JPS60212979A - Method of obtaining conductive adhesion between electrodes - Google Patents

Method of obtaining conductive adhesion between electrodes

Info

Publication number
JPS60212979A
JPS60212979A JP6965484A JP6965484A JPS60212979A JP S60212979 A JPS60212979 A JP S60212979A JP 6965484 A JP6965484 A JP 6965484A JP 6965484 A JP6965484 A JP 6965484A JP S60212979 A JPS60212979 A JP S60212979A
Authority
JP
Japan
Prior art keywords
adhesive
electrodes
conductive fine
properties
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6965484A
Other languages
Japanese (ja)
Inventor
恭司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Paint Co Ltd
Original Assignee
Shinto Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Paint Co Ltd filed Critical Shinto Paint Co Ltd
Priority to JP6965484A priority Critical patent/JPS60212979A/en
Publication of JPS60212979A publication Critical patent/JPS60212979A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電子機器における電極間の導電性接着を得る方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of obtaining conductive adhesion between electrodes in electronic devices.

従来電子機器において回路パターンの構成材料の主流は
絶縁材料かPCBであり、配線材の主流は線材、ハーネ
スであった。またこれらを接続する方法としてはハンダ
付け、ワイヤボンディング、フネクタ等が適用されてい
た。
Conventionally, in electronic devices, the main constituent materials for circuit patterns have been insulating materials or PCBs, and the main wiring materials have been wires and harnesses. In addition, methods such as soldering, wire bonding, and wire bonding have been used to connect these devices.

しかしなから近年、回路構成材料としてセラミックス、
金属板、FPC等の新しい材料が採用されるとともに小
形、軽量、高密度化が急速に進められており、従来の接
続方法ではこれら本来の目的を充分に達成することが困
難になっている。
However, in recent years, ceramics have been used as circuit construction materials.
With the adoption of new materials such as metal plates and FPC, and rapid progress toward smaller size, lighter weight, and higher density, it has become difficult to fully achieve these original purposes with conventional connection methods.

例えばプリント基板間の電極群の接着、あるいはディス
プレイパネル電極をプリント基板に装着する際、従来の
ハンダ付は方法では電極群のパターン密度の増大、ある
いはディスプレイパネル電極とプリント基板間の間隙が
あまりにも狭すぎるため、例えばハンダ付けの際これら
のハンダ付は必要個所以外にハンダの橋架けを行なって
しまう問題が発生する。
For example, when adhering electrode groups between printed circuit boards or attaching display panel electrodes to a printed circuit board, conventional soldering methods increase the pattern density of the electrode groups, or the gap between the display panel electrodes and the printed circuit board is too large. Because it is too narrow, for example, when soldering, a problem arises in that the solder is bridged to areas other than those where it is necessary.

また、コネクタを使用する場合は、個々の電子部品によ
って電極群のパターン密度が異なるため、固有の電極ピ
ッチを有する専用コネクタが必要となる。
Furthermore, when using a connector, the pattern density of the electrode group differs depending on the individual electronic components, so a dedicated connector with a unique electrode pitch is required.

本発明はかかる電極間の接続方法として接着性、導電性
、絶縁性の三つの機能を同時に保有し、さらに導電性お
よび絶縁性に方向性を持たせた接着剤を用いて電極間を
接続することにより前記の如き問題を解消したものであ
る。
The present invention connects the electrodes using an adhesive that has three functions of adhesiveness, conductivity, and insulation at the same time and has directionality in conductivity and insulation. This solves the above-mentioned problems.

すなわち本発明は球状あるいはそれに類似形状の導電性
微粉末を、接着性を有する絶縁性媒体中に均一に混合分
散してなり、接着時の加圧により加圧方向に対しては導
電性を示すが、加圧方向に直角に交る面の方向に対して
は絶縁性を示す接着剤を用いて電極間を加圧接着するこ
とにより前記電極間の導電性接着を得る方法を提供する
ものである。
That is, the present invention is made by uniformly mixing and dispersing conductive fine powder in a spherical shape or a similar shape in an insulating medium having adhesive properties, and exhibits conductivity in the direction of pressure when applied during adhesion. However, the present invention provides a method for obtaining conductive adhesion between the electrodes by pressurizing and adhering the electrodes using an adhesive that exhibits insulating properties in the direction of the plane perpendicular to the pressing direction. be.

