JPS60211543A - Coordinate converting system - Google Patents

Coordinate converting system

Info

Publication number
JPS60211543A
JPS60211543A JP59068013A JP6801384A JPS60211543A JP S60211543 A JPS60211543 A JP S60211543A JP 59068013 A JP59068013 A JP 59068013A JP 6801384 A JP6801384 A JP 6801384A JP S60211543 A JPS60211543 A JP S60211543A
Authority
JP
Japan
Prior art keywords
vector
coordinate
storage means
stored
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59068013A
Other languages
Japanese (ja)
Other versions
JPH0580017B2 (en
Inventor
Hajime Kawakami
肇 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59068013A priority Critical patent/JPS60211543A/en
Publication of JPS60211543A publication Critical patent/JPS60211543A/en
Publication of JPH0580017B2 publication Critical patent/JPH0580017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/548Trigonometric functions; Co-ordinate transformations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Or Creating Images (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To attain coordinate conversion of plural points at a high speed in a multi-dimension space by calculating a coordinate value after coordinate conversion from a vector group and plural points generated by a vector generating means. CONSTITUTION:A coordinate value 121 is read from a coordinate storage means 120 and a vector 131 is read from a conversion matrix storage means 130 by the start of a vector generating means 140, a vector 141 is generated by the product between the vector and a scalar and the result is stored in a vector storage means 150. When the processings above are repeated and the processing for all coordinates of a storage means 120 is finished, a coordinate calculating means 160 is started, and address information 111 having a quantity equal to the number of dimensions of a space representing one point is read from a point storage means 110, a vector group 151 is read from the storage means 150 by using the addresses and they are added to calculate a position vector applying coordinate conversion to one point. The processings above are conducted all points stored by the point storage means and the result is fed to a drawing display means 190.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はデータとして登録されている図形や物体をディ
スプレイの任意の位置に任意の姿勢で表示するときなど
に必要な座標変換方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coordinate transformation method necessary for displaying figures and objects registered as data in any position and in any orientation on a display.

〔従来技術〕[Prior art]

従来、多次元空間内で複数個の点を座標変換する場合、
まず各点を成分が座標値であるベクトルで表わし、次に
このベクトルを順次取り出してきて変換を表わす変換行
列に掛け、その結果のベクトルで座標変換後の位置を得
、以上の過程をすべての点に対してくり返すことによシ
実行していた。
Conventionally, when converting the coordinates of multiple points in a multidimensional space,
First, each point is represented by a vector whose components are coordinate values, then these vectors are sequentially extracted and multiplied by a transformation matrix representing the transformation, and the resulting vector is used to obtain the position after the coordinate transformation, and the above process is This was done by repeating the points.

一方、座標変換の処理を高速に行なうように工夫した座
標変換方式が出現している。その−例に、先の座標変換
方式で一点の座標変換を行なうとき、ベクトルと行列の
掛は算を行なう前にあらかじめ行列で値が零の要素を調
べておき、ベクトルと行列の掛は算を行なう演算の途中
で行列の零要素をベクトルの一要素に掛けるという処理
を省略し、その結果として処理に必要な演算の数を減少
させ、座標変換を高速に実行する方式がある。
On the other hand, a coordinate transformation method devised to perform coordinate transformation processing at high speed has appeared. For example, when converting the coordinates of one point using the coordinate conversion method described above, before multiplying a vector and a matrix, check for elements with a value of zero in the matrix before performing the calculation; There is a method of omitting the process of multiplying one element of a vector by a zero element of a matrix in the middle of the calculation, thereby reducing the number of calculations required for the process and executing coordinate transformation at high speed.

〔従来技術の問題〕[Problems with conventional technology]

しかしながら、上記座標変換方式では変換行列に値が零
である要素が存在しなければ処理の高速化を期待できな
い。
However, in the coordinate transformation method described above, unless there is an element with a value of zero in the transformation matrix, speeding up of processing cannot be expected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は変換行列の特性には左右されず、多次元
空間内で複数個の点が有する冗長性を無くすことにより
座標変換を高速に実行することにある。
An object of the present invention is to perform coordinate transformation at high speed by eliminating redundancy of a plurality of points in a multidimensional space, regardless of the characteristics of a transformation matrix.

