JPS60212230A - Preparation of electrode catalyst - Google Patents

Preparation of electrode catalyst

Info

Publication number
JPS60212230A
JPS60212230A JP59067633A JP6763384A JPS60212230A JP S60212230 A JPS60212230 A JP S60212230A JP 59067633 A JP59067633 A JP 59067633A JP 6763384 A JP6763384 A JP 6763384A JP S60212230 A JPS60212230 A JP S60212230A
Authority
JP
Japan
Prior art keywords
carbide
phase
catalyst
beta
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067633A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
晃 石川
Tetsuichi Kudo
徹一 工藤
Takeshi Kawamura
剛 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59067633A priority Critical patent/JPS60212230A/en
Publication of JPS60212230A publication Critical patent/JPS60212230A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prepare highly active non-platinium catalyst for a methanol fuel battery, by synthesizing carbide of W and/or Mo so as to allow carbide with low carbon concn. to be present in a mixed state, and thereafter, oxidizing and eluting mixed carbide to obtain a high surface area. CONSTITUTION:Carbide of W and/or Mo is synthesized so as to allow carbide with low carbon concn. to be present in a mixed state. When a CVD film formed by the gas phase thermal decomposition of W/Mo carbonyl compounds is carbonized at 820 deg.C by CO-gas for the purpose of obtaining W/Mo carbide, a mixed phase of (W1-xMox)C[gamma-phase] and (W1-xMox)2C[beta-phase] is obtained. When this catalyst is immersed in an aqueous sulfuric acid solution, the beta-phase present in the surface of W/Mo carbide is selectively oxidized to be eluted and, as a result, only the gamma-phase remains in the surface thereof. Next, by placing this catalyst under positive polarization, the elution of the beta-phase can be promoted. The surface of the catalyst after the beta-phase was perfectly removed has a large roughness factor and is increased in its surface area. By this method, W/Mo carbide having extremely high catalytic activity per wt. can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は醒暎触媒の製造法に係り、特に燃料電池とりわ
けメタノール燃料電池のメタノール電極触媒に好適なタ
ングステンおよび/またはモリブデンカーバイドm畝触
媒の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing a catalytic catalyst, and in particular to a method for producing a tungsten and/or molybdenum carbide m-ridge catalyst suitable for a methanol electrode catalyst in a fuel cell, particularly a methanol fuel cell. Regarding the law.

〔発明の背景〕[Background of the invention]

従来のメタノール電匝触媒として高価な白金系貴金属以
外にタングステンおよびモリブデンカーバイドが知られ
ている。その製法としてカルボニル化合物の気相熱分解
により電極基体上にタングステンおよびモリブデン薄膜
を添着させ、これを−酸化炭素で炭化する触媒合成法が
知られており(特開昭58−140975 ) 、これ
により高活性な触媒を得ることが可能である。しかし実
用燃料電池に用いるには電極触媒性能はまだ不十分であ
る。
In addition to expensive platinum-based noble metals, tungsten and molybdenum carbide are known as conventional methanol electrolyte catalysts. As a manufacturing method, a catalyst synthesis method is known in which a thin film of tungsten and molybdenum is impregnated onto an electrode substrate by gas-phase thermal decomposition of a carbonyl compound, and this is carbonized with carbon oxide (Japanese Patent Application Laid-Open No. 140975/1983). It is possible to obtain highly active catalysts. However, the electrocatalytic performance is still insufficient for use in practical fuel cells.

〔発明の目的〕[Purpose of the invention]

本発明の目的は活性の高いメタノール燃料電池用非白金
系触媒の合成法を提供することにある。
An object of the present invention is to provide a method for synthesizing a highly active non-platinum catalyst for methanol fuel cells.

〔発明の概要〕[Summary of the invention]

上記CVD法により合成したタングステン・モリブデン
カーバイド触媒は、合成条件によりM O2Cなどの、
金属に対する炭素の濃度比が1以下の低級炭化物を第2
相として含むことがあるが、触媒を硫酸水溶液中で陽分
極下に置くことにより、この低級炭化物を酸化、溶出で
きることを見出した。この原理を利用して触媒の表面積
を増加させ、活性を高められることを考え、以下の触媒
合成法を発明した。
The tungsten-molybdenum carbide catalyst synthesized by the above CVD method can be used to produce M O2C, etc., depending on the synthesis conditions.
A lower carbide with a carbon to metal concentration ratio of 1 or less is used as a second
Although they may be contained as a phase, we have found that by placing the catalyst under anodic polarization in an aqueous sulfuric acid solution, these lower carbides can be oxidized and eluted. Considering that this principle can be used to increase the surface area of a catalyst and increase its activity, we invented the following catalyst synthesis method.

