JPS60213017A - Chip-shaped solid electrolytic condenser - Google Patents

Chip-shaped solid electrolytic condenser

Info

Publication number
JPS60213017A
JPS60213017A JP59070266A JP7026684A JPS60213017A JP S60213017 A JPS60213017 A JP S60213017A JP 59070266 A JP59070266 A JP 59070266A JP 7026684 A JP7026684 A JP 7026684A JP S60213017 A JPS60213017 A JP S60213017A
Authority
JP
Japan
Prior art keywords
chip
solid electrolytic
solder
shaped
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59070266A
Other languages
Japanese (ja)
Inventor
小橋 康博
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59070266A priority Critical patent/JPS60213017A/en
Publication of JPS60213017A publication Critical patent/JPS60213017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコンデンサ素子の電極に導電性の金属端子を接
続したチップ状固体電解コンデンサに関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a chip-shaped solid electrolytic capacitor in which conductive metal terminals are connected to electrodes of a capacitor element.

従来例の構成とその問題点 近年、チップ状固体電解コンデンサの基板への装着が自
動化され、そのため溶融させた半田がはいっている半田
槽内K、基板の所定位置に接着剤で固定されたチップ状
電子部品を通して半田付けを行う、いわゆる半田ディツ
プによる方法等が用いられるようになり、チップ状固体
電解コンデンサの耐熱性が重要視されている。
Structure of conventional example and its problems In recent years, the mounting of chip-shaped solid electrolytic capacitors onto the board has been automated, so the solder bath K, which contains molten solder, and the chip fixed in place on the board with adhesive. The heat resistance of chip-shaped solid electrolytic capacitors has become important as methods such as so-called solder dips, in which soldering is performed through chip-shaped electronic components, have come into use.

以下図面を参照しながら、チップ状固体電解コンデンサ
の一例であるチップ状タンタル固体電解コンデンサの従
来例について説明する。
A conventional example of a chip-shaped tantalum solid electrolytic capacitor, which is an example of a chip-shaped solid electrolytic capacitor, will be described below with reference to the drawings.

第1図にコンデンサ素子の断面図を示す。同図において
、1はタンタル金属の突出導出線であり、粉末タンタル
を円筒あるいは直方体に圧縮成形及び焼結させたタンタ
ル焼結体2の中に一部挿入しである。前記タンタル焼結
体2の表面上に酸化タンタル皮膜3を形成して陽極体と
し、このIIJff1体上に二酸化マンガン層4を形成
し、前記二酸化マンガン層4の表面上に陰極としてのカ
ーボン層6を形成し、さらに前記カーボン層5の表面上
に半田付は可能な熱可塑性銀塗料(アクリル系、セルロ
ース系、塩化ビニール系)を塗布することKより陰極集
電層6を形成し、これKよりコンデンサ素子が構成され
ている。
FIG. 1 shows a cross-sectional view of a capacitor element. In the figure, reference numeral 1 denotes a protruding lead-out wire of tantalum metal, which is partially inserted into a tantalum sintered body 2 made by compression molding and sintering powdered tantalum into a cylinder or rectangular parallelepiped. A tantalum oxide film 3 is formed on the surface of the tantalum sintered body 2 to serve as an anode body, a manganese dioxide layer 4 is formed on this IIJff body, and a carbon layer 6 as a cathode is formed on the surface of the manganese dioxide layer 4. A cathode current collecting layer 6 is formed by coating the surface of the carbon layer 5 with a thermoplastic silver paint (acrylic, cellulose, vinyl chloride) that can be soldered. A capacitor element is constructed by the following.

第2図にコンデンサ素子の電極部と接続する導電性金属
端子を示す。同図において、7はコンデンサ素子の陽極
電極、つまり@1図に示したタンタル金属の突出導出線
1と接続する導電性の陽極側金属端子であり、8けコン
デンサ素子の陰極集電層に半田付けにより接続する導電
性の陰極側金属端子である。前記陽極側金属端子7は、
スポット溶接により第1図に示したタンタル金属の突出
導出線1と接続されるため、前記陽極側金属端子7KV
i第2図に示すような打ち抜き穴7aを設けて金属幅を
小さくし、金属を溶けやすくする工夫がなされている。
FIG. 2 shows a conductive metal terminal connected to an electrode portion of a capacitor element. In the figure, 7 is a conductive anode side metal terminal connected to the anode electrode of the capacitor element, that is, the tantalum metal protruding lead wire 1 shown in Figure @1, and is soldered to the cathode current collecting layer of the 8-digit capacitor element. This is a conductive metal terminal on the cathode side that is connected by attaching it. The anode side metal terminal 7 is
Since it is connected to the tantalum metal protruding lead wire 1 shown in FIG. 1 by spot welding, the anode side metal terminal 7KV
i A contrivance has been made to reduce the metal width by providing a punched hole 7a as shown in FIG. 2 to make the metal easier to melt.