〔発明の構成〕[Structure of the invention]

本発明は、成分が座標値を記憶した場所のアドレスであ
るベクトルで多次元空間内の複数個の点を表現し、上記
複数個の点に対する座標値を多次元空間の各座標ごとに
記憶し、多次元空間内で点の座標変換を表わす変換行列
と前記座標値からベクトル群を生成し、上記ベクトル生
成手段が生成するベクトル群と前記複数個の点から座標
変換後の座標値を算出することにより多次元空間内で複
数個の点を座標変換する構成となっている。
The present invention expresses a plurality of points in a multidimensional space by a vector whose components are addresses of locations where coordinate values are stored, and stores coordinate values for the plurality of points for each coordinate in the multidimensional space. , generate a vector group from a transformation matrix representing coordinate transformation of a point in a multidimensional space and the coordinate values, and calculate coordinate values after the coordinate transformation from the vector group generated by the vector generation means and the plurality of points. This configuration allows coordinate transformation of multiple points in a multidimensional space.

以下次の順序で説明する。まず、第1図に例示した二次
元空間内の長方形100を従来の方式で座標変換すると
きの定式化を行ない、次にその式を用いて本発明が着目
した点を示し、本発明の詳細な説明する。そしてその後
、前記長方形を座標変換して表示する本発明の実施例を
用いて本発明の詳細な説明する。
The explanation will be given below in the following order. First, we will formulate the coordinate transformation of the rectangle 100 in the two-dimensional space illustrated in FIG. Explain. After that, the present invention will be explained in detail using an embodiment of the present invention in which the rectangle is displayed after coordinate transformation.

〔本発明の作用、原理〕[Operation and principle of the present invention]

従来の方式は第1図に示した二次元空間内の長方形10
0をたとえば座標値が成分である四つの行ベクトル (1) で表わす。次に変換行列Tを とすれば従来の方式が行なう演算は となり、掛は算16回、たし算8回を行なうことになる
The conventional method uses a rectangle 10 in the two-dimensional space shown in Figure 1.
For example, 0 is represented by four row vectors (1) whose components are coordinate values. Next, if we take the transformation matrix T, the calculations performed in the conventional method are as follows: multiplication is performed 16 times and addition is performed 8 times.

ここで、式(2)の行列を2つの行ベクトルしf(tl
l + 1lll ) *ル、=(1丸、を曽)(4)
に分割し、再び従来の方式が行なう演算で座標変換を表
わすと 5− となシ、これらの式を調べると従来の方式はa−隻工、
b−1tx、e−1tア、d−1tアなる行ベクトルを
それぞれ2回ずつ算出するという無駄を行なっているこ
とがわかる。
Here, we convert the matrix of equation (2) into two row vectors f(tl
l + 1llll) *le, = (1 circle, wo) (4)
If we express the coordinate transformation again using the calculations performed by the conventional method, we get 5-.If we examine these formulas, we can see that the conventional method has a-ship construction,
It can be seen that the row vectors b-1tx, e-1ta, and d-1ta are each calculated twice, which is wasteful.

本発明の原理は以上の無駄を無くすことによシ座標変換
の処理に必要な演算の数を減らすものである。すなわち
、2次元空間内の点P=(x、y)を変換行列T=(t
: t: )で座標変換するとき、Tを隻f(tll 
* tll ) e世f(t@ e t@ )に分割し
ておく。
The principle of the present invention is to reduce the number of calculations required for coordinate transformation processing by eliminating the above waste. In other words, point P=(x,y) in two-dimensional space is converted to transformation matrix T=(t
: t: ), when converting T to f(tll
*tll) e, f (t@et@).

Pの座標変換はP T= xaz+ y tt yとな
るので、姐、。
The coordinate transformation of P is P T = xaz + y tt y, so.

yttアをあらかじめめておいて、後に合成している。The ytt a is prepared in advance and synthesized later.