W(CO)s 、Mo (CO)aをソースとするCV
D法により炭素繊維からなる電極基板上にW−MO系合
金膜を形成する。合金戸の組成をWI+g M Oxと
表わした時に、0.05くXく0.8となる様にCVD
を行なうと炭化後に高活性な触媒(Wl−、MO,)C
を得るとと痴できる。ところがMOは、炭化後にMOC
よりMo、cなる組成、即ち、金属に対する炭素の濃度
比が1より小さい低級炭化物を生成しやすく、この炭化
物の触媒活性は極めて小さい。従って活性の高い(W+
 −M o−) Cなる組成の単−相を得るためには0
.05<;:x<:0.5であることが望ましい。
CV with W(CO)s, Mo(CO)a as source
A W-MO alloy film is formed on an electrode substrate made of carbon fiber by method D. CVD so that when the composition of the alloy door is expressed as WI + g M Ox, it becomes 0.05 x 0.8.
If this is carried out, a highly active catalyst (Wl-, MO,)C will be produced after carbonization.
You can get angry when you get it. However, MO becomes MOC after carbonization.
It is more likely to produce a lower carbide having a composition of Mo and c, that is, the concentration ratio of carbon to metal is less than 1, and the catalytic activity of this carbide is extremely low. Therefore, it has high activity (W+
-Mo-) In order to obtain a single phase with the composition C, 0
.. It is desirable that 05<;:x<:0.5.

CVDは450Cで2〜7時間行なうが、基板上をW−
MO合金膜で完全に覆うためには5時間以上のCVDが
望ましい。以上のCVDを行なう際、表面積の大きな触
媒を合成する手段としてCVD時のMO濃度Xを以下の
様に変化させる。
CVD is performed at 450C for 2 to 7 hours, but the substrate is
In order to completely cover the MO alloy film, CVD for 5 hours or more is desirable. When performing the above CVD, the MO concentration X during CVD is changed as follows as a means of synthesizing a catalyst with a large surface area.

即ち、最初の数時間は0.05 <−x <0.8とし
、炭化後に高活性な触媒となるよりなCVD膜を合成す
る。次の数時間はMo濃度を増加させてc′VDを行な
い、0.5くXく1.0なる組成の合金膜を作る。この
様なCVD膜は炭化後に(W+−Mo−)*Cなる組成
の低級炭化物となりやすく、後にこの相を酸化、溶出さ
せる。低級炭化物を容易に得るためには望ましくはMo
濃度を0.8 <X <1.0とすることが望ましい。
That is, for the first few hours, 0.05<-x<0.8 is set, and a CVD film that becomes a highly active catalyst after carbonization is synthesized. For the next several hours, c'VD is performed with the Mo concentration increased to form an alloy film having a composition of 0.5 x 1.0. After carbonization, such a CVD film tends to become a lower carbide having a composition of (W+-Mo-)*C, and this phase is later oxidized and eluted. In order to easily obtain lower carbides, it is preferable to use Mo.
It is desirable that the concentration be 0.8 <X < 1.0.

最後にMo濃度を下げて再び0.05<:x<0.8に
設定してCVDを行なう。
Finally, the Mo concentration is lowered and set to 0.05<:x<0.8 again, and CVD is performed.

Mo濃度を0.5 <X <1.0に増加させる時間は
CVD総時間の5%〜50%が好ましい。
The time for increasing the Mo concentration to 0.5 <X < 1.0 is preferably 5% to 50% of the total CVD time.

以上の様に作成したCVD膜を820C″′cCOガス
により炭化すると、(Wl−RM Ox ) C(r相
〕と(Ws−Mo−)2CCβ相〕の混合相が得られる
When the CVD film produced as described above is carbonized with 820C'''cCO gas, a mixed phase of (Wl-RMOx)C (r phase) and (Ws-Mo-)2CCβ phase is obtained.

この触媒を硫酸水溶液などに浸漬すると表面に存在する
β相が選択的に酸化されて溶出し、その結果、r相のみ
が表面に残る。触媒を陽分極下に置くことにより、β相
の溶出を促進できる。β相を完全に除去した触媒表面は
ラフネス因子が大きく、表面積が著しく増加している。
When this catalyst is immersed in an aqueous sulfuric acid solution, the β phase present on the surface is selectively oxidized and eluted, and as a result, only the r phase remains on the surface. By placing the catalyst under anodic polarization, the elution of the β phase can be promoted. The catalyst surface from which the β phase has been completely removed has a large roughness factor and a significantly increased surface area.

