JPS60212954A - Electron microscope - Google Patents

Electron microscope

Info

Publication number
JPS60212954A
JPS60212954A JP6902784A JP6902784A JPS60212954A JP S60212954 A JPS60212954 A JP S60212954A JP 6902784 A JP6902784 A JP 6902784A JP 6902784 A JP6902784 A JP 6902784A JP S60212954 A JPS60212954 A JP S60212954A
Authority
JP
Japan
Prior art keywords
electron microscope
electron
vacuum
lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6902784A
Other languages
Japanese (ja)
Inventor
Masashi Kamimura
上村 昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6902784A priority Critical patent/JPS60212954A/en
Publication of JPS60212954A publication Critical patent/JPS60212954A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel

Abstract

PURPOSE:To improve the operation efficiency of an electron microscope and achieve its stable condition in a short time by automatically operating a means for producing and accelerating electron rays, a means for deflecting them and a lens system for converging electron rays and forming an image after a hard vacuum is produced by detecting the vacuum degree of the mirror tube. CONSTITUTION:Within the mirror tube 27 of an electron microscope, electron rays 28 are converged and deflected before being irradiated upon a sample 5 and then electron rays passing through the sample 5 are magnified by an image formation lens system 6 to project an image upon a fluorescent plate 7. The vacuum degree of the mirror tube 27 is detected with a detector 8 and a vacuum meter 20 and a signal produced when a given vacuum degree is achieved is sent into a micro processor 23. The signal from the processor 23 and data read from (ROM24) and (RAM25) are passed through read-out DA converters 17, 18 and 19 respectively before being used to apply acceleration voltage and to excite a lens coil and a deflection coil. In addition, data for cancelling the starting drift are used to achieve a shift to a stable condition. Therefore, the electron microscope can be automatically used only by turning on an operation switch for the exhaust system, thereby facilitating handling of the electron microscope.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電子顕微鏡に係り特に排気から加速電圧印加を
自動的に行うものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electron microscope, and particularly to one in which accelerating voltage is automatically applied from exhaust gas.

[発明の背景] 従来の電子顕微鏡は装置を駆動する場合、まず排気系を
動作させ、油拡散ポンプのウオーミングアツプ等を含め
約30分後、オペレータが手動で加速電圧を印加すると
同時にレンズ系、偏向系の電源を動作させる。高電圧系
、レンズ系は安定化のために検出低抗を用いており、温
度上昇による起動ドリフトが発生する。安定化するには
1〜2時間を要しているため、特に高分解能撮影する場
合などは安定化するには長時間を要する。このように排
気系を動作してから使用状態に至るまでトータルで2〜
3時間要する。連続通電をしておけば、ウオーミングア
ツプ時間を短縮することもできるが、電気代と冷却水の
コストが高くなる。
[Background of the Invention] When operating a conventional electron microscope, the exhaust system is first operated, and after about 30 minutes, including warming up of the oil diffusion pump, the operator manually applies accelerating voltage, and at the same time the lens system, Operate the deflection system power supply. The high voltage system and lens system use a detection resistor for stabilization, and startup drift occurs due to temperature rise. Since it takes 1 to 2 hours to stabilize, it takes a long time to stabilize, especially when performing high-resolution photography. In this way, the total process from operating the exhaust system to the state of use is 2~
It takes 3 hours. Continuous energization can shorten the warming-up time, but increases the cost of electricity and cooling water.

〔発明の目的〕[Purpose of the invention]

本発明は従来の欠点をなくし、短時間で安定した状態に
至らしめ、操作性の向上と性能の向」二と使用コストの
低減を計るものである。
The present invention eliminates the drawbacks of the prior art, achieves a stable state in a short time, improves operability, improves performance, and reduces usage costs.