このため複数個の点が重複して座標値を持つ場合に重複
する演算を避けた高速処理が可能である。
Therefore, when a plurality of points have duplicate coordinate values, high-speed processing is possible by avoiding duplicate calculations.

〔実施例〕〔Example〕

第2図は以上の原理に基づいた本発明の座標変換方式を
用いて第1図に例示した長方形を座標変換し表示する実
施例のブロック図である。
FIG. 2 is a block diagram of an embodiment in which the coordinates of the rectangle illustrated in FIG. 1 are transformed and displayed using the coordinate transformation method of the present invention based on the above principle.

6− 第2図において170は制御手段であシ、コンピュータ
を用いて構成する。また、180は制御信号であり、こ
の制御信号を用いて制御手段170はまずベクトル生成
手段140を起動する。ベクトル生成手段は座標値記憶
手段120の内容から座標値121、変換行列記憶手段
130からベク ゛トル131を読み出し、ベクトルと
スカラーの積でベクトル141を生成し、次に座標値1
21を読み出すときに用いたアドレスを転用して、との
アドレスで定まるベクトル記憶手段150の記憶場所に
生成したベクトル141を記憶する。以上の処理座標値
記憶手段が記憶するすべての座標値に対してくり返し、
ベクトル生成手段がその処理を完了すると、制御手段は
次に座標算出手段160を起動する。座標算出手段は点
記憶手段110の内容のうち、一点を表わす部分から空
間の次元数に等しい個数のアドレス情報111を読み出
し、次にこれらのアドレス情報を用いてベクトル記憶手
段150からベクトル群151を読み出し、とれらのベ
クトルをだし合わせることによシ、注目した一点を座標
変換した結果の位置を位置ベクトルとして算出する。点
記憶手段が記憶するすべての点に対して座標算出手段は
以上の処理を行ないその結果を図形表示手段190に送
る。図形表示手段は座標算出手段が送ってくる位置ベク
トル161に従って線画を表示するものであシ、位置ベ
クトルを一時保持しておくためのバッファとCRTと従
来のディスプレイ手段で実現できる。
6- In FIG. 2, 170 is a control means, which is constructed using a computer. Further, 180 is a control signal, and using this control signal, the control means 170 first activates the vector generation means 140. The vector generating means reads the coordinate value 121 from the contents of the coordinate value storage means 120 and the vector 131 from the transformation matrix storage means 130, generates a vector 141 by multiplying the vector and the scalar, and then reads the coordinate value 1
The generated vector 141 is stored in the storage location of the vector storage means 150 determined by the address . Repeating the above processing for all coordinate values stored in the coordinate value storage means,
When the vector generation means completes its processing, the control means next activates the coordinate calculation means 160. The coordinate calculation means reads address information 111 in a number equal to the number of dimensions of the space from the part representing one point out of the contents of the point storage means 110, and then uses these address information to read a vector group 151 from the vector storage means 150. By reading and adding up these vectors, the position resulting from the coordinate transformation of the single point of interest is calculated as a position vector. The coordinate calculation means performs the above processing on all points stored in the point storage means and sends the results to the graphic display means 190. The graphic display means displays a line drawing according to the position vector 161 sent by the coordinate calculation means, and can be realized by a buffer for temporarily holding the position vector, a CRT, and conventional display means.

この方式の動作を示す以下の内容によシ、さらに本方式
の細部を説明する。
The details of this method will be further explained in the following content which shows the operation of this method.

本方式ではまず第1図に例示した長方形100は座標値
を記憶している場所のアドレスが成分である四つの行ベ
クトル j”o*=(Ao 、 Bo ) 渾t”=(At 、
 Bo ) 、 P F=(At、 Bt) 。
In this method, first, the rectangle 100 illustrated in FIG.
Bo ), P F = (At, Bt).