以上の方法により重量轟りの触媒活性が極めて高いタン
グステンモリブデンカーバイドを得ることができる。
By the above method, tungsten molybdenum carbide having extremely high catalytic activity can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 炭素繊維からなる厚さ0.5 tan 、寸法13簡×
30mの電極基体1を石英製反応管2内に第1図に示す
ように吊す。上記反応管2内を真空ポンプ(図示せず)
を用いて排気しながら赤外線イメージ炉3によって上記
基体1を450cまで加熱する。上記反応管2の有する
外とう部4内に、冷却用空気を流し、反応管2の内壁温
度を150C以下に保つ。
Example 1 Made of carbon fiber, thickness 0.5 tan, size 13×
A 30 m long electrode substrate 1 was suspended in a quartz reaction tube 2 as shown in FIG. A vacuum pump (not shown) inside the reaction tube 2
The substrate 1 is heated to 450 c using the infrared image furnace 3 while being evacuated using the infrared image furnace 3. Cooling air is flowed into the outer shell 4 of the reaction tube 2 to maintain the inner wall temperature of the reaction tube 2 at 150C or less.

恒温浴5,6によりW(COLa7の温度を5C。W (temperature of COLa 7 was set to 5C using constant temperature baths 5 and 6.

Mo(CO)s8の温度をICに保ち、これらの化合物
の蒸発ガスを上記反応管2内に導き、上記基体1上でC
VDを行ないタングステン・モリブデン合金膜を添着さ
せる。この時に発生するCOガス分圧を測定しながらバ
ルブ9,10によシ蒸発ガスの流量を調節し合金膜中の
モリブデン濃度Xを決定する。最初の3間間はx=0.
25即ち(Wo、 ys MOo、 * mなる組成の
合金膜を作るが次の1時間はバルブ9を閉じてMoのみ
をCVDさせる。最後の1時間は再び(We 、ys 
+ M O9,18)の金属膜を作る。、凹凸の激しい
基体上でこのようなCVDを行なうことによシ合金膜の
表面は(We、7g 、MOo、2s )の組成を持つ
領域と、MOのみが存在する領域とが混在した状態とな
る。バルブ9,10を閉じてCVDを停止した後、上記
基体1の温度を8200まで昇温し、バルブ11を操作
して反応管2内にCOを50oトール導入し、2時間保
持しCVD合金膜を炭化させる。
The temperature of Mo(CO)s8 is maintained at IC, and the evaporated gas of these compounds is introduced into the reaction tube 2, and C is heated on the substrate 1.
VD is performed to attach a tungsten-molybdenum alloy film. While measuring the CO gas partial pressure generated at this time, the flow rate of the evaporated gas is adjusted using valves 9 and 10 to determine the molybdenum concentration X in the alloy film. For the first three periods, x=0.
25, that is, (Wo, ys MOo, *m), but for the next hour, valve 9 is closed and only Mo is CVDed. For the last hour, (We, ys MOo, *m) is made again.
+ M O9,18) metal film is made. By performing such CVD on a highly uneven substrate, the surface of the Si alloy film has a mixture of regions with a composition of (We, 7g, MOo, 2s) and regions where only MO exists. Become. After closing the valves 9 and 10 to stop the CVD, the temperature of the substrate 1 was raised to 8200°C, and the valve 11 was operated to introduce CO at 50° Torr into the reaction tube 2, and this was maintained for 2 hours to form a CVD alloy film. carbonize.

この間にCVD膜中でモリブデン濃度x = 0.25
なる領域は完全に炭化され(Wo、75 M O0,2
5) C〔r相〕を形成するが、x;1.0である領域
は炭素濃度の低い炭化物相Moac[β相〕となる結果
、炭化後の触媒表面は2種類の炭化物が混在した状態と
なる。COガスを排気した後に加熱を停止し、室温まで
放冷した後に触媒付基体1を反応管2の外に取り出す。
During this time, the molybdenum concentration x = 0.25 in the CVD film
The region becomes completely carbonized (Wo, 75 M O0,2
5) C [r phase] is formed, but the region where x; becomes. After exhausting the CO gas, the heating is stopped, and after cooling to room temperature, the catalyst-equipped substrate 1 is taken out of the reaction tube 2.