次に、コンデンサ素子の陰極集電層と陰極側金属端子と
の接続方法として代表的な2例を示す。
Next, two typical examples of the connection method between the cathode current collecting layer and the cathode side metal terminal of the capacitor element will be shown.

(リ 第1図に示したコンデンサ素子の陰極集電層6と
表面を半田メッキ等の処理をした陰極側金属端子8とを
牛FB(Sn/Pb=6/4あるいはSn)によシ接続
する方法がある。り上の方法では、チップ状タンタル固
体電解コンデンサを基板に半田ディツプ(a度240〜
250C’、 通4所要時間2〜3秒)Kよる方法で半
田付けを行えば、コンデンサ素子の陰極集電層6と陰極
側金属端子7とを接続されている半田の融点が半田ディ
ツプの温度より低いため、半田が溶は出し、半田による
接続部がはずれることがあり、信頼性が低いという欠点
を有している。
(Re) Connect the cathode current collecting layer 6 of the capacitor element shown in Fig. 1 and the cathode side metal terminal 8 whose surface has been treated with solder plating etc. using a cow FB (Sn/Pb=6/4 or Sn). In the above method, a chip-shaped tantalum solid electrolytic capacitor is soldered onto a substrate (240°C to 240°C).
If soldering is performed using the method (250C', time required for 2 to 3 seconds), the melting point of the solder connecting the cathode current collecting layer 6 of the capacitor element and the cathode side metal terminal 7 will be the temperature of the solder dip. Since the temperature is lower, the solder may melt and the solder connection may come off, resulting in low reliability.

(2)第1図に示したコンデンサ素子の陰極集電層6と
陰極側金属端子8とを導電性接着剤(エポキシ系、フェ
ノール系、ポリイミド系)を用いて固定乾燥させ接続す
る方法がある。以上の方法では、導電性接着剤の硬化に
時間がかかり、そのため量産性に不向きであり、また前
記記載第1項の半田付は方法と比較して、コンデンサ素
子の陰極集電層6と陰極側金属端子8との密着強度が捧
〜%であるという欠点を有している。
(2) There is a method of fixing and drying the cathode current collecting layer 6 of the capacitor element shown in Figure 1 and the cathode side metal terminal 8 using a conductive adhesive (epoxy, phenol, polyimide) and then connecting them. . In the above method, it takes time for the conductive adhesive to harden, which makes it unsuitable for mass production.In addition, compared to the method described in item 1 above, the soldering method is difficult to connect the cathode current collecting layer 6 of the capacitor element to the cathode. It has the disadvantage that the adhesion strength with the side metal terminal 8 is only 1.5%.

上述したよう忙、各々の接続方法にVi量産性あるいは
信頼性の点において問題があり、量産性から信頼性を同
時に満足するチップ状固体電解コンデンサの開発が望ま
れている。
As mentioned above, each connection method has problems in terms of Vi mass productivity and reliability, and there is a desire to develop a chip-shaped solid electrolytic capacitor that satisfies mass productivity and reliability at the same time.

発明の目的 本発明は上記欠点を解消するもので、量産性が容易でか
つ信頼性の高いチップ状固体電解コンデンサを提供する
ものである。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks and provides a chip-shaped solid electrolytic capacitor that can be easily mass-produced and is highly reliable.

発明の構成 この目的を達成するために、本発明のチップ状固体電解
コンデンサは、コンデンサ素子の電極に導電性の金属端
子を固相線240〜300Cの導電性金属により接続し
ている。この構成によれば、コンデンサ素子の電極と導
電性の金属端子とを接続する金属の固相線が、チップ状
固体電解コンデンサをプリント基板等圧実装するとき用
いる半田の溶融温度より高いため、プリント基板等に実
装するときの半田の熱によってコンデンサ素子の電極と
導電性の金属端子の接続部ははずれることはない。
Structure of the Invention In order to achieve this object, the chip-shaped solid electrolytic capacitor of the present invention has a conductive metal terminal connected to the electrode of a capacitor element by a conductive metal having a solidus line of 240 to 300C. According to this configuration, the solidus line of the metal that connects the electrode of the capacitor element and the conductive metal terminal is higher than the melting temperature of the solder used when mounting the chip-shaped solid electrolytic capacitor to the printed circuit board with equal pressure. The connection between the electrode of the capacitor element and the conductive metal terminal will not come off due to the heat of the solder when it is mounted on a board or the like.