本発明に使用する接着剤は、前記のように接着性、導電
性、絶縁性の三つの機能を同時に有し、さらに導電性お
よび絶縁性に方向性を有するものであり、導電性を発現
するための導電性微粉末と、接着性および絶縁性を発現
するための絶縁性媒体から構成される。
The adhesive used in the present invention has the three functions of adhesiveness, conductivity, and insulation at the same time as described above, and also has directionality in conductivity and insulation, and exhibits conductivity. It is composed of conductive fine powder to provide adhesive properties and an insulating medium to provide adhesive and insulating properties.

本発明に使用する接着剤は、前記導電性微粉末を前記絶
縁性媒体中に均一に混合分散してなるものであるか、導
電性微粉末の含有量により未加圧状態での電気的性質を
異にするものである。
The adhesive used in the present invention may be made by uniformly mixing and dispersing the conductive fine powder in the insulating medium, or may have electrical properties in an unpressurized state depending on the content of the conductive fine powder. The difference is that

すなわち絶縁性媒体中での導電性微粉末の含有量が小さ
い場合は、接着剤は未加圧状態では絶縁性を示すが、こ
れを電極間に塗布し加圧すると加圧方向に直角に交る面
の方向に対しては絶縁性を保持しているが、加圧方向の
導電性微粉末間の距離が接近し、導電性微粉末の接触数
が増大すること1ζより、加圧方向に導電性が発現され
る。
In other words, if the content of conductive fine powder in the insulating medium is small, the adhesive exhibits insulating properties in the unpressurized state, but when applied between the electrodes and pressurized, the adhesive exhibits insulating properties perpendicular to the direction of application. However, the distance between the conductive fine powders in the pressurizing direction becomes closer, and the number of contacts between the conductive fine powders increases. Conductivity is developed.

また絶縁性媒体中での導電性微粉末の含有量か大きい場
合は、接着剤は未加圧状態では導電性を示すが、これを
電極間に塗布し加圧すると加圧方向に対しては導電性を
保持しているが、加圧方向に直角に交る面の方向の導電
性微粉末間の距離か拡大し、導電性微粉末の接触数が減
少することにより加圧方向に直角に交る面の方向に絶縁
性か発現される。
Furthermore, if the content of conductive fine powder in the insulating medium is large, the adhesive exhibits conductivity in the unpressurized state, but when applied between electrodes and pressurized, the adhesive exhibits conductivity in the direction of pressure. Although the conductivity is maintained, the distance between the conductive fine powders in the direction of the plane perpendicular to the pressing direction increases, and the number of contacts between the conductive fine powders decreases, so that the distance between the conductive fine powders in the direction perpendicular to the pressing direction increases Insulating properties are developed in the direction of the intersecting planes.

本発明に使用する接着剤は前記のような電気的性質を有
するものであるか、導電性微粉末の含有量か少なすきる
場合、すなわちその含有量が接着性を有する絶縁性媒体
と導電性微粉末の合計重量に対しおよそ10重量%以下
の場合は未加圧状態では勿論、加圧状態においても(加
圧方向に対して)絶縁性を示し、逆に含有量が多すきる
場合、すなわちその含有量がおよそ90重i1%以上の
場合は、未加圧状態では勿論、加圧状態においても(加
圧方向jこ直角に交る面の方向に対して)導電性を示す
ようになり、導電性と絶縁性方向異方性を発現できなく
なり、また接着性も低下するので好ましくない。
The adhesive used in the present invention has the above-mentioned electrical properties, or if the content of conductive fine powder is small, that is, if the content is small, the adhesive has an adhesive property and an insulating medium has conductive properties. When the content is approximately 10% by weight or less based on the total weight of the fine powder, it exhibits insulating properties not only in an unpressurized state but also in a pressurized state (with respect to the pressurizing direction); In other words, when the content is approximately 90w/i1% or more, it exhibits conductivity not only in an unpressurized state but also in a pressurized state (with respect to the direction of the plane perpendicular to the pressurizing direction j). This is not preferable because it becomes impossible to exhibit conductivity and directional anisotropy of insulation, and adhesiveness also decreases.

