JPS60211824A - Vapor growth means of group iii-v compound semiconductor device - Google Patents

Vapor growth means of group iii-v compound semiconductor device

Info

Publication number
JPS60211824A
JPS60211824A JP6801884A JP6801884A JPS60211824A JP S60211824 A JPS60211824 A JP S60211824A JP 6801884 A JP6801884 A JP 6801884A JP 6801884 A JP6801884 A JP 6801884A JP S60211824 A JPS60211824 A JP S60211824A
Authority
JP
Japan
Prior art keywords
group
growth
ascl3
flow
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6801884A
Other languages
Japanese (ja)
Other versions
JPH0586649B2 (en
Inventor
Masaji Yoshida
吉田 政次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6801884A priority Critical patent/JPS60211824A/en
Publication of JPS60211824A publication Critical patent/JPS60211824A/en
Publication of JPH0586649B2 publication Critical patent/JPH0586649B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To the improve the quality by a method wherein growth is made by the flow amount above C and below A, where the amount of chloride of the group V element is assumed as A, and the amount of group V element chloride against the organic group III metallic element is one third, is assumed as B, and the flow amount of the group III element chloride at the point where A and B is internally devided as 1:2, is assumed as C. CONSTITUTION:When the epitaxial growth of GaAs is performed using the trimethylgallium (TMG) as organic group III metal and trichloride arsenide (AsCl3) as the group Velement, AsCl3 flow A, with which the growth competes in etching, enabled to be obtained as AsCl3 bubble flow in which DELTAw becomes zero by the relation of weight variation DELTAw(mg) before and after the growth of the semi-insulation GaAs substrate and the flow of AsCl3 and also enable to be obtained bubble flux B of AsCl3 where the ratio of AsCl3 to TMG is one third by culculation. The point C which the internal division of A and B at 1:2 becomes C=(2A+B)/3. In case of the bubble flow of AsCl3 below C, the nuclear growth of GaAs onto SiO2 is observed. But in case of the bubble flow of AsCl3 above C, the crystal growth of GaAs is not observed on the SiO3 at all. According to this, a high quality crystal whose electical characteristic is practical is provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は11−v族化合物半導体を電−■族イヒ金物半
導体基板上に選択的にエピタキシャル成、しさせる技術
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a technique for selectively epitaxially forming a 11-V group compound semiconductor on an E-2 group IH metal semiconductor substrate.

(従来技術とその問題点) 1−V族化合物半導体の選択成長技術は、素子分離の手
段として、あるいは局所的なコンタクト層形成やパッシ
ベイション膜形成を目的として第11用されるべき技術
である0 たとえば、クロライド法を選択成長技術として適用した
例は、ジャーナル・オブ・り1ノスタル・グロース第1
3.14巻合併号336頁から341頁にニス・イイダ
とケイ・イトオによって発表されている。
(Prior art and its problems) The selective growth technology of 1-V group compound semiconductors is the 11th technology that should be used as a means of device isolation or for the purpose of forming local contact layers and passivation films. For example, an example of applying the chloride method as a selective growth technique is given in the Journal of Religion Nostalgic Growth Vol.
Published by Nis Iida and Kei Itoo on pages 336 to 341 of Volume 3.14 combined issue.

MOVPE法を選択成長技術として適用した911は、
いくらかの改良をともなって、HClを加えるflJと
してジャーナル・オブ・ジ・エレクトロケミカル・ソサ
エティ第118巻第1号107頁から110頁のピー・
レイーチャウドノ1りとディ・ケイ・ジュロウダーによ
る発表、l族元素有機化合物としてC6を含んでいるデ
ィエチルガリウムクロライド。
911, which applies the MOVPE method as a selective growth technology,
With some improvements, as flJ adding HCl, P. of the Journal of the Electrochemical Society Vol.
Presented by Ray Chaudno and D.K. Jurouder, diethylgallium chloride contains C6 as a group I element organic compound.