上記基体1に金(Aul−ド線を取り付けて電極とし、
50tl’1モル硫酸水溶液中に浸漬する。
A gold wire is attached to the substrate 1 to serve as an electrode.
Immerse in 50 tl'1 molar sulfuric acid aqueous solution.

電極電位を可逆水素電極(R)(g)K対し0.5vに
設定しMo @ Cを酸化、溶出させる。この操作によ
シ触媒表面を粗面化し、ラフネス因子を増加させること
かできる。
The electrode potential is set to 0.5 V with respect to the reversible hydrogen electrode (R) (g) K, and Mo@C is oxidized and eluted. This operation can roughen the catalyst surface and increase the roughness factor.

Moreを完全に溶出した後にメタノール(CHsOH
)を5モル/lの濃度まで加え、次式の反応 CHsOH+8g0−+COz+ 6H” +66−に
よるメタノールの酸化電流を測定する。
After complete elution of More, methanol (CHsOH
) is added to a concentration of 5 mol/l, and the oxidation current of methanol due to the reaction CHsOH+8g0−+COz+6H”+66− of the following formula is measured.

第1表は上記の方法により合成した電極触媒(A)と、
従来の方法により低級炭化物を作らずに合成した、(W
o、78 MGo4s )Cなる組成の電極触媒(B)
についてメタノール酸化電流と触媒のBET表面積を示
したものである。
Table 1 shows the electrode catalyst (A) synthesized by the above method,
(W
o, 78 MGo4s)C electrode catalyst (B)
The figure shows the methanol oxidation current and the BET surface area of the catalyst.

この結果より本実施例の方法を用いて合成したタングス
テンモリブデンカーバイド触媒は、従来の方法によって
得た触媒に比べ表面積が増加しておシ、重量当りの触媒
活性が高いことがわかる。
These results show that the tungsten molybdenum carbide catalyst synthesized using the method of this example has an increased surface area and higher catalytic activity per weight than the catalyst obtained by the conventional method.

実施例2 CVD時のMo濃度Xを以下の様に設定し、3種類の触
媒C,D、Eを合成した。即ち最初の3時間はX=0.
25として(We、78 M 0OJS )なる組成の
合金膜を作る。次の1時間はMoの濃度をX=0.5 
(C)、 0.8 (D)、 0.9 (E)、03種
類に設定してCVDを行なう。最後の1時間は再びx=
0.25に設定する。
Example 2 Mo concentration X during CVD was set as follows, and three types of catalysts C, D, and E were synthesized. That is, for the first 3 hours, X=0.
An alloy film having a composition of (We, 78 M 0 OJS ) as 25 is prepared. For the next hour, the concentration of Mo is set to X=0.5
(C), 0.8 (D), 0.9 (E), and 0.03 types and perform CVD. For the last hour, x=
Set to 0.25.

以上の条件でCVDを行なった後、実施例1と全く同じ
方法によりタングステンモリブデンカーバイド触媒を合
成した。
After CVD was carried out under the above conditions, a tungsten molybdenum carbide catalyst was synthesized in exactly the same manner as in Example 1.

この触媒のメタノール酸化電流とBET表面積この結果
と実施例1の第1表の結果と比較すると、CVD中にM
o濃度Xを増加させる際、0.5<x<1.0と設定す
ることによjj)BET表面積が増加し、活性が向上す
ることがわかるが、顕著な活性向上効果を得るためには
0.8 <x <1. oとすることが望ましいことが
明らかである。
Methanol oxidation current and BET surface area of this catalyst Comparing these results with the results in Table 1 of Example 1 shows that M
It can be seen that when increasing the o concentration 0.8 <x <1. It is clear that o is desirable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば表面積の大きなタングステン・モリブデ
ンカーバイドを合成することができるため従来の合成法
による触媒に比べ約2.5倍の活性向上効果を得ること
ができ、その工業的価値は極めて大きい。
According to the present invention, since it is possible to synthesize tungsten-molybdenum carbide with a large surface area, it is possible to obtain an activity improvement effect of about 2.5 times compared to catalysts produced by conventional synthesis methods, and its industrial value is extremely large.