本発明の接着剤に使用する導電性微粉末としては、金、
銀、銅、ニッケル等の通常の導電性金属、導電性カーボ
ン、酸化スズ、酸化インジュウム等の導電性酸化物、炭
化チタン、窒化チタン等の公知の導電性微粉末が使用で
きるが、その形状は球状あるいは球状の類似形状すなわ
ち隋円球、多面体の形状が好ましく、凸起があってもか
まわない。その形状が球状あるいはそれに類似形状でな
い場合、すなわち針状、板状等の場合は前記の如き導電
性および絶縁性の方向異方性が得られないので本発明に
は使用できない。
The conductive fine powder used in the adhesive of the present invention includes gold,
Conventional conductive metals such as silver, copper, and nickel, conductive oxides such as conductive carbon, tin oxide, and indium oxide, and known conductive fine powders such as titanium carbide and titanium nitride can be used, but their shapes are A spherical shape or a shape similar to a spherical shape, that is, a spherical shape or a polyhedral shape is preferable, and convexities may be present. If the shape is not spherical or similar, ie, needle-like, plate-like, etc., the directional anisotropy of conductivity and insulation as described above cannot be obtained, and therefore it cannot be used in the present invention.

本発明の接着剤Iこ使用する絶縁性媒体としては、接着
性および絶縁性を有するアクリル系、エホキシ系、ウレ
タン系、フェノール系、シアノアクリレート系、プラス
チゾル系、クロロプレン系、ニトリルゴム系等の接着剤
として通常使用されている成分が使用できるが、接着時
に接着剤の流動性がない状態が望ましく、従って一般に
感圧型接着剤と称される接着剤に使用する絶縁性媒体が
好ましい。
Adhesives of the present invention I The insulating media used include acrylic, epoxy, urethane, phenol, cyanoacrylate, plastisol, chloroprene, nitrile rubber, etc. adhesives that have adhesive and insulating properties. Although components commonly used as adhesives can be used, it is desirable that the adhesive has no fluidity during bonding, and therefore an insulating medium used in adhesives generally referred to as pressure-sensitive adhesives is preferred.

本発明の方法は、前記の如き導電性微粉末を前記絶縁性
媒体中に均一に混合分散してなる接着剤を用いて電極間
を加圧接着するものであり、その加圧圧力は、接着剤が
加圧接着後に前記のような導電性および絶縁性の方向異
方性を発現できる程度でなければならず、およそ1(u
P/25−以上が好ましい。
In the method of the present invention, electrodes are bonded under pressure using an adhesive obtained by uniformly mixing and dispersing the conductive fine powder as described above in the insulating medium. The agent must be able to exhibit the above-mentioned directional anisotropy of conductivity and insulation after pressure bonding, and must be approximately 1 (u
P/25- or more is preferable.

また接着に際しては、接着剤を被着材たる電極の片方あ
るいは双方に、アプリケーター等適当な方法で均一な厚
さに塗布し、接着剤中に溶剤等の揮発成分が含まれる場
合は常温ないし加温(約60℃程度)により揮発分を揮
発させた後加圧接着する。
In addition, when bonding, apply the adhesive to one or both of the electrodes that are the adherend material to a uniform thickness using an applicator or other suitable method. After the volatile components are evaporated by heating (approximately 60° C.), pressure bonding is performed.

以上説明したように電極間の接着に本発明の方法を採用
した場合は小形、軽量、高密度化する電子機器等の電極
間の導通および絶縁を極めて容易かつ効率的に得ること
がで傘る。
As explained above, when the method of the present invention is adopted for bonding between electrodes, it is possible to extremely easily and efficiently obtain conduction and insulation between electrodes in electronic devices that are becoming smaller, lighter, and more dense. .