((C,に)t o、+cl)を用いる例としてフジツ
ウ・サイアンティク・アンド・テクニカル・ジャーナル
第13巻第3号53頁がら68頁のレイ・ナヵヤマ、ニ
ス・オオヵヮとエイチ・イシヵヮによる発表、あるいは
MOVPE法を典型的に適用した例としてジャーナル・
オブ・クリスタル・グロース第55巻229頁から23
4頁のアール・アズレイ、エヌ・ブアドマ、ジェイ・シ
ー・プレイとエル畢ドウグランによる発表がある。また
、最近では、MOVP E法を高真空MBE装置内でお
こなう試みがあシ、その成長における選択性は第15回
コンファレンス・オン・ソリッド・ステイト・デバイン
ズ・アンド・マテリアルズC−4−ILNに発表されて
いる。
An example of using ((C, ni) to, +cl) is the presentation by Rei Nakayama, Nis Okawa, and H Ishikawa in Fujitsu Scientific and Technical Journal, Vol. 13, No. 3, pages 53 to 68. , or as an example of a typical application of the MOVPE method, the journal
Of Crystal Growth Vol. 55, pp. 229-23
There are four pages of presentations by Earl Azoulay, N. Bouadma, J.C. Prey, and El Bi Dougran. Recently, there have been attempts to perform the MOVP E method in a high-vacuum MBE apparatus, and the selectivity in growth was discussed at the 15th Conference on Solid State Devices and Materials C-4-ILN. It has been announced.

しかしながら、クロライド法は璽族金属ソースに■族元
素が飽和するまでに時間を要し、成長の初期にi−v族
化合物半導体の変成層がエピタキシャル成長されるもの
であり、当該論文には選択成長層の電気的特性について
述べられていないが実用できる品質に難点があると想像
される。またMOVPE法にHCIを加える選択成長法
とディエチルガリウムクロライドを原料とするMOVP
E法は、ある程度の選択性は認められるとしてもI−V
族化合物半導体基板以外の上にもI−V族化合物半導体
の核成長が起こり、素子分離の信頼性に欠ける。典型的
なM、0VPE法においては成長の選択性はなく結晶性
がI−v族化合物半導体基板上とそれ以外の上とで異な
るのみであり、本来の意味の選択成長とはほど遠い0さ
らに、高真空下M)VPEでは選択性は完全で■−v族
化合物半導体基板以外には全く成長しないと報告されて
いるものの結晶は低抵抗のp型であり、大量の炭素で汚
染されていると考えられる。
However, in the chloride method, it takes time for the group I elements to saturate the group metal source, and a metamorphosed layer of the group I-V compound semiconductor is epitaxially grown in the early stage of growth. Although there is no mention of the electrical characteristics of the layer, it is assumed that there are problems with its quality for practical use. In addition, a selective growth method in which HCI is added to the MOVPE method and an MOVP method using diethyl gallium chloride as a raw material.
Even though the E method has a certain degree of selectivity, the I-V
Nuclear growth of the IV group compound semiconductor occurs on surfaces other than the group compound semiconductor substrate, resulting in a lack of reliability in device isolation. In the typical M, 0 VPE method, there is no selectivity in growth and the crystallinity differs only between the I-V group compound semiconductor substrate and the other substrates, which is far from selective growth in the original sense. Although it is reported that M) VPE under high vacuum has perfect selectivity and does not grow at all on anything other than ■-V group compound semiconductor substrates, the crystals are p-type with low resistance and are contaminated with a large amount of carbon. Conceivable.

(発明の目的) 本発明の目的はこのような従来の欠点を除去せしめてI
−V族化合物半導体上にのみ選択的に■−V族化合物半
導体をエピタキシャル成長させる1−V族化合物半導体
気相成長方法を提供することにある。
(Object of the Invention) The object of the present invention is to eliminate such conventional drawbacks and to
An object of the present invention is to provide a 1-V group compound semiconductor vapor phase growth method for epitaxially growing a -V group compound semiconductor selectively only on a -V group compound semiconductor.

(発明の構成) 本発明によれば、有機l族金属蒸気と■族元素ヤル成長
させる気相成長方法において、成長とエツチングが拮抗
する■族元素塩化物流量をAとし、この流量以外の成長
条件を一定として■族元素塩化物対有機鼠族金属元素比
が3分の1となる■族元素塩化物流量をBとし、AとB
を1.2に内分する点の■族元素塩化物の流量をCとし
て、C以上A以下のV族元素塩化物流量で成長すること
を特徴とするI−V族化合物半導体の気相成長方法が得
られる。
(Structure of the Invention) According to the present invention, in a vapor phase growth method in which an organic group I metal vapor and a group II element are grown, the flow rate of group Assuming that the conditions are constant, the flow rate of Group ■ element chloride at which the ratio of Group ■ element chloride to organic mouse group metal element is one-third is B, and A and B.
Vapor phase growth of a group IV compound semiconductor, characterized in that growth is performed at a flow rate of group V element chloride of C or more and A or less, where C is the flow rate of group V element chloride at a point where method is obtained.

