JPS6021160A - Production of ultraquickly cooled light-gage metallic strip - Google Patents

Production of ultraquickly cooled light-gage metallic strip

Info

Publication number
JPS6021160A
JPS6021160A JP12856983A JP12856983A JPS6021160A JP S6021160 A JPS6021160 A JP S6021160A JP 12856983 A JP12856983 A JP 12856983A JP 12856983 A JP12856983 A JP 12856983A JP S6021160 A JPS6021160 A JP S6021160A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
metal
ribbon
cooling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12856983A
Other languages
Japanese (ja)
Inventor
Masayuki Wakamiya
若宮 正行
Yukio Hotta
幸男 堀田
Harufumi Sakino
先納 治文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12856983A priority Critical patent/JPS6021160A/en
Publication of JPS6021160A publication Critical patent/JPS6021160A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a light-gage metallic strip which has extremely little ruggedness on the front and rear and has no holes with a process for ejecting a molten metal through a nozzle port to the surface of a cooling body under movement by specifying the temp. of the molten metal as well as the position and shape of the nozzle port. CONSTITUTION:A molten metal 13 is ejected from a molten metal well 14 through a nozzle port 15 onto the surface of a cooling belt 11 which moves toward the direction of arrow, thereby producing an ultraquickly cooled light- gage metallic strip 17. The molten metal 13 in this stage is maintained at the temp. higher by >=(70-300 deg.C) than the m.p. of said metal. The spacing between the port 15 and the belt 11 is made 0.01-0.4mm. and the thicknesses at the tip of the nozzle in the moving direction of the belt 11 on the front end side 16a and rear end side 16b in the moving direction of the belt 11 are respectively specified at >=2mm. and >=1mm..

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超急冷法にJ:り金属薄帯を作製する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a metal ribbon using an ultra-quenching method.

従来例の構成とその問題点 超急冷法と呼ばれる技術は、金属の溶湯を移動冷チJ1
体の表iiiに噴出凝固心上、105 〜106 ℃/
秒の速度で冷却するいわゆる超急冷することtこより一
挙に金属薄帯を得る方法である。長いλII帯を連続作
製するときには、一般に溶湯溜め中で金属を加熱溶融し
、この溶融金属をノズル口を通して金属ベル1〜や回転
ロールなどの移動冷却体表面」二に連続的に噴出凝固さ
せる。
Conventional structure and its problems The technology called ultra-quenching method uses a cooling chamber J1 to move molten metal.
Above the coagulated heart erupting on the surface of the body, 105-106 °C /
This is a method of obtaining a metal ribbon at once by so-called ultra-quenching, which cools at a rate of seconds. When long λII bands are continuously produced, metal is generally heated and melted in a molten metal reservoir, and the molten metal is continuously jetted and solidified through a nozzle port onto the surface of a moving cooling body such as a metal bell 1 or a rotating roll.

すなわち第1図Aに示すように、移動冷却体としての金
属ベルト1の表面;こ【Jぼ垂直に近接さ1!て、高周
波加熱コイル2で溶解した金属溶湯3を溶湯溜め4に保
持し、下端にノズル115を右づるノズル6を設ける。
That is, as shown in FIG. 1A, the surface of the metal belt 1 as a moving cooling body; The molten metal 3 melted by the high-frequency heating coil 2 is held in the molten metal reservoir 4, and a nozzle 6 with a nozzle 115 on the right side is provided at the lower end.

次に、この溶湯表面3aに11−力を加え、該ノズル口
5から金属溶湯3を金属ベルト1に連続的に接触させ、
急冷することによって超急冷金属薄帯7を冑る。この際
、溶湯溜め4中で溶融した金属溶湯3の温度としては、
一般に該金属の融点にぞきるだり近い温度が用いられる
Next, 11-force is applied to the surface 3a of the molten metal, and the molten metal 3 is brought into continuous contact with the metal belt 1 from the nozzle opening 5,
The ultra-quenched metal ribbon 7 is quenched by quenching. At this time, the temperature of the molten metal 3 melted in the molten metal reservoir 4 is as follows:
Generally, temperatures at or near the melting point of the metal are used.