実施例の説明 以下本発明の一実砲例を、チップ状固体電解コンデンサ
の一つであるチップ状タンタル固体電解コンデンサにつ
いて、図面を参照しながら説明する。
DESCRIPTION OF EMBODIMENTS An example of the present invention will be described below with reference to the drawings regarding a chip-shaped tantalum solid electrolytic capacitor, which is one of chip-shaped solid electrolytic capacitors.

本発明の一実権例のチップ状タンタル固体電解コンデン
サKVi第1図に示したコンデンサ素子を使用する。但
し、陰極集電層である銀導電性塗料には半田付は可能な
アクリル系熱可塑性樹脂と銀粉とを混練したものを用い
ている。また、陰極側の金属端子には、100μmのニ
ッケル板素材に1〜2μmの銅メッキを櫓し、更に牛F
B(Pb/5n=1/9 )のメッキを栴した金属板を
金型で外型打ち抜きしたものを使用する。
A chip-shaped tantalum solid electrolytic capacitor KVi, which is a practical example of the present invention, uses a capacitor element shown in FIG. However, as the silver conductive paint for the cathode current collecting layer, a mixture of solderable acrylic thermoplastic resin and silver powder is used. In addition, for the metal terminal on the cathode side, a 1-2 μm copper plating is applied to a 100 μm nickel plate material, and
A metal plate plated with B (Pb/5n=1/9) and punched out with a die is used.

前記コンデンサ素子の陰極集電層である鍋電性塗料層と
前記陰極側の金属端子とを融点の高い半田(Sn/Pb
/Ag=88/10./2 、液相線240(:’。
The pan electrical paint layer, which is the cathode current collecting layer of the capacitor element, and the metal terminal on the cathode side are bonded with high melting point solder (Sn/Pb
/Ag=88/10. /2, liquidus line 240 (:'.

固相線2 yotl’ )とaジン系シックス(比重o
、s5)とを用いて、半田付は温度3ootZ’、時間
1秒の条件で瞬間接続する。前記コンデンサ素子の陽極
側突出導出線と陽極側金属端子とはスポット溶接によp
接続を行う。第3図a[コンデンサ素子9に陽極側の金
属端子1oをスポット溶接により接続し、陰極側の金属
端子11を融点の高い半田12とロジン系7ラツクスに
より接続した正面図を示している。両金属端子10.1
1を接続したコンデンサ素子9は第3図bK示すように
両端より金属端子10.11を引き出すようにし、トラ
ンスファー成形によりエポキシ系又はシリコン系樹脂で
モールド外装し、前記外装樹脂表面上に定格電圧、容量
を表示し、第3図Cに示すように、両金属端子10.1
1をモールド樹脂13の両端側面に沿って#1は直角に
折り曲げ加工し端子を形成する。その後、エージングし
てチップ状タンタル固体電解コンデンサを作成しfC。
Solidus line 2 yotl') and agin system six (specific gravity o
, s5), instantaneous soldering is performed at a temperature of 3ootZ' and a time of 1 second. The protruding wire on the anode side of the capacitor element and the metal terminal on the anode side are spot welded.
Make the connection. FIG. 3a shows a front view in which the metal terminal 1o on the anode side is connected to the capacitor element 9 by spot welding, and the metal terminal 11 on the cathode side is connected to the solder 12 with a high melting point by rosin-based 7 lux. Both metal terminals 10.1
The capacitor element 9 to which 1 is connected has metal terminals 10 and 11 pulled out from both ends as shown in FIG. Indicate the capacitance and connect both metal terminals 10.1 as shown in Figure 3C.
#1 is bent at right angles along both side surfaces of the molded resin 13 to form terminals. After that, a chip-shaped tantalum solid electrolytic capacitor is produced by aging and fC.