占’=(AO,Bl) (6) で表わされ、これら4点をたとえば1つのメモリチップ
で構成した点記憶手段の内容として記憶する。この様子
をメモリ上で表現した概念図を第3図に示す。
These four points are stored as the contents of a point storage means constituted by one memory chip, for example. A conceptual diagram representing this situation on the memory is shown in FIG.

次にたとえば1つのメモリチップで構成した座標値記憶
手段の内容はX座標値の部分とy座標値の部分に分離し
ておき、X座標値の部分を示すアドレスAの、 A1 
で定まる記憶場所には座標値a。
Next, for example, the contents of the coordinate value storage means constituted by one memory chip are separated into an X coordinate value part and a y coordinate value part, and the address A indicating the X coordinate value part is A1.
The coordinate value a is stored in the storage location determined by .

b、y座標値の部分を示すアドレスBo、 B1で定ま
る記憶場所には座標値c、dをそれぞれ記憶しておく。
Coordinate values c and d are stored in storage locations determined by addresses Bo and B1 indicating the b and y coordinate values, respectively.

また、X座標値の部分の先頭にはX座標値の部分が記憶
している座標値の個数、y座標値の部分の先頭にはy座
標値の部分が含む座標値の個数を記憶しておく。この概
念図を第4図に示す。
Also, the number of coordinate values stored in the X coordinate value part is stored at the beginning of the X coordinate value part, and the number of coordinate values included in the y coordinate value part is stored at the beginning of the y coordinate value part. put. This conceptual diagram is shown in FIG.

一方、式(2)の変換行列を2つの行ベクトル社f(t
ll + tll ) +もP(tr+ 、t@ ) 
(7)で分割し と見なし、変換行列記憶手段の中でTを牝、と堀 に分
離して記憶する。第5図は上記変換行列記憶手段をたと
えば1つのメモリチップで表現した概念図である。
On the other hand, the transformation matrix of equation (2) is converted into two row vectors f(t
ll + tll ) + is also P(tr+ , t@ )
In (7), T is considered to be divided and stored in the transformation matrix storage means into two parts: T and HORI. FIG. 5 is a conceptual diagram in which the transformation matrix storage means is represented by, for example, one memory chip.

処理は、制御手段がたとえば第6図に例示するベクトル
生成手段140を起動して始まる。起動9− されたベクトル生成手段は、第1の処理として座標選択
器200の指令信号によシ変換行列記憶手段130の内
容から式(7)で示すベクトル8xを取り出し、上記1
1工をベクトル保持器210に保持し、座標値記憶手段
120とベクトル記憶手段150に現在の座標を知らせ
る。
The process begins when the control means activates the vector generation means 140 illustrated in FIG. 6, for example. As a first process, the activated vector generation means extracts the vector 8x shown by equation (7) from the contents of the transformation matrix storage means 130 according to the command signal of the coordinate selector 200, and performs the above-mentioned 1.
1 is held in the vector holder 210, and the current coordinates are notified to the coordinate value storage means 120 and the vector storage means 150.

ベクトル生成手段の第2の処理はアドレス生成器220
の指令信号により第4図に例示した座標値記憶手段12
0の内容のうち、前記座標選択器が示す座標の座標値の
個数である2を計数器23o1に取シ出し、上記アドレ
ス生成器の内容に1を加算し、前記座標値記憶手段の内
容のうち上記アドレス生成器の内容が指す場所に記憶し
た注目座標の第1番目の座標値aをスカラ保持器240
に取シ出す。
The second process of the vector generation means is the address generator 220
The coordinate value storage means 12 illustrated in FIG.
Out of the contents of 0, 2, which is the number of coordinate values of the coordinate indicated by the coordinate selector, is taken out to the counter 23o1, 1 is added to the contents of the address generator, and the contents of the coordinate value storage means are The scalar holder 240 stores the first coordinate value a of the coordinate of interest stored in the location indicated by the contents of the address generator.
Take it out.