また、ノズル口5の金属ベルト1の移動方向幅が02・
〜’ 1 mm稈疫のしのが多く、ノズル6の先端面と
金属ベル1〜1の間隙は1 mm程度以下である。また
、ノズル6先端部の金属ベルト1の移動方向幅は前後と
しに0.2〜3朧のものが最も多く使用されている。
Also, the width of the metal belt 1 of the nozzle opening 5 in the moving direction is 02.
~' 1 mm culm growth is common, and the gap between the tip surface of the nozzle 6 and the metal bells 1 to 1 is about 1 mm or less. Furthermore, the most commonly used width in the moving direction of the metal belt 1 at the tip of the nozzle 6 is 0.2 to 3 in both directions.

上記金属ベル1〜に代えて移動冷却体として、第1図B
に示Jよ°うに回転金属ロール8を使用しても、同様に
超急冷金属薄帯7を作!J!!Iづ”ることができる。
As a moving cooling body in place of the above metal bells 1 to 1, FIG.
Even if the rotating metal roll 8 is used as shown in J, the ultra-quenched metal ribbon 7 can be produced in the same way! J! ! I can do it.

このJ:うな従来の方法でλh急冷金Ii!薄帯を作製
すると、一般的なアモルファス合金薄帯が比較的容易に
か′〕良質で作製−(さるが、ICとえば高珪素鉄(7
!1〜10wt%Si、残部鉄)などのような金属の超
急冷薄帯の製造にa3いては、薄帯の表面性が悪く、特
に冷71峙に移動冷却体に接触しない薄帯表面(自由r
rii )にはいちじるしく凹凸が生じ、部分的に孔を
もった金属薄帯が作製される。−例を挙げると、6.5
w1%Si、残部鉄からなる金属薄帯を、溶湯溜め中の
溶融金属温度を1500℃(その融点約1440℃より
約GO”C高い)とし、この金属溶湯を1ONnX 0
.6面のノズル口を通して、25m、/秒の表面速度で
回転するロール表面に噴出させる。
This J: λh quenched gold Ii by the conventional method! When manufacturing a thin ribbon, it is relatively easy to use a general amorphous alloy ribbon.
! In the production of ultra-quenched ribbons of metals such as 1 to 10 wt% Si, balance iron), the surface properties of the ribbons are poor, especially when the ribbon surface does not come into contact with the moving cooling body (free 71%). r
rii), a metal ribbon with noticeable irregularities and holes is produced. -For example, 6.5
A thin metal strip consisting of w1% Si and the balance iron is heated in a molten metal reservoir at a temperature of 1500°C (approximately GO''C higher than its melting point of about 1440°C), and this molten metal is heated to 1ONnX 0.
.. It is ejected through six nozzle ports onto the surface of a roll rotating at a surface speed of 25 m/sec.

このとき、ノズル口と回転ロール表面間隙を()6mm
とし、ノズル先端部のロール表面移動方向先端側のロー
ル表面移動方向厚みをl mmとした。このような方法
で作製した10#幅薄帯の自由面は、第2抱に示ツJ:
うに、最大約20μ班の凹凸を示し、ロールに接触する
側の薄帯表面にも最大約20μi11のスパイク状の孔
を有していた。これらの両面の凹凸は薄帯の厚みが35
μmであるため、部分的″に貫通孔をもつl=’R帯が
作製された。このように従来法で作製した6、5wt%
3iおよび残部鉄からなる薄帯はその表面性が悪く、部
分的に貫通孔をイjするため、保磁力HCなどの磁気特
性が著しく悪くなる。また、この薄帯を磁心として機器
に適用する場合には占積率が50”□60%と低い値を
示し、機器の設計に悪影響を与える。また溶接用1−1
−月として使用されるへρ−3i系薄帯では、表面の凹
凸のIこめ溶接個所に欠陥が生じ、溶接強度を弱くする
などの問題があった。
At this time, the gap between the nozzle opening and the rotating roll surface is ()6mm.
The thickness of the nozzle tip in the roll surface movement direction on the tip side in the roll surface movement direction was 1 mm. The free surface of the 10# wide ribbon produced by this method is shown in the second figure.
The strip surface had irregularities of about 20 μm at the maximum, and the surface of the ribbon on the side in contact with the roll also had spike-shaped holes of about 20 μm at the maximum. These irregularities on both sides have a thickness of 35 mm.
μm, a l='R band with partially through holes was fabricated.
The thin strip made of 3i and the remainder iron has poor surface properties and partially forms through holes, resulting in significantly poor magnetic properties such as coercive force HC. In addition, when this ribbon is used as a magnetic core in equipment, the space factor shows a low value of 50" □ 60%, which has a negative impact on the design of the equipment.
- In the ρ-3i series ribbon used as a moon, there were problems such as defects occurring at the I-welding locations due to surface irregularities and weakening the welding strength.