チップ状固体電解コンデンサをプリント基板に実装する
ときに、熱板リフローによる方法と半田ディツプによる
方法とがある。以上の2つの方法について、本発明のチ
ップ状タンタル固体電解コンデンサの陰極側の金属端子
とコンデンサ素子の陰極集電層とを接続する半田の種類
を変えて実、験した。
When mounting a chip-shaped solid electrolytic capacitor on a printed circuit board, there are two methods: hot plate reflow and solder dip. The above two methods were tested by changing the type of solder used to connect the metal terminal on the cathode side of the chip-shaped tantalum solid electrolytic capacitor of the present invention and the cathode current collecting layer of the capacitor element.

(実験例1) 熱板リフローによる実験装置を第4図に示す。(Experiment example 1) Figure 4 shows an experimental setup using hot plate reflow.

チップ状タンタル固体電解コンデンサ14はプリント基
板16(厚さ:10m、材質:フェノール)の上面に置
き、ヒーター17により熱板プレート16を加熱し、プ
リント基板14の表面十に塗布された半田をとかし、チ
ップ状タンタル固体電解コンデンサ14の金属端子をプ
リン基板16の表面上例接続する。以上の熱板リフロー
の方法でチップ状タンタル固体電解コンデンサの陰極層
と陰極側金属端子を接続させている半田の種類を変えて
、チップ状タンタル固体電解コンデンサからの半田の飛
び出しについて実験を行い、以下の表1の結果を得た。
The chip-shaped tantalum solid electrolytic capacitor 14 is placed on the top surface of a printed circuit board 16 (thickness: 10 m, material: phenol), and the hot plate 16 is heated by the heater 17 to melt the solder applied to the surface of the printed circuit board 14. , the metal terminals of the chip-shaped tantalum solid electrolytic capacitor 14 are connected to the surface of the printed circuit board 16. Using the hot plate reflow method described above, we experimented with solder popping out of the chip-shaped tantalum solid electrolytic capacitor by changing the type of solder that connects the cathode layer of the chip-shaped tantalum solid electrolytic capacitor to the cathode side metal terminal. The results shown in Table 1 below were obtained.

熱板プレートの温度は26o C−表 1 A(従来品)−・・−S n/P b=e/4 、固相
線183CB(従来品)−−−8n/Aq=98/2.
固相1j1221pC(本発明品)−・−3n/Pb/
Ag=10/88/22゜固相線240あるいは276
C 「○」印 ・・・・・・半田の飛び出しなし「×」印 
・・・・・・半田の飛び出しあり(実験例2) 上記実験例1と同様なる半田A、B、Cを用いたチップ
状タンタル固体電解コンデンサを時間を変えて半田ディ
ツプし、チップ状タンタル固体電解コンデンサ1万個の
オープン発生個数を調べ以下の表2の結果を得た。半田
ディツプの温度は260Cと一定とした。
The temperature of the hot plate is 26oC - Table 1 A (conventional product) -S n/P b = e/4, solidus line 183CB (conventional product) - 8n/Aq = 98/2.
Solid phase 1j1221pC (product of the present invention)--3n/Pb/
Ag=10/88/22° solidus line 240 or 276
C “○” mark ・・・・・・No solder protrusion “x” mark
...Solder popping out (Experiment Example 2) Chip-shaped tantalum solid electrolytic capacitors using solders A, B, and C similar to those in Experiment Example 1 were dipped in solder for different times to form a chip-shaped tantalum solid electrolytic capacitor. The number of open circuits in 10,000 electrolytic capacitors was investigated and the results shown in Table 2 below were obtained. The temperature of the solder dip was kept constant at 260C.