ベクトル生成手段の第3の処理はベクトル保持器210
の内容であるベクトルとスカラ保持器240の内容であ
る座標値をベクトル・スカラ乗算器250に送り、上記
ベクトルを上記スカラ倍したベクトルを算出し、たとえ
ば第7図に例示す10− トル記憶手段150の内容のうち前記アドレス生成器の
内容で定まるメモリチップMl上の場所に上記結果のベ
クトルのX成分を、同様にして定まるメモリチップ間2
上の場所に上記結果のベクトルのy成分を記憶する。
The third process of the vector generation means is the vector holder 210
The vector containing the contents of the vector and the coordinate value containing the contents of the scalar holder 240 are sent to the vector/scalar multiplier 250, and a vector is calculated by multiplying the above vector by the above scalar. Among the contents of 150, the X component of the resultant vector is placed on the memory chip M1 determined by the contents of the address generator, and the
Store the y component of the resulting vector above.

ベクトル生成手段はその後、前記計数器の内容から1を
引き、上記結果が零になるまで同様の処理をくり返し、
次に先と同様にして前記変換行列記憶手段の内容からベ
クトル廿アを取り出し、さらに先と同様の処理をして計
数器の内容が零になれば処理を完了する。
The vector generating means then subtracts 1 from the contents of the counter and repeats the same process until the result becomes zero,
Next, in the same manner as before, a vector value is extracted from the contents of the transformation matrix storage means, and the same processing as before is performed, and when the contents of the counter become zero, the processing is completed.

ベクトル生成手段が処理を完了すると、制御手段は次に
たとえば第8図に例示した座標算出手段160を起動す
る。座標算出手段は第3図に例示する点記憶手段110
の内容が表わす複数個の点のそれぞれに対して、ベクト
ル加算器の内容をクリヤし、注目点の各成分のうちX成
分を取り出し、上記成分をアドレス保持器310に保持
し、前記ベクトル記憶手段150の内容のうち上記アド
レス保持器の内容が示す場所に記憶したベクトルを取シ
出し、上記ベクトル加算器320の内容が表わすベクト
ルに加え、以上の処理を注目点のy成分についてもくシ
返し、その後上記ベクトル加算器の内容が示すベクトル
を表示手段に送シ、すべての点に対して以上の処理を実
行し処理を完了する。
When the vector generation means completes the processing, the control means next activates the coordinate calculation means 160 illustrated in FIG. 8, for example. The coordinate calculation means is the point storage means 110 illustrated in FIG.
For each of the plurality of points represented by the contents of 150, the vector stored at the location indicated by the contents of the address holder is extracted, added to the vector represented by the contents of the vector adder 320, and the above process is repeated for the y component of the point of interest. Then, the vector indicated by the contents of the vector adder is sent to the display means, and the above processing is executed for all points to complete the processing.

座標算出手段が処理を完了すると、制御手段は最後に表
示手段190を起動する。表示手段はたとえば前記座標
算出手段が送ってくるベクトル群を一旦保持しておくた
めのバッファメモリとCRTで構成し、上記バッファメ
モリに保持したベクトルが指す点を順に線分でつないで
CRT上に表示することによシ、座標変換後の図形を表
示する。
When the coordinate calculation means completes the processing, the control means finally activates the display means 190. The display means is composed of, for example, a buffer memory for temporarily holding a group of vectors sent by the coordinate calculation means and a CRT, and connects the points pointed by the vectors held in the buffer memory with line segments in order and displays them on the CRT. By displaying, the figure after coordinate transformation is displayed.

以上の説明で用いた座標選択器200は、座標ごとにベ
ースアドレスを保持しておき、上記ペースアドレスを座
標ごとに変化させる方式をTTL等を用いた従来のディ
ジタル回路技術で実現でき、その他のベクトル生成手段
の構成要素と座標値算出手段の構成要素もTTL等を用
いた従来のディジタル回路技術で実現できる。
The coordinate selector 200 used in the above explanation can realize a method of holding a base address for each coordinate and changing the pace address for each coordinate using conventional digital circuit technology using TTL, etc. The components of the vector generation means and the coordinate value calculation means can also be realized by conventional digital circuit technology using TTL or the like.