発明の目的 本発明は、前述のにうな従来法の欠点をなくし、表裏と
も凹凸がきわめて少なく、孔を持たない超急冷金属薄帯
を10ることのできる製造方法を提供づ′ることを目的
とするものであり、これにより、その諸!l)ヤ1の敗
色(磁気1h性等)が図られる。
OBJECTS OF THE INVENTION The object of the present invention is to provide a manufacturing method that eliminates the drawbacks of the conventional method described above and can produce an ultra-quenched metal ribbon that has very few irregularities on the front and back sides and has no holes. This means that all of these! l) The loss of color (magnetic 1h property, etc.) of Y1 is attempted.

発明の41i成 上記目的を達成Jるために、本発明は、移M)J ”す
る玲IJ1体表面に溶湯溜めからノズル口を通して溶融
全屈を噴出さU、金属薄帯を作FJづるに際して、前記
溶湯溜め中の溶融金属温度を当該金属の融点J、す70
・−300℃以上烏渇に保持し、かつ前記溶融全屈をノ
ズル1」を通して移動する冷却体上に供給りる際、])
ム記ノズル1:1ど該移肋冷ノJj体の間隙を0、01
〜0.4mmとし、ノズル先端部の冷却体移動り面光端
側の冷却体移動方向厚みが2面以上であり、その反スl
側の冷却体移動方向後端側の冷却体移動方向厚みが1 
mm以上であるようにしたものである。
41i Formation of the Invention In order to achieve the above object, the present invention provides a process in which the molten metal is ejected from the molten metal reservoir through the nozzle orifice onto the surface of the IJ body to create a metal ribbon. , the temperature of the molten metal in the molten metal reservoir is the melting point J of the metal,
・When maintaining the temperature at -300°C or higher and supplying the molten liquid to the cooling body moving through the nozzle 1])
Mu mark nozzle 1:1, the gap between the transfer cooling nozzle Jj body is 0,01
~0.4mm, and the thickness of the cooling body moving direction on the optical end side of the cooling body moving surface at the nozzle tip is two or more planes, and the
The thickness in the direction of movement of the cooling body on the rear end side in the direction of movement of the cooling body is 1
mm or more.

このどき、溶湯溜め中の金属溶湯の温度を融点以上で融
点より70℃未満の温度【こ設定°りると、いかなるノ
ズル口の設割およびJ2定を行なっても表面性の良質な
高珪素鉄薄帯はjqられなかった。これは、ノズル口か
ら噴出される溶?’A 湿度が低いため、ノズル口ある
いはノズル先端部どロール表面間で局部的な凝固を生じ
、凝固の際の溶湯流が乱されるために生じるものである
。−1ノ、溶湯溜め中の金属溶漠の温度が融点より 3
00℃以上高い場合、ロールとの接触だけでは」−分冷
却されず1薄帯生白体が困I!任であり、ノズル口から
噴出した溶湯は飛散Jる傾向を示し、良質な薄帯を10
ることができなかった。溶湯溜め中の溶湯温度を融点J
:す70・〜300℃高い範囲の高湿に保l)、ノズル
先端部の冷却体移動方向先端側厚みが2 mm以上であ
るノズルを用い、前記ノズル口と前記移動冷却体の間隙
を移動させて作製した薄帯表面の凹凸を観察すると、第
3図に示すJ:うに、前記間隙が0 、4 mm以上で
は薄帯表裏(自由面、ロール面)の凹凸がされめC大き
くなり、貫通孔をももつJ:うになる。
Nowadays, if the temperature of the molten metal in the molten metal reservoir is set to a temperature above the melting point and below 70°C below the melting point, no matter what nozzle opening setting and J2 setting, high quality silicon with good surface properties will be produced. The iron ribbon was not jqed. Is this the melt spouted from the nozzle mouth? 'A This occurs because the low humidity causes local solidification between the roll surfaces at the nozzle opening or nozzle tip, and the flow of the molten metal during solidification is disturbed. -1, the temperature of the metal melt in the molten metal reservoir is higher than the melting point 3
If the temperature is higher than 00℃, contact with the roll alone will not cool the raw white body for 1 minute! The molten metal spouted from the nozzle opening has a tendency to scatter, and the high-quality ribbon
I couldn't do it. The temperature of the molten metal in the molten metal reservoir is the melting point J
: Maintain high humidity in the range of 70 to 300 degrees Celsius), use a nozzle whose tip end has a thickness of 2 mm or more on the tip side in the direction of movement of the cooling body, and move the nozzle through the gap between the nozzle opening and the moving cooling body. When observing the unevenness on the surface of the ribbon produced in this way, as shown in Fig. 3, when the gap is 0.4 mm or more, the unevenness on the front and back sides of the ribbon (free surface, roll surface) becomes narrower and becomes larger. J with a through hole: Unaru.