〔発明の概要〕[Summary of the invention]

解決するため策としては、最近排気系、電気系はコンピ
ユータ化されており、真空度の信号をCPUに送れば、
これにより高電圧印加の信号を発生し、高電圧値もDA
コンバータにより徐々に高電圧を昇圧することもできる
。また高電圧は検出抵抗の温度上昇等により起動ドリフ
トが発生するが、特性は一定しているためあらかじめド
リフト量をキャンセルするようなデータを出力しDAコ
ンバータによりアナログ化し基準電圧を変えればよい、
レンズ系、偏向系も同様である。
As a solution, recently the exhaust system and electrical system have been computerized, and if the vacuum level signal is sent to the CPU,
This generates a high voltage application signal, and the high voltage value is also DA
It is also possible to gradually step up the high voltage using a converter. In addition, startup drift occurs due to the temperature rise of the detection resistor at high voltages, but since the characteristics are constant, it is only necessary to output data that cancels the amount of drift in advance, convert it to analog with a DA converter, and change the reference voltage.
The same applies to the lens system and deflection system.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。電子顕微鏡の鏡体2
7にはフィラメントlを加熱しウェネルト2に加速電圧
を印加し電子線28を発生させる。
An embodiment of the present invention is shown in FIG. Electron microscope mirror body 2
7, the filament 1 is heated and an accelerating voltage is applied to the Wehnelt 2 to generate an electron beam 28.

収束レンズ系3により電子線を収束し偏向レンズ4によ
り試料5の中央に来るように偏向レンズを調整する。試
料5を透過した電子線28は形像レンズ系6により拡大
され、像として蛍光板7に投影される。加速電圧は操作
パネル22から印加する。パネル内には手動と自動の切
換えスイッチを備けておく。操作パネルから発生した信
号はマイクロプロセッサ23、ROM24.RAM25
′h)らデータを読み出し、DAコンバータ17により
アナログ化され、帰還増巾器12を通り高圧トランス1
0で昇圧され、高電圧がウェネルト2へ印加される。加
速電圧の安定化をはかるため検出抵抗器11を用い帰還
増巾器12ヘフィードバックされる。
The converging lens system 3 converges the electron beam, and the deflecting lens 4 adjusts the deflecting lens so that it is centered on the sample 5. The electron beam 28 transmitted through the sample 5 is magnified by the imaging lens system 6 and projected onto the fluorescent screen 7 as an image. Accelerating voltage is applied from the operation panel 22. A manual/automatic selector switch is provided in the panel. Signals generated from the operation panel are sent to the microprocessor 23, ROM 24 . RAM25
'h) is read out, converted into analog data by the DA converter 17, passed through the feedback amplifier 12, and then sent to the high voltage transformer 1.
0, and a high voltage is applied to Wehnelt 2. In order to stabilize the accelerating voltage, it is fed back to a feedback amplifier 12 using a detection resistor 11.

レンズ電源も同様に加速電圧にリンクしたデータがRO
M24.RAM25から読み出されDAコンバータ18
によりアナログ値に変換し帰還増巾器15に基準電圧と
して送られ、レンズコイル3を励磁する。レンズ電流も
安定化するために検出抵抗器13を用い、帰還増巾器1
5ヘフィードバックされる。
Similarly, the data linked to the acceleration voltage for the lens power supply is RO.
M24. Read from RAM 25 and converted to DA converter 18
The voltage is converted into an analog value and sent as a reference voltage to the feedback amplifier 15, which excites the lens coil 3. In order to stabilize the lens current, a detection resistor 13 is used, and a feedback amplifier 1 is used.
5 will be fed back.

偏向電源もDAコンバータ19、帰還増[11器16、
偏向コイル4を通り、検出抵抗14を通りe定化されて
いる。
The deflection power supply also has a DA converter 19, a feedback increaser [11 devices 16,
It passes through the deflection coil 4 and the detection resistor 14 and is made constant.

真空度を測定する検出器8は鏡体27の真空度を測定す
る。検出器8からの信号は真空計20を通り、ある真空
度になったときの信号をマイクロプロセッサ23に送り
込む。真空度発生信号を加速電圧を印加するに充分な真
空度にセットする。
A detector 8 for measuring the degree of vacuum measures the degree of vacuum of the mirror body 27. The signal from the detector 8 passes through a vacuum gauge 20 and sends a signal to the microprocessor 23 when a certain degree of vacuum is reached. Set the vacuum degree generation signal to a degree of vacuum sufficient to apply the acceleration voltage.

