JPS60212640A - Vane-angle and speed controller - Google Patents

Vane-angle and speed controller

Info

Publication number
JPS60212640A
JPS60212640A JP6750484A JP6750484A JPS60212640A JP S60212640 A JPS60212640 A JP S60212640A JP 6750484 A JP6750484 A JP 6750484A JP 6750484 A JP6750484 A JP 6750484A JP S60212640 A JPS60212640 A JP S60212640A
Authority
JP
Japan
Prior art keywords
torque
speed
blade angle
main engine
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6750484A
Other languages
Japanese (ja)
Inventor
Hidehiko Matsui
松井 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6750484A priority Critical patent/JPS60212640A/en
Publication of JPS60212640A publication Critical patent/JPS60212640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To improve the control performance for vane angle by installing an estimating device for calculating the estimated torque of a main engine on the basis of the operating instruction signal for a fuel flow-rate actuator in order to control the speed of a main engine in a vessel equipped with a variable pitch propeller and the vane angle of the variable pitch propeller. CONSTITUTION:The captioned apparatus is equipped with a speed control part 1 which outputs a rack-position operating instruction signal (a) on the basis of the deviation between the set seed and the detected speed (d) of an engine and controls a fuel-pump actuator 2 by the instruction signal (a). Further the captioned apparatus is equipped with a vane-angle control part 4 which outputs a vane-angle operating instruction signal on the basis of the deviation between the instruction signal (a) and the set torque of the engine, and controls the vane angle actuator 5 of a variable-pitch propeller by the instruction signal. In this case, a torque estimating device 8 for calculating the estimated generation torque (b) of the engine on the basis of the signal (a) is installed onto a feedback loop for the instruction signal (a), and a vane-angle operating signal is generated on the basis of the deviation between the estimated torque (b) and the set torque.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は、可変ピッチプロペラ装備船にお(〕る主機関
、例えばディーゼル機関・ガスタービン機関・蒸気ター
ビン機関等の速度および可変ビッヂプロペラ翼角の制御
装置に係り、特に主機関の動特性を考慮して補償要素を
付加するだけで、主機関速度if3よび可変ビッヂプロ
ペラ翼角の制御の向上をはかれるようにした翼角・速度
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a method for controlling the speed and variable pitch propeller blade angle of a main engine, such as a diesel engine, gas turbine engine, or steam turbine engine, on a ship equipped with a variable pitch propeller. The present invention relates to a control device, and particularly to a blade angle/speed control device that can improve the control of the main engine speed if3 and the variable bidge propeller blade angle by simply adding a compensation element in consideration of the dynamic characteristics of the main engine.

「発明の技術的背景」 第1図は、主機関の一例を示す従来のディーゼル機関の
翼角・速度制御装置を示すが、これを筒中に説明すると
、機関の設定速度(回転数)と検出速度との速度偏差に
もとづいて等価回路で示した速1σ制御部1がラック位
置操作指令信号を出し、このラック位置操作指令信号に
もとづき燃料ポンプアクヂュエータ2を操作して設定速
度になるように燃料噴射ポンプ3からの燃料噴射量を調
節する。一方、上記ラック位置操作指令信号と機関の設
定トルクとの1ヘルク偏差にもとづいて等価回路で示し
たW角制御部4が翼角操作指令信号を出し、この翼角操
作指令信号にもとづき翼角アクチュエータ5を操作して
燃料噴DA開の調節量に児合うプロペラ負荷トルクが得
られるように可変ピッチプロペラ6の翼角を調節づる。
"Technical Background of the Invention" Figure 1 shows a conventional blade angle/speed control device for a diesel engine, which is an example of a main engine. Based on the speed deviation from the speed, the speed 1σ control unit 1 shown in an equivalent circuit outputs a rack position operation command signal, and based on this rack position operation command signal, the fuel pump actuator 2 is operated to reach the set speed. The amount of fuel injected from the fuel injection pump 3 is adjusted accordingly. On the other hand, based on the 1-herk deviation between the rack position operation command signal and the engine setting torque, the W angle control section 4 shown in the equivalent circuit outputs a blade angle operation command signal, and based on this blade angle operation command signal, the blade angle is adjusted. The blade angle of the variable pitch propeller 6 is adjusted by operating the actuator 5 to obtain a propeller load torque that matches the amount of adjustment of the opening of the fuel injection DA.