〔発明の効果〕〔Effect of the invention〕

本発明を用いた上記座標変換の演算処理はベクトル生成
手段が行なう掛は算8回と座標値算出手段が行なうたし
算8回である。この結果を従来の方式と比較してまとめ
たものが表−1である。
In the arithmetic processing of the coordinate transformation using the present invention, the vector generation means performs a total of 8 times, and the coordinate value calculation means performs a total of 8 times. Table 1 summarizes the results in comparison with the conventional method.

表−1 を調べまとめたものが表−2である。Table-1 Table 2 is a summary of the results.

表−2 13− 上記2つの表で示す様に、本発明は複数個の点が重複し
て座標値を持つ場合に座標変換の処理で必要な掛は算の
数を減少させる効果がある。掛は算はたし算に比べて処
理に多くの時間を必要とするので、本発明の効果は処理
を高速化する上で有意義なものと力る。
Table 2 13- As shown in the above two tables, the present invention has the effect of reducing the number of multiplications required in coordinate transformation processing when a plurality of points have duplicate coordinate values. Since multiplication requires more time to process than addition, the effects of the present invention are believed to be significant in speeding up processing.

〔効果の総括〕[Summary of effects]

以上の説明は次元を2次元に限定し、さらに点記憶手段
の内容は複数個の行ベクトルであシ、変換行列記憶手段
の内容は1×2の行ベクトル群に分割された行列であシ
、ベクトル生成手段は上記変換行列記憶手段の内容が表
わす行列を構成する行ベクトル群から順次域シ出してき
た行ベクトルに同様の順序で定まる座標に対して座標記
憶手段の内容が記憶する座標値を一つずつ掛け、以上の
過程を上記変換行列記憶手段の内容が表わす行列を構成
するすべての行ベクトルに対して行なう場合について行
なったが、2次元以上の多次元や、点記憶手段の内容は
複数個の列ベクトルであシ、変換行列記憶手段の内容は
2×1の列ベクトル群14− に分割された行列であり、ベクトル生成手段は上記変換
行列記憶手段の内容が表わす行列を構成する列ベクトル
群から順次取り出してきた列ベクトルに同様の順序で定
する座標に対して座標記憶手段の内容が記憶する座標値
を1つずつ掛け、以上の過程を上記変換行列記憶手段の
内容が表わす行列を構成するすべての列ベクトルに対し
て行なう場合も同様である。
In the above explanation, the dimensions are limited to two dimensions, the contents of the point storage means are a plurality of row vectors, and the contents of the transformation matrix storage means are a matrix divided into 1×2 row vector groups. , the vector generation means generates coordinate values stored in the coordinate storage means for coordinates determined in the same order as the row vectors sequentially extracted from the group of row vectors constituting the matrix represented by the contents of the transformation matrix storage means. One by one, the above process was performed for all the row vectors that constitute the matrix represented by the contents of the transformation matrix storage means. is a plurality of column vectors, the contents of the transformation matrix storage means are a matrix divided into 2×1 column vector groups 14-, and the vector generation means constructs a matrix represented by the contents of the transformation matrix storage means. Column vectors taken out sequentially from a group of column vectors are multiplied one by one by the coordinate values stored in the contents of the coordinate storage means for the coordinates determined in the same order. The same holds true for all column vectors that make up the representing matrix.

図形を表示する方式においてはそのシステムが持つデー
タの中に座標値を重複して持つ様な基本図形をあらかじ
め登録する場合が多く本発明の有効な応用分野である。
In a system for displaying figures, basic figures having duplicate coordinate values are often registered in advance in data held by the system, which is an effective field of application of the present invention.