以下実施側により本発明を説明する。The present invention will be explained below based on the implementation side.

使用した接着剤の組成を下表1に示す(数値は重量基準
である)。
The composition of the adhesive used is shown in Table 1 below (values are based on weight).

表1 接着剤の組成 (6)希釈剤:トルオール/アセトン−1/1比(重量
)上記表1に示した試料A1−應6の各組成物を、それ
ぞれ250CCのガラス容器にガラスピーズ(東芝バロ
テイー二製、08503M ) 120りと共に入れ、
アジテータ−ミル(レッドデビル社製)にて1時間分散
し、光学顕微鏡にて一次粒子まで均一に分散しているこ
とを確認し各試料とした。
Table 1 Adhesive Composition (6) Diluent: Toluene/Acetone - 1/1 Ratio (Weight) Each composition of Samples A1 to 6 shown in Table 1 was placed in a 250 cc glass container using Glass Peas (Toshiba Made by Balo Teini, 08503M) Put it together with 120 ri,
The mixture was dispersed for 1 hour using an agitator mill (manufactured by Red Devil Co., Ltd.), and uniform dispersion of even the primary particles was confirmed using an optical microscope, and then each sample was prepared.

実施例 1 第1図に本実施例で使用したITOガラス板を示す。第
1図において1はガラス基板であり、2は酸化インジウ
ム薄膜である。このITOガラス板はa= 25si、
b= 4si%c =8m1d =1mの如く作った。
Example 1 FIG. 1 shows the ITO glass plate used in this example. In FIG. 1, 1 is a glass substrate, and 2 is an indium oxide thin film. This ITO glass plate has a=25si,
It was made as follows: b=4si%c=8m1d=1m.

酸化インジウム薄膜2の厚さは0.2声1、抵抗値は1
00n点対点/cllIであった。ガラス基板の厚さは
1.5閣であった。
The thickness of the indium oxide thin film 2 is 0.2 mm, and the resistance value is 1.
00n points vs. points/cllI. The thickness of the glass substrate was 1.5 mm.

第1図に示すITOガラス板の一端から10mg(第2
図のeで示す)のところまで、上記試料A1の接着剤3
を塗布し、溶剤を揮発させるため60℃で3分間乾燥し
、室温で20分放置後、更に別の同一のITOガラス板
を、第2図に示す如く酸化インジウム薄膜が対向するよ
うにその一端から10閣だけ貼り合せて測定試料を作っ
た。
10 mg from one end of the ITO glass plate shown in Figure 1 (second
The adhesive 3 of the sample A1
After drying at 60°C for 3 minutes to volatilize the solvent and leaving it for 20 minutes at room temperature, another identical ITO glass plate was coated on one end with the indium oxide thin film facing the other, as shown in Figure 2. A measurement sample was made by pasting together only 10 pieces.

上記測定試料をプレス機(工事製作所製、簡易型テスト
プレス機)にて種々の圧、力で加圧し、回路方向の電極
間(第3図の点Aと点Bの間)および回路間(第3図の
点Aと点Cの間)の抵抗値を測定した。その結果を表2
に示す。抵抗測定には測定範囲101〜10@nではタ
ケダ理研社製、デジタルマルチメーターR−8840を
使用し、測定範囲106〜l Qll flではタケダ
理研社製、超絶縁抵抗/微小電流計TR−13601を
使用した。
The above measurement sample was pressurized with various pressures and forces using a press machine (manufactured by Koji Seisakusho, a simple test press machine), and was applied between the electrodes in the circuit direction (between points A and B in Figure 3) and between the circuits (between points A and B in Figure 3). The resistance value between points A and C in FIG. 3 was measured. Table 2 shows the results.
Shown below. For resistance measurement, a digital multimeter R-8840 manufactured by Takeda Riken Co., Ltd. is used for the measurement range 101 to 10@n, and a super insulation resistance/micro current meter TR-13601 manufactured by Takeda Riken Co., Ltd. is used for the measurement range 106 to l Qll fl. It was used.