これにより検出法1αが落ちたどきは燃lit哨射吊を
増大させるとど−しに、プロペラ負荷1−ルクを減少さ
1!る方向に翼角を調節して主機関速度を上げ、逆に検
出速度が上がったとぎは燃料噴射量を減少ざ1!ると共
に、11コペラ負荷トルクを増大させる方向に翼角を調
節して主機関速度を下げ、もっで主I幾関を定速・定1
−ルクに安定制御するJ、)にしたしのである。なお、
上記検出速度は雑音成分が含J、れているのeローパス
フィルタ7によりノイルタリングされ−Cいる。
As a result, when the detection method 1α falls, the fuel light detection suspension is increased and the propeller load 1-lux is decreased by 1! Adjust the blade angle to increase the main engine speed, and conversely, if the detected speed increases, reduce the fuel injection amount! At the same time, the main engine speed is lowered by adjusting the blade angle in the direction of increasing the 11-copera load torque, and the main engine speed is reduced to constant speed.
- This is the case with J,), which provides stable control with ease. In addition,
The above detection speed includes noise components and is filtered by the low-pass filter 7.

[背景技術の問題点] しかしながら、十111従来の制御方式では、設定トル
クに対するノイードバック信号がラック位置操作指令信
号であっ(主機関発生1−ルクではないため、真の主機
関発生l−ルクどの間に時間的位相差が生じ翼角アクブ
て1■−夕に無駄な制御動作をさせていた。J:だ、1
−]−パスフィルタ7によるノイルタリングでは雑音成
分が充分に除去できないばかりか、高域の真値までも除
去してしまう虞れがあり、適切な制御信号を作り得なが
った。
[Problems in the Background Art] However, in the conventional control system, the noise back signal for the set torque is a rack position operation command signal (not the main engine generated 1-lux, so it is difficult to know how much the true main engine generated 1-lux is). A temporal phase difference occurred between the two, causing unnecessary control operations at the blade angle.
-]- Noise filtering by the pass filter 7 not only fails to remove noise components sufficiently, but also has the risk of removing true values in high frequencies, making it impossible to create an appropriate control signal.

このため、制御性が悪く、エネルギー消費の増大と操縦
性能の低下をもたらしていた。
This resulted in poor controllability, increased energy consumption, and decreased maneuverability.

[発明の目的] 本発明は、上記従来の欠点に鑑みなされたもので、主機
関の動特性を考慮した補償要素を従来の制御装置に付加
することにより、主機関の制御性の改善をはかり、もっ
て省燃費化、操縦性能の向上を図ることができる翼角・
速度制御装置を得ることにある。
[Object of the Invention] The present invention was made in view of the above-mentioned conventional drawbacks, and aims to improve the controllability of the main engine by adding a compensation element that takes into account the dynamic characteristics of the main engine to the conventional control device. , a wing angle that can save fuel and improve maneuverability.
The purpose is to obtain a speed control device.

[発明の概要] 上記目的に沿う本発明は、主機関の設定速度と検出速度
との速度偏差に応じて流量アクチュエータを操作して主
機関を回転させる駆動流体の供給量を調節すると共に、
流量アクチュエータへの操作指令信号に基づいて主機関
の推定トルクをトルク推定器で算出し、このトルク推定
器の算出出力と設定トルクとのトルク偏差に応じて翼角
のアクチユエータを操作して可変ピッチプロペラの翼角
5− を調節づることにJ、り駆動流体の供給量に見合うプロ
ペラ負荷]・ルクを得るJ、うにし、これにより、流最
アクブコ」−一夕への操作指令信号ど真の主機関発生ト
ルクどの間で時間的位相差があっても真値に近い推定ト
ルクをもとにn1変ピツチブ[コペラの的確な翼角調節
ができるにうにし、W角アクヂユエ−夕に無駄イ【動作
が生じたり、制御性が低下しないようにしたーbのであ
る。
[Summary of the Invention] In accordance with the above object, the present invention operates a flow rate actuator according to a speed deviation between a set speed of the main engine and a detected speed, and adjusts the supply amount of a driving fluid that rotates the main engine.
The estimated torque of the main engine is calculated by a torque estimator based on the operation command signal to the flow rate actuator, and the blade angle actuator is operated according to the torque deviation between the calculated output of this torque estimator and the set torque to achieve variable pitch. By adjusting the blade angle of the propeller, the propeller load commensurate with the supply of driving fluid can be obtained. Based on the estimated torque that is close to the true value, regardless of the temporal phase difference between the main engine generated torque and the torque generated by the main engine, it is possible to accurately adjust the blade angle of the copeller, and to avoid waste in the W angle acquisition. (a) This is to prevent movement or deterioration of controllability.