一方、0.01mm未満に間隙を設定することはt「か
しく、かつ設定しても作M’J ’;f)、 ?i)厚
が10μTn未満となるため、薄帯には貫通孔がみられ
た。ノズル先端部の冷jJj体移動方面光端側厚みが2
 mm未満である場合、上jホのような設定を行なって
薄帯を作製しても、表面性が悪い薄帯が寄られるがまI
こは溶湯が飛散し薄帯化しなかった。これ(まノズル先
端部と移動筒741体表面間に満たされた溶湯が“たま
り″を作り、このパたまり′”の長さが約2 mm稈痩
であるものと考えら1する。高速痕フィルムでの解析で
(、L、一般に故mmの゛たまり″が観測される。
On the other hand, setting the gap to less than 0.01 mm is difficult, and even if the gap is set, it will not work properly. The thickness of the nozzle tip on the light end side in the direction of cold body movement is 2.
If the thickness is less than mm, even if a thin strip is made using the settings as described above, the thin strip with poor surface properties will tend to gather.
In this case, the molten metal was scattered and did not form into a thin ribbon. It is assumed that the molten metal filled between the tip of the nozzle and the surface of the moving cylinder 741 forms a "pool", and that the length of this pool is approximately 2 mm and thin. In film analysis (, L, generally an accumulation of mm is observed.

ノズル先端部の冷7I4体移動方向先端側厚みが2 m
m以上で良v1な薄帯の作製が可能となるが、この厚み
が3 mm以−1−〇 mrn以上のどさ、最も容易に
表面性の良質な薄帯の作製が可能であった。まl〔、反
対側の冷jJI体移動方向後端側厚みも1 mm以上が
好ましい。これらの値以下の幅の場合、溶湯がノズル冷
却体表面間隙か1う渦れ薄帯化が困難となる。
The thickness of the nozzle tip on the tip side in the direction of movement of the cold 7I 4 body is 2 m.
When the thickness is 3 mm or more, it is possible to produce a ribbon with good v1, but when the thickness is 3 mm or more, it is most easily possible to produce a ribbon with good surface properties. Also, the thickness on the rear end side in the direction of movement of the cold body on the opposite side is preferably 1 mm or more. If the width is less than these values, the molten metal will swirl around the nozzle cooling body surface gap and it will be difficult to form a thin ribbon.

このよう1こ、本発明にお(プる製造方法で作製すると
、ノズル1−1を静−(移動冷却体表面1に噴出した金
属溶湯は、ノズル先端表面と移動冷却体表面の間に満た
され、ノズルl]付近の局部凝固などが〈Iじず、円滑
な溶湯流が生じ(層流)、ノズル先端表面と移動冷fJ
1体表面の間でvlmmの定常状態流が生じ、これが移
動冷却体によって急冷凝固して良質な薄帯が作製される
As described above, in the present invention, when the nozzle 1-1 is manufactured using a static manufacturing method, the molten metal ejected onto the moving cooling body surface 1 fills the gap between the nozzle tip surface and the moving cooling body surface. As a result, local solidification near the nozzle L does not occur, and a smooth molten metal flow (laminar flow) occurs, causing a flow between the nozzle tip surface and the moving cooling fJ.
A steady state flow of vlmm is generated between the surfaces of one body, and this is rapidly solidified by a moving cooling body to produce a high quality ribbon.

実施例の説明 以下、本発明の実施例を具体例に基づいて説明する。Description of examples Embodiments of the present invention will be described below based on specific examples.