図形を表示する方式以外でも3次元CADではデータと
して登録しである基本物体を組み合わせて新しい物体を
生成する手法を用いるものが多く、その場合には基本物
体を3次元空間内で移動させる座標変換処理が必要とな
り、本発明を応用することが可能である。
In addition to the method of displaying figures, 3D CAD often uses a method of generating new objects by combining basic objects registered as data, and in this case, coordinate transformation that moves the basic objects in 3D space is used. Processing is required and the present invention can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いた長方形の説明図、第2図は本発
明を用いて図形を座標変換し表示する方式のブロック図
、第3図は例で用いた長方形の各頂点を表わす点記憶手
段の内容を示す図、第4図は例で用いた長方形の各頂点
に対する座標値記憶手段の内容を示す図、第5図は例で
用いた変換行列を行ベクトルに分割して記憶する変換行
列記憶手段の内容を示す図、第6図はベクトル生成手段
の構成例を示す図、第7図はベクトル生成手段が生成す
るベクトル群を記憶するベクトル記憶手段の内容を示す
図、第8図は座標算出手段の構成例を示す図、第9図は
効果を示すために用いた図形の説明図を示す。 図において、 100は例で用いた長方形、110は点記憶手段、11
1は一点に対する各座標値を記憶した場所を示すアドレ
ス群、120は座標値記憶手段、121は座標値記憶手
段から取シ出した座標値、130は変換行列記憶手段、
131は変換行列を構成するベクトル、140はベクト
ル生成手段、141はベクトル生成手段が生成したベク
トル、150はベクトル記憶手段、151は111のア
ドレス群を用いてベクトル記憶手段から取り出したベク
トル群、160は座標算出手段、161は座標変換後の
位置ベクトル、170は制御手段、180は制御信号、
190は図形表示手段をそれ一17= 71−1 図 7I−3図 71−4 図 オ 7 (α) (b)
Fig. 1 is an explanatory diagram of the rectangle used in the example, Fig. 2 is a block diagram of a system for converting the coordinates of a figure and displaying it using the present invention, and Fig. 3 is a point representing each vertex of the rectangle used in the example. Figure 4 shows the contents of the storage means for each vertex of the rectangle used in the example. Figure 5 shows the transformation matrix used in the example divided into row vectors and stored. FIG. 6 is a diagram showing the contents of the transformation matrix storage means, FIG. 6 is a diagram showing an example of the configuration of the vector generation means, FIG. 7 is a diagram showing the contents of the vector storage means for storing vector groups generated by the vector generation means, and FIG. The figure shows an example of the configuration of the coordinate calculation means, and FIG. 9 shows an explanatory diagram of figures used to show the effect. In the figure, 100 is the rectangle used in the example, 110 is the point storage means, and 11 is the rectangle used in the example.
1 is a group of addresses indicating the location where each coordinate value for one point is stored; 120 is a coordinate value storage means; 121 is a coordinate value taken out from the coordinate value storage means; 130 is a transformation matrix storage means;
131 is a vector constituting a transformation matrix; 140 is a vector generation means; 141 is a vector generated by the vector generation means; 150 is a vector storage means; 151 is a vector group retrieved from the vector storage means using the address group 111; 160 161 is a coordinate calculation means, 161 is a position vector after coordinate transformation, 170 is a control means, 180 is a control signal,
190 indicates the graphic display means 17 = 71-1 Figure 7I-3 Figure 71-4 Figure O 7 (α) (b)

Claims (1)