(構成の詳細な説明) 本発明は上述の構成をとることにより従来技術の問題点
を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

有機l族金属蒸気と■族元素塩化物蒸気をホットウォー
ル型反応管で反応させ下流の基板上にI−■族化合物半
導体をエピタキシャル成長させる気相成長方法は公開特
許公報昭和52年−2900号に開示されている。この
璽−■族化合物の気相成長方法によればクロライド法に
おける成長初期の変成層の形成の原因は解消される。し
かも、本発明者が鋭意実験して規定することができた成
長条件では、上記気相成長方法をi−v族化合物半導体
基板−ヒへの選択的気相成長技術として規定することが
できる。ホットウォール型である利点は、本発明の成長
条件で基板が載置された反応管壁に全<’ I−V族化
合物半導体が析出しないことに表われており、このため
、成長層表面に周囲からI−■族化合物半導体が落下し
成長結晶の欠陥の原因となることがない。
A vapor phase growth method in which organic Group I metal vapor and Group ■ element chloride vapor are reacted in a hot-wall type reaction tube to epitaxially grow a Group I-■ compound semiconductor on a downstream substrate is described in Japanese Patent Publication No. 1977-2900. Disclosed. According to this method of vapor phase growth of A-2 group compounds, the cause of formation of metamorphic layers in the early stage of growth in the chloride method can be eliminated. Moreover, under the growth conditions that the present inventors were able to define through extensive experimentation, the above vapor phase growth method can be defined as a selective vapor phase growth technique for the IV group compound semiconductor substrate-1. The advantage of the hot wall type is that under the growth conditions of the present invention, no total <' IV group compound semiconductor is precipitated on the wall of the reaction tube on which the substrate is placed. The I-III group compound semiconductor will not fall from the surroundings and cause defects in the growing crystal.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。第1図は有機l族金属蒸気と■族元素塩fヒ物蒸
気をホットウォール型反応管で反応させ下流の基板上に
■−v族化合物半導体をエピタキシャル成長させるり1
相成長方法をおこなう気相成長装置を示すものである。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. Figure 1 shows how organic Group I metal vapor and Group ■ element salt F arsenide vapor are reacted in a hot wall reaction tube to epitaxially grow a ■-V Group compound semiconductor on a downstream substrate.
This shows a vapor phase growth apparatus that performs a phase growth method.

有機l族金属としてトリメチルガリウム(TMG)を、
■族元素塩化物として三塩化砒素(AsC/!、)を用
いGaAsをエビタキシャル成長させた。
Trimethyl gallium (TMG) as an organic group I metal,
GaAs was grown epitaxially using arsenic trichloride (AsC/!,) as a group element chloride.

冷却水lで冷却された導入管中を通ってTMGを含む水
素ガス2が、またその外側からAscl、を含む水素ガ
ス3が電気炉4で加熱きれたホットウォール型反応管5
の中に導入され、所定の成長温度に加熱されたGaAs
基板上にGaASがエピタキシャル成長される。
Hydrogen gas 2 containing TMG passes through the introduction pipe cooled with cooling water 1, and hydrogen gas 3 containing Ascl from the outside thereof is heated in an electric furnace 4 into a hot wall type reaction tube 5.
GaAs introduced into the
GaAS is epitaxially grown on the substrate.

本発明における成長とエツチングが拮抗するASCl、
流量Aは次のようにしてめられた。第2図は面積3cW
l、厚さ400μmの半絶縁性Ga As基板の成長前
後の重量変化Δw(m9)とkSce3流量の関係を示
すものである。TM(12°Cに設定し428CCM 
(スタンダード・キュービック・センチメータ・パー・
ミヌツ)でバブルした。成長温度ハフ40°0とした。
ASCl whose growth and etching are antagonistic in the present invention;
The flow rate A was determined as follows. Figure 2 shows an area of 3cW.
1 shows the relationship between the weight change Δw (m9) before and after growth of a semi-insulating GaAs substrate with a thickness of 400 μm and the kSce3 flow rate. TM (set at 12°C, 428CCM
(Standard cubic centimeter per
Minutsu) caused a bubble. The growth temperature was set at Huff 40°0.