また、本発明は、トルク推定器の締出出力及び検出速度
にもとづいて主機関の推定速度を速1爽推定器で算出し
、この速度推定器の算出出力と主機関の設定速度どの速
度偏差に応じて流量アクチュエータを操作して主機関を
H転させる駆動流体の供給量を調節するど共に、流用ア
クヂュ■−夕の操作指令信号に基づいC主機関の111
定1〜ルクを1−記トルク推定器で睦出し、このトルク
推定器の締出出力と設定トルクとのトルク偏差に応じて
翼角のアクチユエータを操作しく iil変ピッチプロ
ペラの翼角を調節量ることにより駆動流体の供給量に見
合うプロペラ負荷1〜ルクを得るにうにし、これ−〇− により、検出速度に雑音成分が含まれていても真値に近
い推定速度をもとに主機関を回転させる駆動流体の的確
な供給量調節ができるようにし、流量アクブユエータに
も無駄な動作が生じたり、制υ1IfIIが低下しない
ようにしたものである。
In addition, the present invention calculates the estimated speed of the main engine with a speed estimator based on the shut-off output and detected speed of the torque estimator, and calculates the speed difference between the calculated output of the speed estimator and the set speed of the main engine. The flow rate actuator is operated in accordance with
Calculate the constant torque from 1 to 1 using a torque estimator, and operate the blade angle actuator according to the torque deviation between the tightening output of this torque estimator and the set torque. By doing this, we can obtain a propeller load of 1 to 1 lb that matches the supply amount of driving fluid, and by this method, even if the detected speed contains a noise component, the main engine speed can be adjusted based on the estimated speed close to the true value. It is possible to accurately adjust the supply amount of the driving fluid that rotates the flow rate actuator, and prevent unnecessary operation of the flow rate actuator and reduction of the control υ1IfII.

[発明の実施例1 以下、本発明に係る翼角・制御装置の好適一実施例を添
付図面に従って説明する。
[Embodiment 1 of the Invention] Hereinafter, a preferred embodiment of the blade angle/control device according to the present invention will be described with reference to the accompanying drawings.

本実施例に係る翼角・制御装置にあってはそのフィード
バック基を構成づる制御回路自体の構成は従来例と同様
である。
In the blade angle/control device according to this embodiment, the configuration of the control circuit itself that constitutes the feedback base is the same as that of the conventional example.

第2図は、ディーゼル機関に本発明を適用した場合の一
実施例を示すブロック線図である。
FIG. 2 is a block diagram showing an embodiment in which the present invention is applied to a diesel engine.

同図に示す如く、速度制御部1の出力がら翼角制御部4
の入力にラック位置操作指令信号aをフィードバックづ
るフィードバックループには、ラック<V if(操作
指令信号aに基づいて機関の推定発生トルクを痺出する
トルク推定器8が介挿される。
As shown in the figure, depending on the output of the speed control section 1, the blade angle control section 4
A torque estimator 8 is inserted in the feedback loop that feeds back the rack position operation command signal a to the input of the rack <V if (torque estimator 8 that calculates the estimated generated torque of the engine based on the operation command signal a).

このトルク推定器8は、予めめた主機関の機関定数α、
にから成る主機関の動特性モデルで構成され、次式で表
現される。
This torque estimator 8 uses a predetermined engine constant α of the main engine,
It consists of a dynamic characteristics model of the main engine, which is expressed by the following equation.