また試料A2〜6の各接着剤を用いて同様に抵抗値0を
測定した。その結果も表2に示す。
Further, the resistance value 0 was similarly measured using each of the adhesives of Samples A2 to A6. The results are also shown in Table 2.

A1および煮4において、加圧力10[p/2.5dで
回路量抵抗値が急激な増大を示し、絶縁性が発現し、異
方導電性となる。
In A1 and Boil 4, the circuit resistance value showed a rapid increase at a pressing force of 10 [p/2.5d, and insulation properties were developed, resulting in anisotropic conductivity.

また、A2および扁5では、加圧力5Kp/2.5dま
では回路方向抵抗値が10参オーダーで絶縁性であった
ものが、101!p/2.5ajより急激な抵抗値の低
下が認められ導電性が発現し、異方導電性となる。
In addition, for A2 and Flat 5, the resistance in the circuit direction was in the order of 10 and was insulating until the pressure was 5Kp/2.5d, but it was 101! A rapid decrease in resistance value is observed from p/2.5aj, and conductivity is developed, resulting in anisotropic conductivity.

一方、フレーク状の導電性微粉末を使用した煮3および
煮6では、加圧力の変化による抵抗値の変化は小さく異
方導電性は発現していない。
On the other hand, in Boiled 3 and Boiled 6 which used flaky conductive fine powder, the change in resistance value due to the change in pressing force was small and anisotropic conductivity was not expressed.

実施例 2 実施例1で使用したI’l’Oガラス板の代りζこ、同
じ構成の銅回路エポキシガラス板(銅回路の厚さ35声
乳、抵抗値0.01n点対点/cm)を用い、実施例1
と同様の試験を仔ない表3の結果を得た。
Example 2 Instead of the I'l'O glass plate used in Example 1, a copper circuit epoxy glass plate with the same configuration (copper circuit thickness 35mm, resistance value 0.01n points/cm) Example 1
A similar test was conducted and the results shown in Table 3 were obtained.

表3 プリント回路板での試験結果 A2および扁5では、ITOガラス板と同様、加圧力1
011$’/2.5cIIから回路方向の抵抗値が急激
に低下し導電性となり異方導電性となる。
Table 3 Test results for printed circuit boards A2 and flat 5 have a pressing force of 1, similar to the ITO glass plate.
From 011$'/2.5cII, the resistance value in the circuit direction suddenly decreases and becomes conductive, becoming anisotropically conductive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はITOガラス基板の斜視図であり、第2図はI
TOガラス基板を貼り合せた状態を示す側面図であり、
第3図は加圧接着後のITOガラス基板を示す斜視図で
ある。 1はガラス基板、2は酸化インジウム薄膜、3は接着剤
。 特許出願人 神東塗料株式会社 第2図 第3図
Figure 1 is a perspective view of an ITO glass substrate, and Figure 2 is an ITO glass substrate.
It is a side view showing a state in which TO glass substrates are bonded,
FIG. 3 is a perspective view showing the ITO glass substrate after pressure bonding. 1 is a glass substrate, 2 is an indium oxide thin film, and 3 is an adhesive. Patent applicant Shinto Paint Co., Ltd. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、 球状あるいはそれに類似形状の導電性微粉末を接
着性を有する絶縁性媒体中に均一に混合分散してなり、
接着時の加圧により加圧方向に対しては導電性を示すが
、加圧方向に直角1こ交る面の方向に対しては絶縁性を
示す接着剤を用いて電極間を加圧接着することを特徴と
する前記電極間の導電性接着を得る方法。 2 接着剤が、球状あるいはそれに類似形状の導電性微
粉末を、接着性を有する絶縁性媒体中に均一に混合分散
してなる接着剤で、未加圧状態では絶縁性を示すが、接
着時の加圧により、加圧方向にのみ導電性を示す接着剤
である特許請求の範囲第1項記載の電極間の導通および
絶縁を得る方法。 3 接着剤が球状あるいはそれに類似形状の導電性微粉
末を、接着性を有する絶縁性媒体中1こ均一に混合分散
してなる接着剤で、未加圧状態では導電性)示すが、接
着時の加圧により、加圧方向に直角に交る面の方向にの
み絶縁性を示す接着剤である特許請求の範囲第1項記載
の電極間の導通および絶縁を得る方法。
[Claims] 1. Conductive fine powder in a spherical or similar shape is uniformly mixed and dispersed in an adhesive insulating medium,
Pressure bonding between the electrodes using an adhesive that exhibits conductivity in the direction of pressure due to the pressure applied during bonding, but insulating properties in the direction perpendicular to the direction of pressure. A method for obtaining conductive adhesion between the electrodes, characterized in that: 2 The adhesive is made by uniformly mixing and dispersing spherical or similar conductive fine powder into an insulating medium that has adhesive properties. 2. A method for obtaining conduction and insulation between electrodes according to claim 1, wherein the adhesive exhibits electrical conductivity only in the direction of application of pressure. 3 An adhesive made by uniformly mixing and dispersing spherical or similar conductive fine powder in an insulating medium that has adhesive properties. 2. The method of obtaining electrical conduction and insulation between electrodes according to claim 1, wherein the adhesive exhibits insulation properties only in the direction of a plane perpendicular to the direction of application of the adhesive.
JP6965484A 1984-04-06 1984-04-06 Method of obtaining conductive adhesion between electrodes Pending JPS60212979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6965484A JPS60212979A (en) 1984-04-06 1984-04-06 Method of obtaining conductive adhesion between electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6965484A JPS60212979A (en) 1984-04-06 1984-04-06 Method of obtaining conductive adhesion between electrodes