【図面の簡単な説明】 第1図は本発明で用いた触媒製造装置の縦断面図である
。 1・・・電極基体、2・・・反応管、3・・・赤外線イ
メージ炉、4・・・外とう部、5,6・・・恒温浴、7
・・・W(Co)s、■ 1 図 工
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a catalyst manufacturing apparatus used in the present invention. DESCRIPTION OF SYMBOLS 1... Electrode base, 2... Reaction tube, 3... Infrared image furnace, 4... Outer shell part, 5, 6... Constant temperature bath, 7
...W(Co)s, ■ 1 Art and crafts

Claims (1)

【特許請求の範囲】[Claims] 1、タングステンおよび/またはモリブデンの炭化物中
に炭素濃度の低い炭化物が混在するように合成した後に
これを酸化、浴出させて商い表面積を得ることを特徴と
する電憔触媒の製造法。
1. A method for producing an electrocatalytic catalyst, which comprises synthesizing tungsten and/or molybdenum carbide so that carbide with a low carbon concentration is mixed therein, and then oxidizing and bathing it to obtain a surface area.
JP59067633A 1984-04-06 1984-04-06 Preparation of electrode catalyst Pending JPS60212230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067633A JPS60212230A (en) 1984-04-06 1984-04-06 Preparation of electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067633A JPS60212230A (en) 1984-04-06 1984-04-06 Preparation of electrode catalyst

Publications (1)

Publication Number Publication Date
JPS60212230A true JPS60212230A (en) 1985-10-24

Family

ID=13350582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067633A Pending JPS60212230A (en) 1984-04-06 1984-04-06 Preparation of electrode catalyst

Country Status (1)

Country Link
JP (1) JPS60212230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510316A (en) * 2000-09-29 2004-04-02 ジョエル ビー.クリスティアン Tungsten-containing fuel cell catalyst and method for producing the same
JP2005038818A (en) * 2003-06-30 2005-02-10 Junji Nakamura Carbonized molybdenum catalyst and its manufacturing method, as well as electrode for fuel cell and fuel cell utilizing the catalyst
CN106115667A (en) * 2016-06-20 2016-11-16 南京工程学院 The low temperature preparation method of S, N codope Graphene and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510316A (en) * 2000-09-29 2004-04-02 ジョエル ビー.クリスティアン Tungsten-containing fuel cell catalyst and method for producing the same
JP2005038818A (en) * 2003-06-30 2005-02-10 Junji Nakamura Carbonized molybdenum catalyst and its manufacturing method, as well as electrode for fuel cell and fuel cell utilizing the catalyst
CN106115667A (en) * 2016-06-20 2016-11-16 南京工程学院 The low temperature preparation method of S, N codope Graphene and application

Similar Documents

Publication Publication Date Title
Mikovksy et al. Hydrogen-deuterium exchange on copper, silver, gold and alloy surfaces1
Flanagan et al. Electrode potentials of the palladium+ hydrogen system
JP2000203998A (en) Production of fine line containing titanium oxide, and fine line and structural body produced by the producing method
CN1382229A (en) Amorphous metal/metallic glass electrodes for electrochemical processes
JP2007031781A (en) Oxygen reduction electrode
US4702784A (en) Process for production of a tungsten carbide-activated electrode
Cocke et al. The Surface properties and reactivities of Plasma‐Nitrided Iron and their relation to corrosion passivation
KR20200126681A (en) A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition
US4043945A (en) Method of producing thin layer methanation reaction catalyst
Pan et al. Understanding the structural dynamics of electrocatalysts via liquid cell transmission electron microscopy
JPS60212230A (en) Preparation of electrode catalyst
US20070017611A1 (en) Oxygen-enriched niobium wire
US20220231306A1 (en) Intermetallic catalyst and method for preparing the same
US4172808A (en) Process for the production of a tungsten carbide catalyst by carburization of tungsten oxides
KR101782001B1 (en) Sulfur doped porous carbon catalyst and preparing method thereof
Lewis et al. The dependence of the electrolytic hydrogen-deuterium separation factor on the electrode potential
Niculescu et al. Thermal and Structural Investigation of The Reaction Between 1, 2-propanediol and Ni (NO 3) 2⋅ 6H 2 O
JPH0448487B2 (en)
JPWO2002082068A1 (en) Concentration cell type hydrogen sensor and method for producing solid electrolyte having proton conductivity
KR100651269B1 (en) Apparatus for reducing metal oxide with hydrogen and method for reducing molybdenum oxide with hydrogen using the same
JP6565589B2 (en) Oxynitride
JP5904760B2 (en) Electrolytic nitrogen fixation method
EP1752999B1 (en) Manufacturing method for semiconductor photoelectrochemical cell and semiconductor photoelectrochemical cell
KR101933710B1 (en) OXYGEN-REDUCTION ELECTROCATALYST CONTAINING BIMETALLIC AuPd NANOPARTICLE, AND PRODUCING METHOD THEREOF
JPS5835738B2 (en) Shiyoku Baitan Tite Sono Seihou