G(sン−]ゴ〒 但lノ、Sはラゾラス演錦子 そして、このトルク推定器8の篩用出力すど設定トルク
どから、翼角制御部4の人力ど<Tるトルク偏差Cをめ
るJ:うにし″(ある。
G(sun-)go 〒 However, S is a lazolas operator, and from the sieve output setting torque of the torque estimator 8, the human power of the blade angle control unit 4 is the torque deviation C J: Sea urchin (there is).

次に、本実施例の作用につい(述べる。Next, the operation of this embodiment will be described.

主機関の検出速度dが設定速度より小さり4iつだとき
、速度Q差Cはプラス方向に大きく/2る。
When the detected speed d of the main engine is 4i times smaller than the set speed, the speed Q difference C increases by /2 in the positive direction.

したがって、大ぎなラック位置操作指令償シうaが速度
制御部1から燃v1ボンブアクヂコI−夕2に入力され
燃わ11&1躬プンブ3の燃F1哨躬愼を増量IJる。
Therefore, a large rack position operation command compensation a is inputted from the speed control section 1 to the fuel V1 bomb control unit 2, and the fuel F1 control pressure of the fuel tank 11 & 1 pump pump 3 is increased.

と同時に大きなラック(QtJll操作指令(i; F
’3 aがトルク■定器8で(イ1定トルクに換紳され
、この111定トルクbと設定i・ルクに6とづいてマ
イナス方向に大きい1〜ルクQ差Cに応じUN角操負指
令イハ号が翼角制御部4で形成される。そしく、翼角が
プロペラ負vJl−ルクを減少さける方向に作動する。
At the same time, a large rack (QtJll operation command (i; F
'3 a is converted into a constant torque by the torque controller 8 (I1), and the UN angle control is performed according to the 1~LQ difference C, which is large in the negative direction based on this 111 constant torque b and the setting i・Lux. A negative command Iha is generated by the blade angle control section 4.The blade angle is then operated in a direction to avoid reducing the propeller negative vJl-luke.

この時、ラック位首操伯指令48”;’3 aがトルク
Jlf定器8に入力されて真値に近い推定トルクが算出
され、この算出出力とのトルク偏差Cにもとづいて翼角
操作指令信号が出力され゛るので、プロペラ9伺トルク
が小となる方向へ翼角が主機関の発生トルクに応じて時
間遅れなしに調節されるので、A−バージコートあるい
はハンチングの少ない制御をtううことができる。
At this time, the rack position control command 48'';'3a is input to the torque Jlf regulator 8, an estimated torque close to the true value is calculated, and a blade angle control command is issued based on the torque deviation C from this calculated output. Since the signal is output, the blade angle is adjusted without time delay in the direction of reducing propeller torque in accordance with the torque generated by the main engine, so A-barge coat or control with less hunting can be performed. be able to.

反対に、主機関の検出速度dが設定速度より大きくなっ
たとき、速度偏差eはマイナス方向に大きくなる。した
がって、小さなラック位置操作指令信号aが速度制御部
1から燃料ボンブアクチュXl−夕2に入力され燃料噴
射ポンプ3の燃料噴射介を減量する。と同時に小さなラ
ック位置操作指令信号aがトルク推定器8で推定トルク
に換算され、この推定トルクbと設定トルクとにもとづ
くプラス方向に大ぎいトルク偏差Cに応じて翼角操作指
令信号が翼角制御部4で形成される。そして、このにう
に主機関の回転数が上がった場合にも、トルク推定器8
において真値に近い推定トルクが陣出されるので、プロ
ペラ負荷トルクが大となる9一 方向へ翼角が即応的に調節される。
Conversely, when the detected speed d of the main engine becomes greater than the set speed, the speed deviation e increases in the negative direction. Therefore, a small rack position operation command signal a is inputted from the speed control section 1 to the fuel bomb actuator X1-2 to reduce the amount of fuel injected by the fuel injection pump 3. At the same time, the small rack position operation command signal a is converted into an estimated torque by the torque estimator 8, and the blade angle operation command signal is converted into an estimated torque in the positive direction based on the estimated torque b and the set torque. It is formed by the control section 4. Even when the main engine speed increases, the torque estimator 8
Since an estimated torque close to the true value is generated at , the blade angle is immediately adjusted in the direction of 9 where the propeller load torque is large.