希釈水素流量は500SCCMであった。18°0に設
定したAs(J、バブル水素流量を大きくすると第2図
の白丸のΔWの実験値はついには負となるoAはこれら
の実験値を補間することによってΔWが0となるAs(
J、バブル流量としてめられる。A m C13対TM
G比が3分の1となるAsC6バブル流量Bは計算によ
ってめられるOTMG、−(プル流量をFTMO,ks
clsバブル流量をpAscJ3TMGの蒸気圧をPT
MG (2−Of 76 tlorr) 、As ”l
sの蒸気圧をPacJ!、(18°0で7.67orr
)、バブラ内の全圧をP、とするとksCl、対TMG
比Rはとなる。
The dilution hydrogen flow rate was 500 SCCM. As(J) set at 18°0, when the bubble hydrogen flow rate is increased, the experimental value of ΔW in the white circle in Figure 2 will eventually become negative.
J, taken as bubble flow rate. A m C13 vs TM
The AsC6 bubble flow rate B, where the G ratio is 1/3, is calculated by OTMG, - (pull flow rate is FTMO, ks
cls bubble flow rate pAscJ3TMG vapor pressure PT
MG (2-Of 76 tlorr), As”l
The vapor pressure of s is PacJ! , (7.67orr at 18°0
), the total pressure inside the bubbler is P, then ksCl, vs. TMG
The ratio R becomes.

A、Bの流量が実験と計算によってめられればABのl
:2の内分点Cは 2A+B C== − となる。
If the flow rates of A and B are determined by experiment and calculation, the l of AB is
The internal division point C of :2 is 2A+B C== −.

本実施例においてはA il: 3358CCMである
ことが第2図のごとく実験によりめられた。Bは計算に
より1558ccMであることがわか9、第2図に示さ
れている。この結果Cは2758CCMであった0 その詳細な機構は明らかでないが、Cの流量を境として
SjO,で一部分をマスクしたGa A s基板上への
GaAsのエピタキシャル成長において、C以下のks
Cl、バブル流量では5tOt上へのGaAs核成長が
認められるのに対し、C以上のAsCJ、バブル流量で
はSiq上には全(GaAsの結晶成長が認められなか
った0 8in、窓内のCh Asはノンドープでn形でキャリ
ア濃度5 X 10”Cl11−3.室温におけるキャ
リア移動度6000偲/■・式であった0 以上の説明ではすべてGaAsを用いたが、本発明の方
法はInP、InGaAs 、GaP等他の薯−■族半
導体についても適用できる。
In this example, it was found through experiments that A il: 3358 CCM, as shown in FIG. B was calculated to be 1558 ccM9, and is shown in FIG. As a result, C was 2758 CCM.0 Although the detailed mechanism is not clear, in epitaxial growth of GaAs on a GaAs substrate partially masked with SjO, with the flow rate of C as a boundary, ks below C
At Cl and bubble flow rates, GaAs nucleus growth was observed on 5tOt, whereas at CJ and bubble flow rates, no crystal growth of GaAs was observed on Siq. is non-doped, n-type, and has a carrier concentration of 5 x 10" Cl11-3.The carrier mobility at room temperature is 6000 cm/■.0 Although GaAs was used in all the above explanations, the method of the present invention The present invention can also be applied to other yam-III group semiconductors such as , GaP, etc.

(発明の効果) 以上の説明で明らかなように、本発明によれば極めて完
全な選択的1−V族化合物半導体気相成長方法が得られ
、その結晶の電気的特性は実用できる良質なものである
ことが示された0
(Effects of the Invention) As is clear from the above explanation, according to the present invention, an extremely perfect selective 1-V group compound semiconductor vapor phase growth method can be obtained, and the electrical properties of the crystal are of good quality for practical use. 0 shown to be