実施例1 第4図に示丈にうに、移動づる銅製冷却ベルト11の表
面速度を23m/秒どし、その上に高周波加熱コイル1
2によって溶解したL5)vt%Si、残部鉄からなる
1700’C(融点より約260℃以上高温)の金属溶
湯13を溶湯溜め14中に保持し、幅0.Gmmz長ざ
10#の寸法の長方形状のノズル口15を有づる石英製
ノズル1Gを冷却ベル!−11の表面にほぼ亜111に
近接させて設けた。ノズル16の先端部を冷却ベルト1
1の表面から0.4mm1Idlシて位置し、冷却ベル
ト11移動方向先端側16aのベルト移動方向厚みを5
 mmとし、反対側の冷却ベルト11移動方向後端側1
61)のルみを2 mmどしIC0溶渇溜め14中の金
属溶湯13の表面13aを大気圧より0.77(ff/
Ci高い圧ツノで加圧りることにより、金属溶湯13を
ノズル口15から連続的tこ噴出させ冷却ベルト11で
急冷凝固さlるど、表面の凹凸のされめて少ない10#
Il+1幅、35μ711厚の超a冷高珪素fAiW帯
17が19られた。この薄帯の表面凹凸は第5図に示’
J’ J:うに最大 約4μnLであった。この薄帯で
モデル磁心を組立てたどころ、イの占積率(五86%で
あつIこ。保磁力Hcは従来法で作製した薄帯のそれの
約4分の3という低い餡を示し/j 、。
Example 1 As shown in FIG. 4, the surface speed of the moving copper cooling belt 11 is set to 23 m/sec, and the high-frequency heating coil 1 is placed on top of the moving copper cooling belt 11.
A molten metal 13 of 1700'C (approximately 260°C or more higher than the melting point) made of L5) vt%Si and the balance iron was held in a molten metal reservoir 14 with a width of 0. A cooling bell with a quartz nozzle 1G having a rectangular nozzle opening 15 with a length of 10# in Gmmz! It was provided on the surface of -11 almost in close proximity to sub-111. The tip of the nozzle 16 is connected to the cooling belt 1.
1, and the thickness of the tip side 16a in the belt movement direction of the cooling belt 11 in the movement direction is 5.
mm, and the rear end side 1 in the moving direction of the cooling belt 11 on the opposite side
61) to 2 mm, and the surface 13a of the molten metal 13 in the IC0 melting reservoir 14 is lowered by 0.77 (ff/
By pressurizing with a high-pressure horn, the molten metal 13 is continuously ejected from the nozzle port 15 and rapidly solidified by the cooling belt 11.
An ultra-a cold high silicon fAiW band 17 with a width of I1+1 and a thickness of 35μ711 was fabricated. The surface unevenness of this ribbon is shown in Figure 5.
J' J: Maximum amount of sea urchin was approximately 4 μnL. When a model magnetic core was assembled using this thin strip, the space factor (A) was 586%. j.

実施例2 第6図に承りように、1500回転/分で回転する直径
30cmのクロム鋼製の回転冷却ロール21の表面にほ
ぼ垂直に、^周波加熱コイル22によって溶解しlこ5
.5wt%S1、残部鉄からなる1600℃(融点より
約170゛C以−II ’?;に渇)の金属溶湯23を
溶湯溜め24中に保−持し、幅1.2mm、長さ20m
mの長方形のノズル口25を右Jる窒化珪素製ノズル2
6を設けた。
Example 2 As shown in FIG. 6, melting was carried out by a frequency heating coil 22 almost perpendicular to the surface of a rotating cooling roll 21 made of chrome steel with a diameter of 30 cm and rotating at 1500 rpm.
.. A molten metal 23 consisting of 5 wt% S1 and the balance iron at 1600°C (approximately 170°C higher than the melting point) is held in a molten metal reservoir 24, and has a width of 1.2 mm and a length of 20 m.
Silicon nitride nozzle 2 with a rectangular nozzle opening 25 on the right
6 was established.