したがっ(、負の主機関発生1−ルクに対しラック位置
操作指令イA弓が時間的位相X・を′1じていても、ト
ルクH【定器8を設番ノることにより、i〜シルク御の
ための無駄な操作が解Wjぐさる。その結束、設定トル
クに対する1、II御竹が大幅に向1!する。
Therefore, even if the rack position operation command I A has a temporal phase of Wasteful operations for controlling the silk are solved.The binding and setting torque of 1 and II Mitake are greatly improved.

第3図は第2図の実施例を更に改良したbの(・、第2
図と異なる白は、検出法1mdを速度9−制御部1の入
力にフィードバックJるノイードバックループに、検出
速度(1とトルク41を定器8の篩用出力]Iとに基づ
いて主機関のH1定速度を算出する1■を定器9を介挿
した点である。この速l1jJfl定器9は、予めめた
1三機関の回転系定数γ及び評価関数からめたフィード
バックゲインに皿から成る主機関の最適フィルタで構成
され、基本的には次式ぐ表現される。
FIG. 3 shows the second embodiment of b (・, second
The white color, which is different from the diagram, indicates that the detection method 1md is fed back to the input of the speed 9-control unit 1 in the noise back loop, and the detection method is This is the point where a regulator 9 is inserted into 1 to calculate the H1 constant speed of the engine. It consists of an optimal filter for the main engine consisting of , and is basically expressed by the following formula.

推定トルク(h)の変化に灼L 1 1−T (s) 
−117但し、Sはラージラス演斡了 10− そして、この速度推定器9の算出出力fと設定速度とか
ら、速度制御部1の入力となる速度偏差eをめるように
しである。
Changes in estimated torque (h) L 1 1-T (s)
-117 However, S is the radius lath operation 10- Then, from the calculated output f of the speed estimator 9 and the set speed, the speed deviation e, which is the input to the speed control section 1, is calculated.

したがって、雑音成分を含む検出速度dは、速度推定器
9を通ることにより、雑音成分が除去された真値に近い
推定速度fとなり、この正確な推定器ifに基づいて燃
料ポンプアクチュエータ2のラック位置が調節されるこ
とになる。その結果、雑音成分を含む検出速度dを直接
使用する場合、又は検出速度dにローパスフィルタを通
した信号を使用する場合と比較して速度推定はより適切
な信号となるので設定速度に対する制御性が大幅に向上
する。
Therefore, the detected speed d including the noise component passes through the speed estimator 9 to become the estimated speed f close to the true value with the noise component removed, and based on this accurate estimator if, the rack of the fuel pump actuator 2 is The position will be adjusted. As a result, compared to directly using the detected speed d containing noise components or using a signal passed through a low-pass filter to the detected speed d, speed estimation becomes a more appropriate signal, making it easier to control the set speed. is significantly improved.

なお、上記両実施例では速度制御部1・翼角制御部4の
みならず、付加したトルク推定器8または/及び速度推
定器9をも個別回路として構成しであるが、速度制御部
1と翼角制御部4とを統合してマイクロコンピュータ相
当の演算機能を有する装置内に上記付加要素の機能を納
め、1つの装置として構成するようにしてもよい。
In both of the above embodiments, not only the speed control section 1 and the blade angle control section 4 but also the added torque estimator 8 and/or speed estimator 9 are configured as separate circuits. The functions of the additional elements may be integrated with the blade angle control section 4 into a device having an arithmetic function equivalent to that of a microcomputer, thereby forming a single device.

また、−L i[! :JJ明ではディーピル機関の場
合について述べたが、ガスタービン機関、蒸気タービン
機関でもよ<、Iするに可ゆピッヂプロペラを使用した
同等の機関に本発明を適用することができる。
Also, -L i [! Although JJ Akira described the case of a deep-pil engine, the present invention can be applied to gas turbine engines, steam turbine engines, and even equivalent engines using a pitch propeller.

[発明の効果1 以上、要するに本発明によれば次のような優れた効果を
発揮づ−る。
[Effects of the Invention 1 In short, the present invention provides the following excellent effects.