操作パネルの加速電圧は自動にする。電子顕微鏡の排気
系の作動スイッチをONにする。検出器8により加速電
圧印加に充分な値になりマイクロプロセッサ23に信号
が送り込まれると、ROM24、RAM25からデータ
を読み出しDAコンバータ17を通り加速電圧が印加さ
れる。同時にレンズ用、偏向用DAコンバータ18,1
9へもデータが送られレンズコイル、偏向コイルを励磁
する。
Set the acceleration voltage on the operation panel to automatic. Turn on the operation switch of the exhaust system of the electron microscope. When the detector 8 reaches a value sufficient for applying an accelerating voltage and a signal is sent to the microprocessor 23, data is read from the ROM 24 and RAM 25 and passed through the DA converter 17, where the accelerating voltage is applied. At the same time, DA converter 18, 1 for lens and deflection
Data is also sent to 9 to excite the lens coil and deflection coil.

加速電圧検出器ll、レンズ検出抵抗13、偏向コイル
検出抵抗14には温度平衡に至るまでに起動ドリフトが
あり安定するまでに長時間を要す。
The accelerating voltage detector 11, the lens detection resistor 13, and the deflection coil detection resistor 14 have a startup drift before reaching temperature equilibrium, and it takes a long time to stabilize them.

本発明は排気系の作動スイッチをONにすればあとは自
動的に加速電圧、レンズ電源、偏向電源を印加すること
ができる。倍率、加速電圧などのデータを表示するCR
Tには加速電圧を印加してからの通電時間も表示するこ
とができる。これは起動ドリフトがどの程度で安定にな
るかをあらかじめ知っておけば、その時間をモニターす
るだけで、現在どの程度の安定状態にあるか知ることが
できる。
In the present invention, once the operation switch of the exhaust system is turned on, the accelerating voltage, lens power source, and deflection power source can be automatically applied. CR that displays data such as magnification and acceleration voltage
The energization time after applying the accelerating voltage can also be displayed at T. This means that if you know in advance how stable the startup drift is, you can find out how stable it is currently by simply monitoring that time.

また検出抵抗器11.]3.14の起動ドリフトは使用
する抵抗器の種類によってほぼ特性が決まるので、あら
かじめマイクロプロセッサ23とROM24およびRA
M25に特性をキャンセルするようなデータを書き込ん
でおけば、加速電圧印加時から安定した状態で写真撮影
することも可能である。
Also, the detection resistor 11. ]3.14 The startup drift is almost determined by the type of resistor used, so the microprocessor 23, ROM 24 and RA
If data that cancels the characteristics is written in M25, it is possible to take photographs in a stable state from the time when the accelerating voltage is applied.

〔発明の効果〕〔Effect of the invention〕

従来はオペレータが排気系の作動スイッチをONして真
空が良くなるまで待って、加速電圧、レンズ電源、偏向
電源を投入していたが、本発明により排気系の作動スイ
ッチを○Nにすれば、あとの操作は自動的に動作し、操
作性の向上と不要な時間を要しない。加速電圧、レンズ
電源、偏向電源l!入してからの通電時間も表示される
のであらかじめ起動ドリフトと時間の関係を知っておけ
ば、現在どの程度の安定状態にあるか知ることができる
Conventionally, the operator turned on the exhaust system operation switch and waited until the vacuum became good before turning on the accelerating voltage, lens power, and deflection power, but with the present invention, by turning the exhaust system operation switch on The remaining operations are performed automatically, improving operability and eliminating unnecessary time. Acceleration voltage, lens power supply, deflection power supply l! The power-on time after turning on is also displayed, so if you know the relationship between start-up drift and time in advance, you can know how stable the device is currently.

検出抵抗+1.13.14の起動ドリフトをキャンセル
するデータをマイクロプロセッサ23゜ROM24.R
AM25にメモリしておけば、加速電圧、レンズ電源、
偏向電源投入時かに安定した状態で使用することができ
、高分解能観察も可能となる。
The data for canceling the start-up drift of the detection resistor +1, 13, and 14 is stored in the microprocessor 23° ROM 24. R
If you store it in AM25, the acceleration voltage, lens power supply,
It can be used in a stable state when the deflection power is turned on, and high-resolution observation is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の電子顕微鏡の説明図である。 3 収束レンズ、4・・偏向レンズ、6・・形像レンズ
、8・・真空度検出器、11・・加速電圧検出抵抗、1
3・・レンズ検出抵抗、14・・・偏向レンズ検出抵抗
、22・操作パネル、23・・マイクロプロセラ第1 
FIG. 1 is an explanatory diagram of an electron microscope according to an embodiment of the present invention. 3 Converging lens, 4... Deflection lens, 6... Image lens, 8... Vacuum degree detector, 11... Accelerating voltage detection resistor, 1
3... Lens detection resistor, 14... Deflection lens detection resistor, 22... Operation panel, 23... Micro Processera 1st
figure