【特許請求の範囲】[Claims] 成分が座標値を記憶した場所のアドレスであるベクトル
(IXn(又はn×1)の行(又は列)ベクトル(nは
空間の次元を示す))で多次元空間内の複数個の点を表
現し、上記複数個の点に対する座標値を多次元空間の各
座標ごとに記憶し、多次元空間内で点の座標変換を表わ
す変換行列を1×n(又はn×1)の行(又は列)ベク
トル群に分割された行列で表現し、上記変換行列の行(
又は列)ベクトル群から順次数シ、出してきた行(又は
列)ベクトルに同様の順序で定まる座標の座標値を1つ
づつ作用させてベクトル群を生成し、複数個の点から順
次各点を選び、上記点を表わすベクトルの各成分である
アドレスを読取シ、上記アドレスが示す場所に記憶した
座標値を用いて生成したベクトルを各成分ごとに見い出
してこのみつけたベクトルをたし合わせて座標変換後の
座標値を算出することを特徴とする座標変換方式。
Express multiple points in a multidimensional space with a vector (IXn (or n×1) row (or column) vector (n indicates the dimension of the space)) whose components are addresses of locations where coordinate values are stored. Then, the coordinate values for the plurality of points are stored for each coordinate in the multidimensional space, and a transformation matrix representing the coordinate transformation of the points in the multidimensional space is stored in 1×n (or n×1) rows (or columns). ) is expressed as a matrix divided into vector groups, and the rows of the above transformation matrix (
Generate a vector group by applying the coordinate values of the coordinates determined in the same order to the row (or column) vectors one by one from the vector group, and sequentially calculate each point from multiple points. , read the address that is each component of the vector representing the above point, find the vector generated for each component using the coordinate values stored at the location indicated by the above address, and add the found vectors. A coordinate transformation method characterized by calculating coordinate values after coordinate transformation.
JP59068013A 1984-04-05 1984-04-05 Coordinate converting system Granted JPS60211543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068013A JPS60211543A (en) 1984-04-05 1984-04-05 Coordinate converting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068013A JPS60211543A (en) 1984-04-05 1984-04-05 Coordinate converting system

Publications (2)

Publication Number Publication Date
JPS60211543A true JPS60211543A (en) 1985-10-23
JPH0580017B2 JPH0580017B2 (en) 1993-11-05

Family

ID=13361524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068013A Granted JPS60211543A (en) 1984-04-05 1984-04-05 Coordinate converting system

Country Status (1)

Country Link
JP (1) JPS60211543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166682A (en) * 1985-01-18 1986-07-28 Hokkaido Electric Power Co Inc:The Graphic conversion system
JPS63107326A (en) * 1986-10-01 1988-05-12 ドイチエ・トムソン−ブラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Converting circuit
JPS63127365A (en) * 1986-11-17 1988-05-31 Nec Corp Coordinate transforming system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155560A (en) * 1976-06-21 1977-12-24 Mitsutoyo Seisakusho Threeedimensional coordinate measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155560A (en) * 1976-06-21 1977-12-24 Mitsutoyo Seisakusho Threeedimensional coordinate measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166682A (en) * 1985-01-18 1986-07-28 Hokkaido Electric Power Co Inc:The Graphic conversion system
JPS63107326A (en) * 1986-10-01 1988-05-12 ドイチエ・トムソン−ブラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Converting circuit
JPS63127365A (en) * 1986-11-17 1988-05-31 Nec Corp Coordinate transforming system

Also Published As

Publication number Publication date
JPH0580017B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
Sproull et al. A clipping divider
US4283765A (en) Graphics matrix multiplier
US5422997A (en) Texture address generator, texture pattern generator, texture drawing device, and texture address generating method
JP2894989B2 (en) Mipmap / lipmap texture linear addressing memory configuration and address generator
JPH0572627B2 (en)
US4719588A (en) Matrix multiplication circuit for graphic display
US5745739A (en) Virtual coordinate to linear physical memory address converter for computer graphics system
JPS62500126A (en) Computer graphics processing system for real-time calculation and perspective view display on 3D screens
JPS60239796A (en) Circuit and apparatus for altering data in display memory
JPH0535913B2 (en)
EP0261390B1 (en) Matrix concatenation in a graphics display system
US5537520A (en) Method and system for displaying a three dimensional object
JPS60211543A (en) Coordinate converting system
JP4069486B2 (en) Memory circuit control device and graphic operation device
KR900002631B1 (en) Image data processing method and apparatus
JP2000155851A (en) Texture mapping device and rendering device equipped with the same and information processor
JPH11272548A (en) Storage circuit control device and graphic operation device
US7417639B2 (en) Drawing device and information processing apparatus
Porter Aplanar, two-dimensional geometry in APL
JPH0277967A (en) Matrix multiplier
JPH0816935B2 (en) Wave image generation method
JPH06103504B2 (en) Coordinate conversion device
JPH0766451B2 (en) Computer graphic equipment
JPH07141325A (en) Signal processor
JPS6325435B2 (en)