(1) 流量アクチ:1]−−タの操作指令信円にもど
づいて主機関の推定I・ルクを算出する1〜ルク推定器
を設()たことにJ:す、主機関の発生トルクが正確に
推定できるので、翼角の制御性が可及的に向上し、燃料
ポンプ及びw角アクブユエータの無駄な動きがなくなっ
て省燃費が達成できる。
(1) Flow rate actuator: 1] - A 1-lux estimator was installed to calculate the estimated I-lux of the main engine based on the operation command signal of the J: Since the torque can be accurately estimated, the controllability of the blade angle is improved as much as possible, and unnecessary movements of the fuel pump and the w-angle actuator are eliminated, thereby achieving fuel efficiency.

(2) また、トルクJul定器の幹出出力及び検出速
!宴にもとづいて]:、機関の推定速度を算出する透電
推定器も設【プたので、ローパスフィルタを通した信号
を使用した従来のものと比較1ノで、にり適切な推定速
度が得られ、設定速度への制御性が向上する。従って、
速度及び翼角の制御性の向上により省燃費が達成でき操
縦性能が格段と向上する。
(2) Also, the stem output and detection speed of the torque Jul regulator! [Based on the banquet]: We have also installed a transmission estimator that calculates the estimated speed of the engine, so it is possible to obtain an appropriate estimated speed in comparison with the conventional method that uses a signal passed through a low-pass filter. This improves the controllability to the set speed. Therefore,
Improved controllability of speed and wing angle enables fuel efficiency and maneuverability to be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の翼角・速度制御装置の一例を示すブロッ
ク線図、第2図は本発明に係る翼角・速度制御装置の好
適一実施例を示すブロック線図、第3図は同じく他の実
施例を示すブロック線図である。 尚、図中2は流量アクチュエータの例示である燃料ポン
プアクチュエータ、3は主機関の構成要素たる燃料噴射
ポンプ、5は翼角アクチュエータ、6は可変ピッチプロ
ペラ、8はトルク推定器、9は速度推定器である。 特許出願人 石川島播磨重工業株式会社代理人弁理士 
絹 谷 信 雄 13−
FIG. 1 is a block diagram showing an example of a conventional blade angle/speed control device, FIG. 2 is a block diagram showing a preferred embodiment of the blade angle/speed control device according to the present invention, and FIG. 3 is a block diagram showing an example of a conventional blade angle/speed control device. FIG. 3 is a block diagram showing another embodiment. In the figure, 2 is a fuel pump actuator which is an example of a flow rate actuator, 3 is a fuel injection pump which is a component of the main engine, 5 is a blade angle actuator, 6 is a variable pitch propeller, 8 is a torque estimator, and 9 is a speed estimator. It is a vessel. Patent applicant: Patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.
Nobuo Kinutani 13-

Claims (1)

