detects the infrared rays that have passed through the filter 7a and the infrared rays that have passed through the filter 7b. The detection signal obtained from the infrared detector is amplified by an amplifier 8 and then divided into two. One of the divided parts is introduced into the division circuit 9 as it is, and the other part is converted into a digital signal by the A-D converter 10' and then sequentially stored in a predetermined location of the storage circuit 12 via the storage control circuit 11. Ru. The storage control circuit 11 is driven in synchronization with horizontal and vertical scanning signals from the scanning circuit 4. That is, the storage control circuit 11 uses the output signal from the infrared detector 3 obtained when the optical scanning means 1 performs a first horizontal scan, which will be described later, to the storage circuit 1.
2, and during the second horizontal scan of the optical scanning means, the operation of reading out the first output signal stored in the storage circuit 12 in synchronization with the second horizontal scan is repeated. The read digital signal is converted into an analog signal by the DA converter 13 and then introduced into the divider circuit 9. The division circuit divides the two signals (takes the ratio), and the resulting output signal is supplied to the grid of the cathode ray tube 15 via the linearity correction circuit 14.
Horizontal and vertical scanning signals from the scanning circuit 4 are supplied to horizontal and vertical deflection coils 16x and 16Y of the cathode ray tube, respectively. In the above-mentioned configuration, the scanning circuit 4 sends two signals to the optical scanning means 1: a mirror-tooth horizontal scanning signal as shown in FIG. 3a, and a horizontal scanning signal as shown in FIG. A vertical scanning signal that is constant and changes by a bell is supplied every time, so that the optical scanning means 1 horizontally scans the same location on the subject 2 twice.

このとき光学的走査手段1が第1回目の水平走査を行う
間はフィルター7aを通過した赤外線(即ち波長入,の
赤外線)のみが赤外線検出器3に入射し、又次の第2回
目の水平走査の間はフィルター7bを通過した赤外線(
即ち波長^2の赤外線)のみが赤外線検出器に入射する
ようにモ−ター6の回転速度が予じめ設定されている。
しかして第3図a及びbで示す水平及び垂直走査信号を
光学的走査手段に供給して被写体2の同一場所を2回水
平走査せしめると、先ず光学的走査手段1の水平走査に
より検出される波長^,の赤外線に基づく検出信号はA
−D変換器1川こよりデジタル化されて記憶回路12に
一旦記憶される。光学的走査手段の第2回目の水平走査
により検出される波長入2の赤外線に基づく検出信号は
割算回路9に送られるが、このとき該割算回路には光学
的走査手段1の第2回目の水平走査に同期して第1回目
の水平走査時に記憶回路12に記憶せしめた波長^,の
検出信号が読み出されて順次導入されるため、両信号の
比が求められる。該割算回路からの出力信号をリニアリ
ティ補正回路14を通して被写体の温度に対してリニア
関係をもつ温度信号に変換して陰極線管15に導入すれ
ば、該陰極線管には一本の走査線が表示される。以下こ
のような水平走査を被写体2の全走査範囲にわたって操
返えすことにより陰極線管には被写体の温度分布像が表
示される。ところが赤外線検出器に入射する波長^,及
び入2の赤外線強度1入,及び1入2はプランクの法則
に基づき次式で表わされる。
At this time, while the optical scanning means 1 performs the first horizontal scan, only the infrared rays that have passed through the filter 7a (i.e., the infrared rays of wavelength) are incident on the infrared detector 3, and the second horizontal scan During scanning, infrared rays (
That is, the rotational speed of the motor 6 is set in advance so that only infrared rays of wavelength ^2 are incident on the infrared detector.
When the horizontal and vertical scanning signals shown in FIG. The detection signal based on infrared rays at wavelength ^ is A
-D converter 1 digitizes the signal and temporarily stores it in the storage circuit 12. The detection signal based on the infrared rays at wavelength 2 detected by the second horizontal scan of the optical scanning means is sent to the division circuit 9; In synchronization with the second horizontal scan, the detection signals of the wavelengths stored in the storage circuit 12 during the first horizontal scan are read out and sequentially introduced, so that the ratio of both signals is determined. If the output signal from the division circuit is converted into a temperature signal having a linear relationship with the temperature of the object through the linearity correction circuit 14 and introduced into the cathode ray tube 15, a single scanning line is displayed on the cathode ray tube. be done. Thereafter, by repeating such horizontal scanning over the entire scanning range of the subject 2, a temperature distribution image of the subject is displayed on the cathode ray tube. However, the wavelength ^ incident on the infrared detector and the infrared infrared intensities 1 and 2 are expressed by the following equation based on Planck's law.