表 2 以上の実験例1,2に示す結果より明らかなように、本
発明によれば、コンデンサ素子と陰極側金属端子とを接
続する半田の飛び出しもなく、オープン発生率も低下す
る。なお、実験例1,2は示していないが、固相1j3
00Cの半田を用いても固体電解コンデンサに悪影響を
及はすことはないことがわかっているため、前記の固相
線300Cの半田も十分実権可能である。よって本発明
の一実抱例の半田Cを使用したチップ状タンクル固体電
解コンデンサはディップ及び熱板リフローによってプリ
ント基板に実装される場合も十分な信頼性を確保するこ
とができる。しかし、ただ単に高融点の半田を使用すれ
ば、タンタル酸化皮膜の劣化による漏れ電流の増大を招
き、かつ導電性熱可塑性樹脂の劣化によるtanδ特性
の低下を生じる。そのため、本発明の実施例のチップ状
タンタル固体電解コンデンサには熱劣化の少ない導電性
熱可塑性樹脂を使用すると共に、半田付は温度が320
C以下であること、つまり、半田の同相線が3ooc以
下(半田の固相線よシ2oC高い温度で半田付けを行う
)のものを使用する限りにおいては、固体電解コンデン
サにおける熱劣化は最小限に抑えることができる。
Table 2 As is clear from the results shown in Experimental Examples 1 and 2 above, according to the present invention, the solder connecting the capacitor element and the cathode side metal terminal does not jump out, and the open occurrence rate is also reduced. Although not shown in Experimental Examples 1 and 2, solid phase 1j3
Since it is known that the use of 00C solder does not have an adverse effect on solid electrolytic capacitors, it is also possible to use solder with a solidus line of 300C. Therefore, a chip-shaped tank solid electrolytic capacitor using solder C according to an embodiment of the present invention can ensure sufficient reliability even when mounted on a printed circuit board by dipping and hot plate reflow. However, simply using a solder with a high melting point causes an increase in leakage current due to deterioration of the tantalum oxide film, and a decrease in tan δ characteristics due to deterioration of the conductive thermoplastic resin. Therefore, in the chip-shaped tantalum solid electrolytic capacitor of the embodiment of the present invention, a conductive thermoplastic resin with little thermal deterioration is used, and the soldering temperature is 320°C.
In other words, as long as the common mode line of the solder is 3 ooc or less (soldering is carried out at a temperature 2 oC higher than the solidus line of the solder), thermal deterioration in solid electrolytic capacitors is minimal. can be suppressed to

発明の効果 以上のように本発明は、コンデンサ素子の電極と導電性
の金属板を溶融240〜5oOCという融点の高い金属
を用いて接続するため、半田ディツプ及び熱板リフロー
等によるチップ状電子部品の実装時においても、コンデ
ンサ素子の電極と導電性の金属板の接続部がオープンす
ることを防止でき、十分信頼性の高いチップ状固体電解
コンデンサを提供できるものである。
Effects of the Invention As described above, the present invention connects the electrode of a capacitor element and a conductive metal plate using a metal with a high melting point of 240 to 5oOC. Even during mounting, the connection between the electrode of the capacitor element and the conductive metal plate can be prevented from opening, and a sufficiently reliable chip-shaped solid electrolytic capacitor can be provided.

しかも、単に融点を高めた金属で接続すれば接続部の特
性の熱劣化を招く恐れがあることも同時に考慮し、固相
m240〜3ooCというチップ状固体電解コンデンサ
の電極と導電性の金属板の接続には最適の温度を有した
金属を利用しており、その効果は大なるものがある。
Moreover, we also took into consideration that simply connecting with a metal with a high melting point could lead to thermal deterioration of the characteristics of the connection part, so we decided to connect the electrodes of a chip-shaped solid electrolytic capacitor called solid phase m240~3ooC with a conductive metal plate. A metal with an optimal temperature is used for the connection, which has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチップ状タンタル固体電解コンデンサの断面面
、第2図は陽極側金属端子及び陰極側金属端子の斜視図
、第3図aは陽陰極側金属端子を接1・・・・・・突出
導出線(電極)、θ・・・・・・陰極層(電極L9・・
・・・・コンデンサ素子÷寄中叢#≠#埠、10・・・
・・・陽極側金属端子(導電性の金属端子)、11・・
・・・・陰極側金属端子(導電性の金属環モ、12・・
・・・半田(固、#a級240〜300Cの導電性金属
)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Figure 1 is a cross-sectional view of a chip-shaped tantalum solid electrolytic capacitor, Figure 2 is a perspective view of the anode side metal terminal and the cathode side metal terminal, and Figure 3a is the connection between the anode and cathode side metal terminals. Protruding lead wire (electrode), θ... cathode layer (electrode L9...
・・・・Capacitor element ÷ Yorichusou #≠#Bu, 10...
...Anode side metal terminal (conductive metal terminal), 11...
...Cathode side metal terminal (conductive metal ring, 12...
...Solder (hard, #A class 240-300C conductive metal). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) コンデンサ素子の電極に導電性の金属端子を固
相線240〜300Cの導電性金属により接続したチッ
プ状固体電解コンデンサ。 僻)固相線240〜300Cの導電性金属として、鉛又
は鉛−錫合金を主成分とし、かつ銀を2〜20重量パー
セント含有する金属を用いた特許請求の範囲第1項記載
のチップ状固体電解コンデンサ。 (3ン 固相線240〜300Cの導電性金属きして、
錫の含有量が20重量パーセント以下の合金を用いた特
許請求の範囲第1項記載のチップ状固体電解コンデンサ
(1) A chip-shaped solid electrolytic capacitor in which a conductive metal terminal is connected to the electrode of a capacitor element by a conductive metal with a solidus line of 240 to 300C. 1) A chip-shaped chip according to claim 1, using a metal containing lead or a lead-tin alloy as a main component and containing 2 to 20 weight percent silver as the conductive metal with a solidus line of 240 to 300 C. Solid electrolytic capacitor. (3) Using a conductive metal with a solidus line of 240~300C,
The chip-shaped solid electrolytic capacitor according to claim 1, which uses an alloy having a tin content of 20% by weight or less.
JP59070266A 1984-04-09 1984-04-09 Chip-shaped solid electrolytic condenser Pending JPS60213017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070266A JPS60213017A (en) 1984-04-09 1984-04-09 Chip-shaped solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070266A JPS60213017A (en) 1984-04-09 1984-04-09 Chip-shaped solid electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS60213017A true JPS60213017A (en) 1985-10-25