ノズル26の先端部を回転冷却ロール21の表面から0
.3mm離して固定し、ノズル口25から先端部への溶
湯流を円滑化するために、ノズル先端部の[1−ル回転
方向先端側2Gaの後縁に9 、8 mmの曲率を説け
た。また、この先端部のロール回転方向先端側2Gaの
ロール表面とlよば817行なifi+のLl−ル回転
lJ向厚みを3順とし、反対側のロール回転方向400
a側26bの厚みを1.5mmとした。溶湯溜め24中
の金属溶湯23の表面23aを大気圧より0.5に9 
/ crd以上高い圧力で加圧することにJ:す、金属
溶湯23をノズル口25から連続的に噴出させ回転冷I
JIロール21で急冷凝固させると表面の凹凸のきわめ
−(少4にい20ram幅、40μm厚の超急冷高珪素
鉄薄帯27が49られた。この薄帯の表面凹凸は最大3
μ7nであった。
The tip of the nozzle 26 is removed from the surface of the rotating cooling roll 21.
.. They were fixed at a distance of 3 mm, and in order to smooth the flow of the molten metal from the nozzle opening 25 to the tip, a curvature of 9.8 mm was applied to the trailing edge of the nozzle tip on the tip side 2Ga in the rotational direction of the nozzle. In addition, the roll surface of the tip side 2Ga in the roll rotation direction of this tip part and the thickness of ifi+ in the Ll-rotation lJ direction of 817 rows in the roll rotation direction are in 3 order, and the thickness in the roll rotation direction 400 on the opposite side is
The thickness of the a side 26b was set to 1.5 mm. The surface 23a of the molten metal 23 in the molten metal reservoir 24 is reduced to 0.5 below atmospheric pressure9.
The molten metal 23 is continuously spouted from the nozzle port 25 and cooled by rotation.
When rapidly solidified with a JI roll 21, an ultra-quenched high-silicon iron ribbon 27 with a width of 20 ram and a thickness of 40 μm was formed.
It was μ7n.

この薄帯でモデル磁心を組立てIこところ、(の占積率
は89%であっ7j O保磁力1−ICは従来法で作製
した薄帯のそれの約5分の4という低い値を示しl〔。
When a model magnetic core was assembled using this ribbon, the space factor was 89%, and the coercive force 1-IC was about four-fifths of that of the ribbon made by the conventional method. l [.

実施例3 第7図に示J−ように、1000回リシ:す分−C′回
転りる直径30 Cmの銅製の回転冷却ロール31の表
面に(Jげ垂直に、抵抗加熱(電気)炉32によって溶
解したNWI96S:、0.3wt%Mq、残部アルミ
ニウムか15なるG!+0’C(fAi口Nj J、り
約70℃以上i!′!i渇)の金属溶湯33を溶ン易溜
め34中に保持し、幅0.4mm、長さ40 mmの艮
lI形ノズルlZ、l 3!iを右する石英製ノズル3
Gを1iuLノた。ノズル3Gの先端部を回転冷却ロー
ル31の表面から0.08 nrm ril 1.て固
定した3、ノズル先端部の[」−ル回転り面前端側36
aのロール回転方向j9みを8.mmどし、反対側の1
1−ル回転方向後端側36bの厚みを3 mmとした。
Example 3 As shown in FIG. 7, a resistance heating (electric) The molten metal 33 of NWI96S melted by 32:, 0.3 wt% Mq, balance aluminum or 15 G! A quartz nozzle 3 is held in the quartz nozzle 3 and is held in a quartz nozzle 3 with a width of 0.4 mm and a length of 40 mm.
G was 1iuL. 0.08 nrm ril from the surface of the rotating cooling roll 31 to the tip of the nozzle 3G. 3. Front end side of the rotating surface of the nozzle tip 36
The roll rotation direction j9 of a is 8. mm, 1 on the opposite side
The thickness of the rear end side 36b in the direction of rotation of the first wheel was 3 mm.

溶湯溜め34中の金属溶湯33の表面33E1を大気圧
J、リ 10醇/−以上高い圧力で加圧り”ることに、
1、す、金属溶)易33を−ノズル口35から連]、ノ
、的12−11f、i出させ回転冷却ロール31で急冷
凝固させると表面凹凸のきわめて少ない40#幅、GO
71m厚のIB急冷薄?j) 37 カin ラit 
fc。コノWJ Wr (J)表面凹凸は最大2μ?+
1であった。この薄帯をアルミニウl\板)?y接σ)
 l:I−(11として使用すると、欠陥のない2枚の
)!ルミニウム板の溶着ができた。
Pressurizing the surface 33E1 of the molten metal 33 in the molten metal reservoir 34 at a pressure higher than atmospheric pressure J, 10 m/- or more,
1. When the metal melt (33) is ejected from the nozzle opening 35 and the target 12-11f is rapidly solidified with the rotating cooling roll 31, a 40# width GO with very few surface irregularities is produced.
71m thick IB quenched thin? j) 37 kain light
fc. Kono WJ Wr (J) Maximum surface unevenness is 2μ? +
It was 1. Is this thin strip made of aluminum? y tangent σ)
l: I- (when used as 11, 2 sheets without defects)! The aluminum plate was successfully welded.