・〜=子号(IC2′入・T−1)一 1入2=肴(IC2帖‐1)−・ ここでTは被写体の絶対温度、c,及びc2は定数ご,
,ご2 は放射率である。
・〜=Child number (IC2' entry・T-1) 11 entry 2=Appetizer (IC2 chapter-1)-・ Here, T is the absolute temperature of the subject, c and c2 are constants,
, 2 is the emissivity.

今波長入,と^2とがそれほど離れていない場合には放
射率ど,とご2とはこの波長範囲で略同一の値とみなさ
れ、従って前記二つの波長入,,入2の夫々の赤外線強
度1入,と1入2との比をとると、その比は舟=符5・
IC2/入2LIIC2/入IT−1 となり、特定の波長入,と入2とが決まれば温度だけの
関数となる。
If the current wavelength, input, and Taking the ratio of the infrared infrared intensity of 1 and 1 and 2, the ratio is Fun = sign 5.
IC2/Input 2LIIC2/Input IT-1, and once the specific wavelength input and input 2 are determined, it becomes a function only of temperature.

よって波長入,と入2とによる赤外線強度の比を測定す
ることにより被写体の温度Tを知ることができる。この
とき波長^,,入2の赤外線強度比洋と温度Tと綱川第
4図aにその一例を示すように比例関係がないため・前
述比二つの波長の赤外総度比だ挑める割算回路9からの
出力信号をリニアリティ補正回路14を通すことにより
同図中bで示すように被写体の温度に対してリニア関係
をもつ温度信号に変換して陰極線管15に導入すれば、
被写体の放射率に関係ない正確な温度分布像を得ること
ができる。
Therefore, the temperature T of the object can be determined by measuring the ratio of the infrared infrared intensities at wavelengths ON and 2. At this time, since there is no proportional relationship between the infrared intensity ratio of the wavelength ^,, and the temperature T and Tsunakawa, as shown in Figure 4 a for an example, the infrared total intensity ratio of the two wavelengths compared to the above is challenging. If the output signal from the arithmetic circuit 9 is passed through the linearity correction circuit 14 and converted into a temperature signal having a linear relationship with the temperature of the object as shown by b in the figure, then the signal is introduced into the cathode ray tube 15.
Accurate temperature distribution images can be obtained regardless of the emissivity of the subject.

以上の如く構成することにより本発明は被写体の放射率
に関係なく正確な温度分布像を得ることのできるサーモ
グラフイ−装置を得ることができる。
By configuring as described above, the present invention can provide a thermography apparatus that can obtain an accurate temperature distribution image regardless of the emissivity of the subject.

そのため被写体の表面状態にかかわりなく常に正確な温
度分布像が得られ、又被写体の放射率のわからないもの
の測定に際し従釆のようにその都度放射率を測定する必
要がなくなるため、測定が容易になると共に測定時間の
短縮をはかることができる等、実用性大なる効果を有す
る。尚前述の説明は本発明の例示であり、実施にあたっ
ては幾多の変形が考えられる。
Therefore, an accurate temperature distribution image can always be obtained regardless of the surface condition of the object, and when measuring the emissivity of an object whose emissivity is unknown, there is no need to measure the emissivity each time as in the case of a secondary method, making measurement easier. It also has great practical effects, such as being able to shorten measurement time. It should be noted that the above description is an illustration of the present invention, and many modifications can be made in implementing the present invention.

例えば前述の説明では光学的走査手段で被写体の同一場
所を二度づつ繰返し水平走査して、各水平走査毎に波長
入,と入2との赤外線強度の比を求めるように構成した
が、これに限定されることなく、光学的走査手段で被写
体を1フレームに相当する分だけ二回走査し、第1回目
の走査により得られる波長入,の赤外線強度を一旦記憶
し、この記憶された波長^,の赤外線強度と第2回目の
走査により得られる波長^2 の赤外線強度との比を求
めるように構成してもよい。又赤外線検出器からの出力
信号をデジタル化して記憶させた場合について述べたが
、アナログ的に記憶するように構成してもよい。
For example, in the above explanation, the optical scanning means is configured to repeatedly horizontally scan the same location on the subject twice, and for each horizontal scan, the ratio of the infrared infrared intensities of wavelengths 1 and 2 is determined. Without being limited to this, the subject is scanned twice by an optical scanning means for an amount corresponding to one frame, and the infrared intensity at the wavelength obtained from the first scan is temporarily stored, and It may be configured to calculate the ratio of the infrared intensity of ^, and the infrared intensity of wavelength ^2 obtained by the second scan. Furthermore, although the case has been described in which the output signal from the infrared detector is digitized and stored, it may be configured to be stored in analog form.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明に使用されるフィルター板の正面図、第3図、第4図
a及びbは第1図に示された実施例の動作説明図である
。 第1図及び第2図において、1は光学的走査手段、2は
被写体、3は赤外線検出器、4は走査回路、5はフィル
ター板、6はモ−ター、7a及び7bはフィルター、8
は増幅器、9は割算回路、1川まA−D変換器、1 1
は記憶制御回路、12は記憶回路、13はD−A変換器
、14はリニアリティ補正回路、15は陰極線管である
。 オ,図 外S図(a) オ3図くめ ガ乙図 ガ4図(4) 汁4図(b)
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a front view of a filter plate used in the present invention, and FIGS. 3 and 4 a and b are the embodiments shown in FIG. FIG. 3 is an explanatory diagram of an example operation. 1 and 2, 1 is an optical scanning means, 2 is a subject, 3 is an infrared detector, 4 is a scanning circuit, 5 is a filter plate, 6 is a motor, 7a and 7b are filters, 8
is an amplifier, 9 is a divider circuit, 1 is an A-D converter, 1 1
12 is a storage circuit, 13 is a DA converter, 14 is a linearity correction circuit, and 15 is a cathode ray tube. O, S figure (a) outside the figure O3 figure Kumega Otsu figure 4 figure (4) Juice 4 figure (b)