Family

ID=13426549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070266A Pending JPS60213017A (en) 1984-04-09 1984-04-09 Chip-shaped solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60213017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143411A (en) * 1988-11-24 1990-06-01 Nec Corp Chip-type solid electrolytic capacitor
CN103526073A (en) * 2013-10-24 2014-01-22 伊川县宇光新能源照明开发有限公司 Lead-tin-silver alloy for preparing lead-acid cell and preparation process thereof
WO2021153522A1 (en) * 2020-01-28 2021-08-05 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221664A (en) * 1975-08-12 1977-02-18 Matsushita Electric Ind Co Ltd Solid state electrolytic capacitor
JPS5367870A (en) * 1976-11-29 1978-06-16 Nippon Electric Co Electronic parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221664A (en) * 1975-08-12 1977-02-18 Matsushita Electric Ind Co Ltd Solid state electrolytic capacitor
JPS5367870A (en) * 1976-11-29 1978-06-16 Nippon Electric Co Electronic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143411A (en) * 1988-11-24 1990-06-01 Nec Corp Chip-type solid electrolytic capacitor
CN103526073A (en) * 2013-10-24 2014-01-22 伊川县宇光新能源照明开发有限公司 Lead-tin-silver alloy for preparing lead-acid cell and preparation process thereof
WO2021153522A1 (en) * 2020-01-28 2021-08-05 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
US5221038A (en) Method for forming tin-indium or tin-bismuth solder connection having increased melting temperature
KR0144805B1 (en) Tin bismuth solder connection having improved high temperature properties and process for forming the same
US6139979A (en) Lead-free solder and soldered article
US4935848A (en) Fused solid electrolytic capacitor
KR100452469B1 (en) Solid electrolytic capacitor and method of manufacturing the same
US6294826B1 (en) Molded electronic component having pre-plated lead terminals and manufacturing process thereof
JP3425332B2 (en) Electronic component electrode material and electronic component electrode manufacturing method
JP2004165637A (en) Semiconductor device
JPS60213017A (en) Chip-shaped solid electrolytic condenser
JP2001230151A (en) Lead-less chip component
JP2637863B2 (en) Semiconductor device
JPS6160570B2 (en)
JPH0528752Y2 (en)
JPH0616471B2 (en) Solid electrolytic capacitor with built-in fuse mechanism
WO2000075940A1 (en) Electronic component, and electronic apparatus in which the electronic component is mounted and its manufacturing method
JP2001015188A (en) Airtight terminal and its manufacture
JP2002164246A (en) Electronic component
JPH04302116A (en) Chip type electronic parts with base stand
JP4368081B2 (en) Circuit device with chip components mounted
JPS59993A (en) Method of bonding metal plate electrode
JP2621236B2 (en) Wound electrolytic capacitor with fuse
JP2674789B2 (en) Board with terminal pins
JPH0142335Y2 (en)
JPS5825214A (en) Leadless cylindrical porcelain condenser
JPH05259632A (en) Printed wiring board and manufacture thereof