Claims (1)

【特許請求の範囲】 1、電子線を発生、加速する手段、電子線を収束する手
段、試料を拡大する形像する手段、観察撮影する手段、
電子線の通過する場所を真空排気する手段を有する装置
において、真空度を検出する手段によIl高真空に達し
た後、電子線を発生加速する手段および電子線を収束、
形像するレンズ系および電子線を偏向する手段を自動的
に動作させることを特徴とする電子顕微鏡。 2、特許請求の範囲第1項において、自動的に動作させ
、から積算時間を表示差る。を特徴おする電子顕微鏡。 3、特許請求の範囲第1項において、電子線の発生加速
する手段と収束、形像するレンズ系および偏向レンズ系
の起動ドリフトをキャンセルする手段を有することを特
徴とする電子顕微鏡。
[Claims] 1. A means for generating and accelerating an electron beam, a means for converging an electron beam, a means for enlarging and imaging a sample, a means for observing and photographing,
In an apparatus having a means for evacuating a place through which an electron beam passes, after reaching a high vacuum by a means for detecting the degree of vacuum, a means for generating and accelerating an electron beam, and a means for converging the electron beam,
An electron microscope characterized in that a lens system for forming an image and a means for deflecting an electron beam are automatically operated. 2. In claim 1, the system automatically operates and displays the accumulated time. An electron microscope featuring 3. An electron microscope according to claim 1, comprising means for generating and accelerating an electron beam, and means for canceling startup drift of a lens system for converging and forming an image, and a deflection lens system.
JP6902784A 1984-04-09 1984-04-09 Electron microscope Pending JPS60212954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6902784A JPS60212954A (en) 1984-04-09 1984-04-09 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6902784A JPS60212954A (en) 1984-04-09 1984-04-09 Electron microscope

Publications (1)

Publication Number Publication Date
JPS60212954A true JPS60212954A (en) 1985-10-25

Family

ID=13390685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6902784A Pending JPS60212954A (en) 1984-04-09 1984-04-09 Electron microscope

Country Status (1)

Country Link
JP (1) JPS60212954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119149A (en) * 1986-11-05 1988-05-23 Shimadzu Corp Image data pickup device
JPS63231856A (en) * 1987-03-19 1988-09-27 Jeol Ltd Control method for electron microscope or the like
EP0594084A1 (en) * 1992-10-20 1994-04-27 Hitachi, Ltd. Scanning electron microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119149A (en) * 1986-11-05 1988-05-23 Shimadzu Corp Image data pickup device
JPS63231856A (en) * 1987-03-19 1988-09-27 Jeol Ltd Control method for electron microscope or the like
EP0594084A1 (en) * 1992-10-20 1994-04-27 Hitachi, Ltd. Scanning electron microscope

Similar Documents

Publication Publication Date Title
JP2007258149A (en) Radiation image photography device and photography method
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JPS60212954A (en) Electron microscope
JP3524776B2 (en) Scanning electron microscope
JPH07265286A (en) X-ray diagnostic system
JPS6166352A (en) Scanning electronic microscope
JPS63202834A (en) Drift correcting device for electron microscope
JPH01120749A (en) Automatic focusing device for electron microscope
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
US6078046A (en) Apparatus for measuring electron beam intensity and electron microscope comprising the same
JPH01265145A (en) X-ray inspection device
JPH0139393Y2 (en)
JPS61267000A (en) X-ray microscope
JPS59944B2 (en) Inkiyokusenkanno Akarusa Chiyousei Souchi
JPH0139394Y2 (en)
JPH01117252A (en) X-ray image observation device
JP2000228165A (en) Electron beam device
JPS643167Y2 (en)
JP2004347463A (en) Imaging type x-ray microscope
JPH0547333A (en) Electron microscope
JPH08138601A (en) Scanning electron microscope
JPH06300900A (en) Soft x-ray microscope
JPS631533B2 (en)
JPS5913145B2 (en) Power supply for thermionic electron gun
JP2001076664A (en) Energy dispersion spectrum acquisition device