Claims (1)

【特許請求の範囲】[Claims] 1 被写体から放射される赤外線を走査集光して赤外線
検出器に導くための光学的走査手段と、前記被写体から
放射される赤外線の内近接した二つの波長の赤外線を通
す二つのフイルターを有するフイルター板と、該フイル
ター板の二つのフイルターを前記光学的走査手段の水平
又は垂直走査に同期して赤外線光路内に交互に配置させ
るための手段と、前記二つのフイルターを通して交互に
得られる被写体各点から放射される二つの波長の赤外線
強度に基づく信号の内少なくとも一方を記憶する手段と
、前記二つの波長の赤外線強度に基づく信号の比を求め
る手段と、該手段からの出力信号が供給される表示手段
とから構成されることを特徴とするサーモグラフイー装
置。
1. A filter having an optical scanning means for scanning and condensing the infrared rays emitted from the subject and guiding them to an infrared detector, and two filters that pass infrared rays of two wavelengths that are close to each other among the infrared rays emitted from the subject. a plate; means for alternately arranging two filters of the filter plate in an infrared light path in synchronization with the horizontal or vertical scanning of the optical scanning means; and each point of the object obtained alternately through the two filters; means for storing at least one of the signals based on the infrared intensities of two wavelengths emitted from the infrared rays; means for determining the ratio of the signals based on the infrared infrared intensities of the two wavelengths; and an output signal from the means is supplied. 1. A thermography device comprising a display means.
JP3485077A 1977-03-29 1977-03-29 thermography device Expired JPS6021328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3485077A JPS6021328B2 (en) 1977-03-29 1977-03-29 thermography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3485077A JPS6021328B2 (en) 1977-03-29 1977-03-29 thermography device

Publications (2)

Publication Number Publication Date
JPS53120482A JPS53120482A (en) 1978-10-20
JPS6021328B2 true JPS6021328B2 (en) 1985-05-27

Family

ID=12425647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3485077A Expired JPS6021328B2 (en) 1977-03-29 1977-03-29 thermography device

Country Status (1)

Country Link
JP (1) JPS6021328B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0417394D0 (en) * 2004-08-04 2004-09-08 Council Cent Lab Res Councils Scanning imaging device

Also Published As

Publication number Publication date
JPS53120482A (en) 1978-10-20

Similar Documents

Publication Publication Date Title
US4365307A (en) Temperature pattern measuring device
JPS6218859B2 (en)
US4413324A (en) Temperature pattern measuring method and a device therefor
JPH04328449A (en) Measuring method and apparatus for moisture
JPS6021328B2 (en) thermography device
JPH043492B2 (en)
JPS636823B2 (en)
JPS6142807B2 (en)
JPH07260680A (en) Infrared ray sensor
JPS6037894B2 (en) acoustic image display device
JPH10221159A (en) Laser doppler type vibration distribution measuring apparatus
JPH061177B2 (en) Method of measuring smoothness of coated surface
SU786062A1 (en) Television device for analysis of temperature fields and objects
JPS56153228A (en) Method and device for measurement of stress
JPH0663823B2 (en) Amplitude measurement method
JP2002323381A (en) Radiation temperature distribution measuring instrument
JPS61120004A (en) Measuring instrument for amount of water and ink
JPS6199810A (en) Method and instrument for measuring thickness profile of strip edge part
JP2002512764A (en) X-ray inspection apparatus including exposure control means
JPS6021329B2 (en) thermography equipment
JP2003166880A (en) Imaging device having temperature measuring means
JPS6055767B2 (en) Infrared detection method
JPH08285703A (en) Surface thermometer
JPS6055768B2 (en) Infrared temperature measuring device
JPS6320974A (en) Radiation image pickup device