発明の91宋 以−1−のように、本発明の製造方法によれば、超急冷
金属薄帯の表面の凹凸が特に少イエ<、イの凹凸が存在
しても9μIrL稈瓜以−トであり、普通の超急冷片1
]−ル法で得た結晶質薄帯に比べ(約2分の1以下の表
面凹凸を右り゛る薄帯を供給できる。
According to the manufacturing method of the present invention, as described in the 1991 Song Dynasty-1- of the invention, the unevenness on the surface of the ultra-quenched metal ribbon is particularly small. , ordinary super-quenched piece 1
]-Compared to the crystalline ribbon obtained by the method, it is possible to provide a ribbon with surface irregularities that are approximately one-half or less.

この良質な薄帯は、たどえばλ9帯を磁心材わlとして
使用する際、保磁力の低干という磁気性11の向上ばか
りでなく、占積率を向上さ+!−C磁器設中1をコンパ
クト化できるという大き′/、【利点も有覆る。
When using the λ9 band as a magnetic core material, this high-quality thin ribbon not only improves magnetic properties (11) such as low coercive force, but also improves the space factor! - It also has the advantage of being able to make the porcelain installation more compact.

また、この方法で1!′7られる良質な8帯を溶接用1
.1−材として使用すると、欠陥のない溶接が可能とな
るなどの優れた点も有する。また、このような良質薄帯
製造方法は種々の材料にし適用が司1iu −Qある。
Also, with this method, 1! '7 High quality 8 strips for welding 1
.. When used as a 1-material, it also has the advantage of allowing defect-free welding. Furthermore, this method of producing high-quality ribbons can be applied to various materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bはそれぞれ超急冷金属薄帯の製3点方法の
従来例を説明するだめの図、第2図(よ従〉1(法によ
って作製した薄帯の表面凹凸を説明1」る図、第3図は
ノズル−ロール間隙と薄帯の表面凹凸の関係を示1図、
第4図は本発明の一実施例にかかる超急冷金属薄帯の製
造方法を説明するための図、第51λ0.1、第4図の
製造法で作製した)W帯の表面凹凸を説明する図、第(
3図J3よび第7図はそれぞれ他の実施例にがかる17
1急冷金1i八薄帯の製造方法を説明する図である。 11・・・冷)J1ヘル1〜.21 、31・・・回転
冷ノJ1【]−ル、12.22・・・高周波加熱」イル
、32・・・抵抗加熱炉、13、23.33・・・金属
杼f潟、1/1,24.34・・・溶湯溜め、15、2
5.35・・・ノズル口、1(i、 2G、 3(i・
・・ノズル、16a12−Ga、3(ia・・・ノズル
先端部のベルト移動方向またはロール回転方向先端側、
1(ib、 2611.36b・・・ノズル先端部のベ
ルト移動り向3または1」−ル回転方向後9;):側、
17.27.37・・・超急冷金属薄帯代理人 森 木
 筏 弘 第1図 (/’l) 第2図 第3図 ノスフL−0−ルfi%、(mm) 第4図 第5図 第5図 −第7図
Figures 1A and B are diagrams for explaining a conventional three-point method for producing ultra-quenched metal ribbons, respectively, and Figure 2 is an explanation of the surface irregularities of the ribbon produced by the method. Figure 3 shows the relationship between the nozzle-roll gap and the surface unevenness of the ribbon.
FIG. 4 is a diagram for explaining the method of manufacturing an ultra-quenched metal ribbon according to an embodiment of the present invention. FIG. Figure, No. (
Figure 3 J3 and Figure 7 depict other embodiments.
FIG. 1 is a diagram illustrating a method of manufacturing a quenched gold 1i thin strip. 11...Cold) J1 Hell 1~. 21, 31...Rotary cold nozzle J1[]-le, 12.22...High frequency heating"il, 32...Resistance heating furnace, 13, 23.33...Metal shuttle f-gata, 1/1 ,24.34...molten metal reservoir, 15,2
5.35...Nozzle opening, 1(i, 2G, 3(i・
... Nozzle, 16a12-Ga, 3 (ia... Nozzle tip end in belt movement direction or roll rotation direction tip side,
1 (ib, 2611.36b... Belt movement direction of the nozzle tip 3 or 1" - rotation direction after 9;): side,
17.27.37...Ultra-quenched metal thin strip agent Hiroshi Moriki Raku Figure 1 (/'l) Figure 2 Figure 3 Nosuf L-0-le fi%, (mm) Figure 4 Figure 5 Figures 5-7