Publications (1)

Publication Number Publication Date
JPS60212979A true JPS60212979A (en) 1985-10-25

Family

ID=13409038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6965484A Pending JPS60212979A (en) 1984-04-06 1984-04-06 Method of obtaining conductive adhesion between electrodes

Country Status (1)

Country Link
JP (1) JPS60212979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175365A (en) * 1987-01-07 1988-07-19 ジエイムズ ア−ル クレメント Electronic device with adhesive which is conductive along single axis and manufacture of the same
JPH0521094A (en) * 1991-07-12 1993-01-29 Hitachi Chem Co Ltd Anisotropic electric conductive adhesive agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175365A (en) * 1987-01-07 1988-07-19 ジエイムズ ア−ル クレメント Electronic device with adhesive which is conductive along single axis and manufacture of the same
JPH0521094A (en) * 1991-07-12 1993-01-29 Hitachi Chem Co Ltd Anisotropic electric conductive adhesive agent

Similar Documents

Publication Publication Date Title
US5336443A (en) Anisotropically electroconductive adhesive composition
US4729809A (en) Anisotropically conductive adhesive composition
US5084211A (en) Anisotropically electroconductive adhesive
JP2000195339A (en) Anisotropic conductive adhesive film
JPH0623349B2 (en) Anisotropic conductive adhesive
JPH0346774A (en) Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
JPS61231066A (en) Anisotropically conductive hot-melt adhesive
JPS60212979A (en) Method of obtaining conductive adhesion between electrodes
JPS608377A (en) Anisotropically electrically-conductive adhesive
JPH03129607A (en) Anisotropic conductive film
JP2003336016A (en) Anisotropically electrically conductive double-sided tape and method of mounting electronic part by using the same
JP3449889B2 (en) Anisotropic conductive adhesive
JPS63110506A (en) Anisotropic conducting sheet
JPH08167328A (en) Anisotropic conductive film
KR920005071B1 (en) Printed circuit board
JPH07118618A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JP2954241B2 (en) Anisotropic conductive film
JPH0931419A (en) Anisotropic conductive adhesive film
KR20030037017A (en) Anisotropic conductive adhesive film
EP0134624A2 (en) Multiple-connector adhesive tape
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JPH08124613A (en) Structure and method for connecting electric member
JP3782590B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH0521157B2 (en)
JPS61287974A (en) Anisotropically conductive adhesive