【特許請求の範囲】[Claims] (1) 主機関の設定速度と検出速度との速度偏差に応
じて流量アクチュエータを操作して主機関を回転させる
駆動流体の供給量を調節するとともに、主機関の設定ト
ルクと上記流量アクチュエータの操作指令信号とのトル
ク偏差に応じて翼角アクチュエータを操作して可変ピッ
チプロペラの翼角を調節することにより駆動流体の供給
量に見合うプロペラ負荷トルクを得るようにした翼角・
速度制御装置において、上記流量アクチュエータの操作
指令信号にもとづいて主機関の推定トルクを算出するト
ルク推定器を設け、このトルク推定器の算出出力と設定
トルクとで上記トルク偏差をめるように構成したことを
特徴とする翼角、速度制御装置。 (b 主機関の設定速度と検出速度との速度偏差に応じ
て流量アクチューュータを操作して主機関を回転させる
駆動流体の供給量を調節でするとともに、1機関の設定
トルクと上記流4アクチューエータの操作指令16号ど
のI・ルク偏差に応じて翼角)7クヂコュータを操作1
ノで11変ピツチプロペラの翼角をmW 1lil ’
lることにJ、り駆動流体の供給」に児合うブ1−1ペ
ラ負伺1ヘルクを得るJ、うにしたW角・速IQ 11
制御装]mにおいて、上記流量アクブコJ−−タの操作
指令信号にもとづいて主機関の111定1〜ルクを算出
するトルク推定器と、該1−ルクItl定器の算出出力
及び上記検出速度に−bどづいて111定速度を算出す
る速度推定器とを設()、」ニ装置・ルク推定器の算出
出力と設定トルクとて゛上記トルク偏差をめ、上記速度
Ht定器の算出出力と設定速度とで上記速度偏差をめる
ように構成したことを特徴とする翼角・迷電1IIII
II装置。
(1) The flow rate actuator is operated according to the speed deviation between the set speed of the main engine and the detected speed to adjust the supply amount of the driving fluid that rotates the main engine, and the set torque of the main engine and the operation of the flow rate actuator are adjusted. A blade angle/blade angle system that adjusts the blade angle of a variable pitch propeller by operating a blade angle actuator according to the torque deviation from the command signal to obtain a propeller load torque that matches the supply amount of driving fluid.
The speed control device is configured to include a torque estimator that calculates the estimated torque of the main engine based on the operation command signal of the flow rate actuator, and to calculate the torque deviation between the calculated output of the torque estimator and the set torque. A blade angle and speed control device characterized by: (b) The flow rate actuator can be operated according to the speed deviation between the set speed of the main engine and the detected speed to adjust the supply amount of the driving fluid that rotates the main engine, and the set torque of the first engine and the flow 4 actuator described above can be adjusted. Operate the motor control command No. 16 (blade angle) according to the I/Luku deviation) 7. Operate the controller 1
The blade angle of the 11 variable pitch propeller is mW 1lil'
In particular, the 1-1 propeller gains 1 herk due to the supply of driving fluid.
control system] m, a torque estimator that calculates the 111 constant 1 to 1 torque of the main engine based on the operation command signal of the flow rate controller, and the calculated output of the 1 to 1 torque constant and the detected speed; Next, a speed estimator for calculating the constant speed 111 is set up (), and the calculated output of the second device and the torque estimator and the set torque are calculated by taking the torque deviation above, and the calculated output of the speed Ht constant. Blade angle and stray electricity 1III, characterized in that the speed deviation is calculated by the set speed and the set speed.
II device.
JP6750484A 1984-04-06 1984-04-06 Vane-angle and speed controller Pending JPS60212640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6750484A JPS60212640A (en) 1984-04-06 1984-04-06 Vane-angle and speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6750484A JPS60212640A (en) 1984-04-06 1984-04-06 Vane-angle and speed controller

Publications (1)

Publication Number Publication Date
JPS60212640A true JPS60212640A (en) 1985-10-24

Family

ID=13346880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6750484A Pending JPS60212640A (en) 1984-04-06 1984-04-06 Vane-angle and speed controller

Country Status (1)

Country Link
JP (1) JPS60212640A (en)

Similar Documents

Publication Publication Date Title
EP1529159B1 (en) Methods and systems for variable geometry turbocharger control
EP2154588B1 (en) Control system
EP1474597B1 (en) Control method for variable geometry turbocharger and related system
US5472312A (en) Water level regulating system
JP2017036721A (en) Control device of power generating system, power generating system, and power generating method
US4472345A (en) Load control system for nuclear power plant
US5305595A (en) Supervisory control method
JPS6130142B2 (en)
JPS60212640A (en) Vane-angle and speed controller
CN115030824B (en) Self-adaptive oil supply system and method under full flight profile of helicopter
US6931835B2 (en) Multivariant set point using N1 and N2 for engine control
JP2001082701A (en) Boiler/turbine generator control system
US5638789A (en) Methods and systems for controlling the amount of fuel injected in a fuel injection system
RU112725U1 (en) GAS-TURBINE ENGINE COMPRESSOR POSITION CONTROL SYSTEM
JPS5985404A (en) Fuel flow-rate controller for combined type power generation apparatus
SU1562234A1 (en) Arrangement for controlling ship&#39;s complex - turbine unit-variable pitch propeller-shaft generator
JPS63243426A (en) Gas turbine fuel controller
JPH0244106A (en) Control system for recirculation flow rate of boiler water feed pump
JPS627372B2 (en)
RU2006633C1 (en) Automatic control method for turboprop engine unit
JPS61286592A (en) Flow control method for pump delivery
JPH0350114B2 (en)
JPH0339202B2 (en)
JPS6326802B2 (en)
JPS5941003B2 (en) Turbine control device for driving water pump