Claims (1)

【特許請求の範囲】[Claims] 1、移動りる冷却体表面に溶湯溜めからノズル口を通し
て溶融金属を噴出させ、金属薄帯を作製するに際しで、
前記溶湯溜め中の溶融金属温度を、当該金属の融点より
70〜300℃以上の高温に保持し、かつ前記溶融金属
を人ズルロを通して移動する冷却体上に供給する際に、
前記ノズル口と前記移動冷却体の間隙を0.01〜04
mmとし、ノズル先端部の冷却体移動方向先端側の冷J
ul体移動方向厚みを2#以上とし、その反対側の冷却
体移動方向後端側の冷却体移動方向厚みを1 mm以」
、とりることを特徴とする超急冷金属薄帯の製造方法。
1. When producing a metal ribbon by spouting molten metal from a molten metal reservoir through a nozzle port onto the surface of a moving cooling body,
When maintaining the temperature of the molten metal in the molten metal reservoir at a high temperature of 70 to 300 ° C. or higher than the melting point of the metal, and supplying the molten metal onto a cooling body that moves through a manzururo,
The gap between the nozzle opening and the moving cooling body is 0.01 to 0.04
mm, and the cold J on the tip side of the nozzle tip in the direction of cooling body movement.
The thickness of the ul body in the direction of movement of the cooling body is 2# or more, and the thickness of the rear end side of the opposite side in the direction of movement of the cooling body is 1 mm or more.
, a method for producing an ultra-quenched metal ribbon.
JP12856983A 1983-07-13 1983-07-13 Production of ultraquickly cooled light-gage metallic strip Pending JPS6021160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12856983A JPS6021160A (en) 1983-07-13 1983-07-13 Production of ultraquickly cooled light-gage metallic strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12856983A JPS6021160A (en) 1983-07-13 1983-07-13 Production of ultraquickly cooled light-gage metallic strip

Publications (1)

Publication Number Publication Date
JPS6021160A true JPS6021160A (en) 1985-02-02

Family

ID=14987993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12856983A Pending JPS6021160A (en) 1983-07-13 1983-07-13 Production of ultraquickly cooled light-gage metallic strip

Country Status (1)

Country Link
JP (1) JPS6021160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107234218A (en) * 2016-06-27 2017-10-10 安泰科技股份有限公司 The embedded nozzle of weld pool for preparing amorphous band

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107234218A (en) * 2016-06-27 2017-10-10 安泰科技股份有限公司 The embedded nozzle of weld pool for preparing amorphous band
CN107234218B (en) * 2016-06-27 2022-10-18 安泰科技股份有限公司 A embedded nozzle of weld pool for preparing amorphous strip

Similar Documents

Publication Publication Date Title
US4142571A (en) Continuous casting method for metallic strips
US4221257A (en) Continuous casting method for metallic amorphous strips
JPS6038226B2 (en) Metal ribbon manufacturing equipment
JP2708681B2 (en) Method for producing ultrathin amorphous alloy ribbon
JPS6021160A (en) Production of ultraquickly cooled light-gage metallic strip
US4331739A (en) Amorphous metallic strips
JPS62259644A (en) Method and apparatus for producing rapidly cooled sheet metal having excellent end face
JPS60108144A (en) Production of thin metallic strip
JP2002086249A (en) Method for producing amorphous alloy strip
JPS59133945A (en) Production of ultraquickly cooled light-gage metallic strip
JP2637892B2 (en) Amorphous metal ribbon
JPS58176061A (en) Production of belt-like metal by quick cooling with liquid
JPS6213247A (en) Apparatus for producing ultra-quickly cooled thin alloy strip
JPH0139861B2 (en)
JPH07214250A (en) Cooling roll for manufacturing rapidly solidified thin metal strip
JPS63235045A (en) Production of wide strip
JPH08309493A (en) Strip manufacturing machine
JP2005021950A (en) Method for manufacturing amorphous alloy thin strip
JPH03161149A (en) Apparatus and method for producing rapidly cooled metal strip
JPS61159246A (en) Production of amorphous metallic ribbon
JPS61140349A (en) Nozzle for producing quickly cooled thin strip
JPS61172654A (en) Production of quickly cooled thin alloy strip
JPS6038224B2 (en) Method and apparatus for producing wide thin strips directly from molten metal
JPS5816761A (en) Production of thin metallic strip
JP3100798B2 (en) Quenched metal strip manufacturing equipment