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した気相成長装置を示す図である
。 l・・・・・・冷却水、2・・・・・TMGを含む水素
ガス、3・・・・・・As(J、を含む水素ガス流、4
・・・・・・電気炉、5・・・・・ホットウォール型反
応管、6・・・・・・基板である0第2図は、成長前後
の基板重量変化とkscl、バブル水量流量との関係を
示す図であるOAは成長とエツチングが拮抗するAsC
1,バブル流量、BはAs(J、対TMG比が3分の1
となるAsCl3バブル流量、C11iABをl:2に
内分するksc13バブル流量である。 代理人弁理士内原 晋 \−一イ/ 第2図 0100 200 300 400 F ASCI3(SCCM )
FIG. 1 is a diagram showing a vapor phase growth apparatus in which the present invention is implemented. l...Cooling water, 2...Hydrogen gas containing TMG, 3...Hydrogen gas flow containing As(J), 4
・・・・・・Electric furnace 5・・・Hot wall type reaction tube 6・・・・・・Substrate 0 Figure 2 shows the change in substrate weight before and after growth, kscl, bubble water flow rate and This is a diagram showing the relationship between OA and AsC, where growth and etching are antagonistic.
1. Bubble flow rate, B is As(J, ratio to TMG is 1/3
This is the AsCl3 bubble flow rate and the ksc13 bubble flow rate that internally divides C11iAB into 1:2. Representative Patent Attorney Susumu Uchihara / Figure 2 0100 200 300 400 F ASCI3 (SCCM)

Claims (1)

【特許請求の範囲】[Claims] 有機I族金属蒸気と■族元素塩化物蒸気をホットウォー
ル型反応管で反応させ下流の基板上に鳳−■族化合物半
導体をエピタキシャル成長させる気相成長方法において
、成長とエツチングが拮抗するV族元素塩化物流量をA
とし、この流量以外の成長条件を一定としてV族元素塩
化物封有機■族金属元素比が3分の1となるV族元素塩
化物流量をBとし、AとBを1=2に内分する点の■族
元素塩化物の流量をCとして、C以上A以下のV族元素
塩化物流量で成長することを特徴とするI−V族化合物
半導体の気相成長方法。
In a vapor phase growth method in which organic group I metal vapor and group Ⅰ element chloride vapor are reacted in a hot-wall reaction tube to epitaxially grow a group Ⅰ compound semiconductor on a downstream substrate, a group V element whose growth and etching are competitive. Chloride flow rate is A
The growth conditions other than this flow rate are constant, and the flow rate of group V element chloride at which the ratio of group V element chloride to organic group I metal element is one-third is B, and A and B are internally divided into 1 = 2. A method for vapor phase growth of a group IV compound semiconductor, characterized in that growth is performed at a flow rate of group V element chloride of C or more and A or less, with the flow rate of group V element chloride at the point being C.
JP6801884A 1984-04-05 1984-04-05 Vapor growth means of group iii-v compound semiconductor device Granted JPS60211824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6801884A JPS60211824A (en) 1984-04-05 1984-04-05 Vapor growth means of group iii-v compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6801884A JPS60211824A (en) 1984-04-05 1984-04-05 Vapor growth means of group iii-v compound semiconductor device

Publications (2)

Publication Number Publication Date
JPS60211824A true JPS60211824A (en) 1985-10-24
JPH0586649B2 JPH0586649B2 (en) 1993-12-13

Family

ID=13361659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6801884A Granted JPS60211824A (en) 1984-04-05 1984-04-05 Vapor growth means of group iii-v compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS60211824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407531A (en) * 1994-02-15 1995-04-18 At&T Corp. Method of fabricating a compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407531A (en) * 1994-02-15 1995-04-18 At&T Corp. Method of fabricating a compound semiconductor device

Also Published As

Publication number Publication date
JPH0586649B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
US4368098A (en) Epitaxial composite and method of making
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
JPH0350834B2 (en)
Haywood et al. Growth of GaSb by MOVPE; Optimization of electrical quality with respect to growth rate, pressure, temperature and IIIV ratio
GB1176691A (en) High Resistivity Compounds and Alloys and Methods of Making Same.
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
US3406048A (en) Epitaxial deposition of gallium arsenide from an atmosphere of hydrogen and ga2h6+ascl3+ash3 vapors
JPS60211824A (en) Vapor growth means of group iii-v compound semiconductor device
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JPH03280419A (en) Method for formation of compound semiconductor thin film
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JPS62132312A (en) Manufacture of semiconductor thin film
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JP2790013B2 (en) Method for epitaxial growth of III-V compound semiconductor
JPH0526760B2 (en)
JPS6290925A (en) Method for vapor growth
JPH04192323A (en) Manufacture of semiconductor device
JPS62219614A (en) Method for growth of compound semiconductor
JPH03171634A (en) Epitaxial wafer with formation layer of electrode for fet
JPH06140331A (en) Organic metallic molecular beam epitaxial growth method
JP3106526B2 (en) Compound semiconductor growth method
JPS60117677A (en) Heterojunction field-effect semiconductor device
Schreiner et al. New aspects in modern production equipment for III–V processes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees