JPS60210800A - Method of removing radioactive element in waste liquor - Google Patents

Method of removing radioactive element in waste liquor

Info

Publication number
JPS60210800A
JPS60210800A JP6620384A JP6620384A JPS60210800A JP S60210800 A JPS60210800 A JP S60210800A JP 6620384 A JP6620384 A JP 6620384A JP 6620384 A JP6620384 A JP 6620384A JP S60210800 A JPS60210800 A JP S60210800A
Authority
JP
Japan
Prior art keywords
waste liquid
line
concentration
adsorption
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6620384A
Other languages
Japanese (ja)
Inventor
金澤 俊夫
郁夫 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6620384A priority Critical patent/JPS60210800A/en
Publication of JPS60210800A publication Critical patent/JPS60210800A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は放射性元素含有廃液中の放射性元素濃度を排出
基準値以下まで経済的に低下させることのできる放射性
元素除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing radioactive elements that can economically reduce the concentration of radioactive elements in waste liquid containing radioactive elements to below the emission standard value.

医療機関や研究施設から発生する廃液中には放射性同位
体等の使用に起因して放射性元素が大量に含まれている
ことが多い。この様な廃液を系外へ排出するに当たって
は、環境に悪影響を与えることが無い様に(排出基準値
を満足する様に)廃液中の放射性元素濃度を低下させる
必要がある。
Waste liquid generated from medical institutions and research facilities often contains large amounts of radioactive elements due to the use of radioactive isotopes. When discharging such waste liquid out of the system, it is necessary to reduce the concentration of radioactive elements in the waste liquid so as not to adversely affect the environment (so as to satisfy the discharge standard value).

その為上記施設には減衰方式や希釈方式あるいは両方式
併用の放射性元素除去設備が設置されている。しかるに
前者の方式を採用しようとすれば廃液中の放射性元素濃
度が基準値以下に減衰するまでの間長期に亘って貯留し
ておかなければならガいため大容量の貯留槽を必要とす
るという欠点がある。他方後者社廃液を水で希釈して放
射性元素濃度を基準値以下まで低下させるものであるか
ら減衰方式に比べると設備規模性小さくて済むが、大量
の希釈水を必要とするという欠点並びに総量規制という
最近の考え方になじまないという問題がある。即ち従来
方式はいずれも廃液処理を経済的に行なうことができる
という保障はなかった。
For this reason, the above facilities are equipped with radioactive element removal equipment that uses an attenuation method, a dilution method, or a combination of both methods. However, if the former method is adopted, the waste liquid must be stored for a long period of time until the concentration of radioactive elements in it decays below the standard value, which requires a large-capacity storage tank. There is. On the other hand, the latter method dilutes the waste liquid with water to reduce the concentration of radioactive elements to below the standard value, so the equipment size is smaller than the attenuation method, but it has the disadvantage of requiring a large amount of dilution water and the total amount being regulated. The problem is that it does not fit in with the recent way of thinking. That is, in all conventional methods, there is no guarantee that waste liquid treatment can be carried out economically.

本発明はこうした事情の中から検討を重ねた結果完成さ
れたものであって放射性元素含有廃液中の放射性元素含
有濃度を経済的に且つ確実に低下させようとするもので
ある。
The present invention was completed as a result of repeated studies under these circumstances, and is intended to economically and reliably lower the concentration of radioactive elements in radioactive element-containing waste liquid.

しかして上記目的を達成した本発明の方法は、放射性元
素含有廃液を第1吸着部経由で循環させつつ該放射性元
素を前記第1吸着部に吸着させ、循環ライン中の廃液の
放射性元素濃度を検出し、検出濃度が基準値以下になっ
たときに該廃液を系外へ排出し、検出濃度の変化から第
1吸着部の吸着能力を勘案して第2吸着部を経由する循
環ラインへの切換えを行ない引続き該循環ライン中の廃
液の放射性元素濃度を検出する点に要旨がある。
The method of the present invention, which has achieved the above object, circulates the radioactive element-containing waste liquid via the first adsorption part and adsorbs the radioactive element to the first adsorption part, thereby reducing the radioactive element concentration of the waste liquid in the circulation line. When the detected concentration is below the standard value, the waste liquid is discharged from the system, and from the change in the detected concentration, taking into account the adsorption capacity of the first adsorption section, the waste liquid is sent to the circulation line via the second adsorption section. The gist is that the radioactive element concentration of the waste liquid in the circulation line is continuously detected after switching.

これによシ設備のコンパクト化を達成すると共に水の消
費量を節減し且つ放射性元素の処理をよシ確実に行なう
ことができる様になった。
This has made the equipment more compact, reduced water consumption, and made it possible to process radioactive elements more reliably.

以下図面に溢って本発明方法の構成並びに作用効果を説
明する。尚以下の説明においては、放射性よう素を含有
する廃液の処理を例にあげて説明を展開するが、本発明
の処理対象は放射性よう素に限定されるものではないか
ら対象とする元素の種類や濃度に応じて色々な設計変更
を加えることはいずれも本発明の技術的範囲に含まれる
The configuration and effects of the method of the present invention will be explained below with reference to the drawings. In the following explanation, the treatment of waste liquid containing radioactive iodine will be used as an example, but since the object of the present invention is not limited to radioactive iodine, the types of elements to be treated will be The technical scope of the present invention includes making various design changes depending on the concentration and concentration.

第1図は本発明を実施する為の放射性よう未除去装置を
示す基本構成説明図で、除去装置Sは密閉されたフード
F内に、放射性よう未成着剤を充填した第1吸着塔1及
び第2吸着塔2を収納すると共にフードF内の最底部に
廃液貯留槽3を形成している。尚テーパ部fを形成する
ことによって洗浄水等のフードF内で捕集される液状成
分は全て廃液貯留槽3に導入する様に配慮している。そ
して廃液貯留槽3の底部から引出した第1循環ラインM
にポンプPを介設すると共に第1ラインの後半を2イン
m1及びラインm2に分岐して夫々第1吸着塔1及び第
2吸着塔2の頂部に接続し、且つ各吸着塔1.2の底部
から引出したラインm1及びラインm2を第2ラインN
に合流させ、放射性よう素濃度測定部であるモニター4
を経由して第3ラインN′から廃液貯留槽3へ戻してい
る。又第3ラインN′上のG点から排出ラインKを分岐
させている。尚第12インM、第2ラインN’ +排出
2インK及びラインm 1 y m 2 s n I 
Hn 2には夫々電磁弁e 、 d 、 c * a 
1 t a′2 * b 1及びb2を介設している。
FIG. 1 is an explanatory diagram showing the basic configuration of an apparatus for removing unformed radioactive substances for carrying out the present invention. In addition to accommodating the second adsorption tower 2, a waste liquid storage tank 3 is formed at the bottom of the hood F. By forming the tapered part f, consideration is given so that all the liquid components collected in the hood F, such as washing water, are introduced into the waste liquid storage tank 3. A first circulation line M drawn out from the bottom of the waste liquid storage tank 3
At the same time, the latter half of the first line is branched into a 2-inch line m1 and a line m2, which are connected to the top of the first adsorption tower 1 and the second adsorption tower 2, respectively, and The line m1 and line m2 drawn from the bottom are the second line N.
monitor 4, which is the radioactive iodine concentration measuring section.
The waste liquid is returned to the waste liquid storage tank 3 via the third line N'. Further, a discharge line K is branched from point G on the third line N'. Furthermore, 12th in M, 2nd line N' + discharge 2 in K and line m 1 y m 2 s n I
Hn 2 has solenoid valves e, d, c*a, respectively.
1 t a'2 * b 1 and b2 are interposed.

上記構成の除去装置Sを用いて本発明方法を実施するに
当たっては、前記電磁弁のうちa 1 tbl。
When carrying out the method of the present invention using the removing device S having the above configuration, a 1 tbl of the electromagnetic valves.

d及びeを開放すると共にa2 + b2及びCを閉鎖
しておき、放射性よう素を含む廃液りを廃液貯留槽3に
導入する。次いでポンプPを始動させることによって廃
液りを第1ラインM及びラインmlを経由して第1吸着
塔1へ導入し、放射性よう素を吸着除去させた上でライ
ンnlへ抜き出す。そして廃液りを第22インN経由で
モニター4に導入して廃液中の放射性よう素濃度を検出
し、検出濃度が排出基準値を超えている場合には電磁弁
Cを閉、電磁弁dを開のままで廃液を第3ラインN′へ
流し廃液貯留槽3へ還流させている。以下これを第1循
環ラインと称する。この様にして第1循環ラインによる
廃液の循環を繰返し、モニター4における検出濃度が排
出基準値以下まで低下したことが分かると、モニター4
からの指令に基づき電磁弁Cを開放すると共に電磁弁d
を閉鎖し、廃液を排出ラインKから系外へ放流する。そ
して廃液貯留槽3内の廃液が全て処理されると(あるい
は廃液貯留槽3内の廃液量が所定量よシ低下すると)、
新たな廃液りを廃液貯留槽3へ導入すると共に再び電磁
弁Cを閉、電磁弁dを開として前記と同様の循環処理を
継続する。一方廃液処理を繰返す間に第1吸着塔1の放
射性よう未成着能力が飽和状態に達すると、それ以上廃
液を循環させても検出濃度が低−F’Lなくなる。或は
他の何らかの事情によシ検出濃度が高くなることもあシ
得る。
d and e are opened while a2 + b2 and C are closed, and a waste liquid containing radioactive iodine is introduced into the waste liquid storage tank 3. Next, by starting the pump P, the waste liquid is introduced into the first adsorption tower 1 via the first line M and the line ml, and after radioactive iodine is adsorbed and removed, it is extracted to the line nl. Then, the waste liquid is introduced into the monitor 4 via the 22nd inn N, and the radioactive iodine concentration in the waste liquid is detected. If the detected concentration exceeds the discharge standard value, the solenoid valve C is closed and the solenoid valve d is closed. While it is left open, the waste liquid flows to the third line N' and is refluxed to the waste liquid storage tank 3. Hereinafter, this will be referred to as the first circulation line. In this way, the circulation of waste liquid through the first circulation line is repeated, and when it is found that the concentration detected on monitor 4 has decreased to below the discharge standard value, monitor 4
Solenoid valve C is opened based on the command from solenoid valve d.
is closed, and the waste liquid is discharged from the system through the discharge line K. When all the waste liquid in the waste liquid storage tank 3 has been treated (or when the amount of waste liquid in the waste liquid storage tank 3 has decreased by a predetermined amount),
A new waste liquid is introduced into the waste liquid storage tank 3, and the solenoid valve C is closed again, and the solenoid valve d is opened to continue the same circulation process as described above. On the other hand, if the radioactive undeposited capacity of the first adsorption tower 1 reaches a saturated state while the waste liquid treatment is repeated, the detected concentration will no longer be low -F'L even if the waste liquid is further circulated. Alternatively, the detected concentration may become high due to some other circumstances.

この様な状態がモニター4によって検知dれると、モニ
ター4からの指令によって電磁弁al、blを閉鎖する
一方電磁弁a 2 + b 2を開放し、廃液貯留槽3
の廃液りを第12インMから2インm2に導入し第2吸
着塔2を通して放射性よう素の除去を行ない、ラインn
2から第2ラインN、モニター4及び第3ラインN′を
峰て廃液貯留槽3へ還流させる。こうして第2吸着塔2
による放射性よう素の除去運転を行ない、モニター4に
おける検出濃度が排出基準値以下に低下すると前記と同
様に電磁弁Cを開放する一方電磁弁dを閉鎖し、廃液を
排出ラインKから系外へ放流する。尚上記実施例におい
ては電磁弁開閉制御回路をモニター4における検出濃度
が排出基準値より高い場合には電磁弁dを開放すると共
に電磁弁Cを閉鎖し、検出濃度が排出基準値以下の場合
には電磁弁dを閉鎖すると共に電磁弁Cが開放する様に
構成しているので、廃液中の放射性よう素濃度が多少変
動しても排出基準値を超えている限シ廃液は除去装置内
を循環し、系外へ排出されることはない。尚モニター検
出濃度が排出基準値よシ高い値から排出基準値以下に低
下した場合には前記の通り電磁弁Cが開放されて廃液が
系外へ排出されるが、このときモニター4と電磁弁Cの
間の流路には検出濃度値が排出基準値よシ高い廃液が存
在し、これが同時に排出されてしまう。これによる環境
汚染は例えば希釈法で防止してもよいが、モニターにお
ける排出基準値を実際の基準より厳しくしておくか、電
磁弁codの開閉動作を循環廃液が前記流路を流れるの
に要する時間を考慮して遅らせること等で対処すればよ
い。
When such a state is detected by the monitor 4, the solenoid valves al and bl are closed according to a command from the monitor 4, while the solenoid valves a2+b2 are opened, and the waste liquid storage tank 3 is closed.
The waste liquid is introduced from the 12th inn M to 2 inn m2, and the radioactive iodine is removed through the second adsorption tower 2.
2, the second line N, the monitor 4 and the third line N' are refluxed to the waste liquid storage tank 3. In this way, the second adsorption tower 2
When the concentration detected by the monitor 4 drops below the discharge standard value, the solenoid valve C is opened in the same manner as described above, while the solenoid valve d is closed, and the waste liquid is discharged from the system through the discharge line K. Release water. In the above embodiment, the solenoid valve opening/closing control circuit opens the solenoid valve d and closes the solenoid valve C when the detected concentration on the monitor 4 is higher than the discharge standard value, and when the detected concentration is below the discharge standard value. is configured so that solenoid valve d is closed and solenoid valve C is opened, so even if the radioactive iodine concentration in the waste liquid changes slightly, the waste liquid will not be discharged from the removal device until it exceeds the discharge standard value. It circulates and is not discharged outside the system. If the concentration detected by the monitor drops from a value higher than the discharge standard value to below the discharge standard value, the solenoid valve C is opened as described above and the waste liquid is discharged out of the system. In the flow path between C, there is waste liquid whose detected concentration value is higher than the discharge standard value, and this waste liquid is discharged at the same time. Environmental pollution caused by this can be prevented by, for example, a dilution method, but it is necessary to set the discharge standard value on the monitor to be stricter than the actual standard, or to open and close the solenoid valve COD that is required for the circulating waste liquid to flow through the flow path. This can be dealt with by taking time into account and delaying the process.

次に上記の如く第2吸着塔2によって当該バッチ分の廃
液処理が完了すると、新たな廃液導入は行なわずに第1
吸着塔1の交換を行なう。即ち廃液貯留槽3に洗浄水W
を導入し、モニター4を監視しながら手動によシ第2吸
着塔2を用いた洗浄水の循環を行ない洗浄廃液を適宜排
出ラインによシ系外へ排出する。尚このとき第2吸着塔
2の吸着能力は未だ十分に残されているので洗浄廃液中
の放射性よう素濃度番十分に低下させることができる。
Next, when the waste liquid treatment for the batch is completed by the second adsorption tower 2 as described above, the first adsorption tower
Adsorption tower 1 is replaced. That is, washing water W is added to the waste liquid storage tank 3.
is introduced, and while monitoring the monitor 4, the cleaning water is manually circulated using the second adsorption tower 2, and the cleaning waste liquid is appropriately discharged to the outside of the system through the discharge line. At this time, the adsorption capacity of the second adsorption tower 2 is still sufficient, so that the radioactive iodine concentration in the washing waste liquid can be sufficiently reduced.

又必要によシフードF内部を洗浄する為にフードF上方
から洗浄水Wを散水してもよい。そして洗浄が完了する
とフードFの出入口5を開き、第1吸着塔1の吸着ユニ
ットを離脱してフードF外へ搬出すると共に新たな吸着
ユニットを第1吸着塔1に装填した後出入口5を閉鎖す
る。
Further, in order to wash the inside of the hood F, if necessary, washing water W may be sprayed from above the hood F. When cleaning is completed, the inlet/outlet 5 of the hood F is opened, the adsorption unit of the first adsorption tower 1 is removed and carried out of the hood F, and a new adsorption unit is loaded into the first adsorption tower 1, and the inlet/outlet 5 is closed. do.

この様に吸着塔の交換を終えた除去装置Sを用いて廃液
処理を再開するに当たっては、第2吸着塔2を再開前の
第1吸着塔1とみなし、第1吸着塔1を同じく第2吸着
塔2とみなして電磁弁al。
When restarting waste liquid treatment using the removal device S after replacing the adsorption tower in this way, the second adsorption tower 2 is regarded as the first adsorption tower 1 before restart, and the first adsorption tower 1 is also replaced with the second adsorption tower 1. Regarded as adsorption tower 2, solenoid valve al.

a2 、bl及びb2の制御回路を切換える。尚更に第
3吸着塔を設けて第2吸着塔の破過に備える様に構成す
るととも可能である。後述の説明は第3吸着塔を別の目
的で取付ける場合を示すものである。
Switch the control circuits of a2, bl and b2. Furthermore, it is also possible to provide a third adsorption tower so as to prepare for breakthrough of the second adsorption tower. The following explanation shows the case where the third adsorption tower is installed for another purpose.

本発明の構成は基本的には上記に示す通シであるが、除
去装置S内の洗浄を自動的に行なう為に第2図に示す様
に7−ドF内に洗浄専用の第3吸着塔6を設け、これに
第12インMから分岐されるラインm3及び第2ライン
Nに合流するラインn3を夫々接続し、且つラインm 
3 r n 3に電磁弁a3 、b3を介設してもよい
。とれを除去装置S′と称すが、除去装置S′における
第1吸着塔1及び第2吸着塔の使用手順、換言すれば第
4循環ラインと第2循環ラインの組み方については除去
装置Sの場合と変わりがない。但し第2吸着塔2を用い
て除去装置S′内の残留廃液りを処理して排出が終わっ
た後の使用手順が変わってくる。即ちその後廃液貯留槽
3に洗浄水Wを導入すると共に電磁弁a3+b31d、
eのみを開いて第4ラインM、ラインm3+n3+第2
2インN、第3ラインN′から々る第3循環ラインを組
むことによシ洗浄水を循環させ、同じくモニター4によ
って濃度を検知しつつ基準濃度以下になった洗浄廃水を
排出する。尚洗浄中にモニター検出濃度が排出基準値よ
り高くなった場合には排出を停止して再び第3循環ライ
ンに流す。そして洗浄が完了すると吸着能力の飽和した
第1吸着塔1の交換を行なう。
The configuration of the present invention is basically the same as shown above, but in order to automatically clean the inside of the removal device S, a third suction dedicated for cleaning is provided in the 7-door F as shown in Fig. 2. A column 6 is provided, to which a line m3 branched from the 12th inn M and a line n3 merging with the second line N are connected, respectively, and a line m
3 r n 3 may be provided with solenoid valves a3 and b3. This is called a removal device S', but the procedure for using the first adsorption tower 1 and the second adsorption tower in the removal device S', in other words, how to assemble the fourth circulation line and the second circulation line, is the same as in the case of the removal device S. There is no difference. However, the usage procedure after the residual waste liquid in the removal device S' is treated and discharged using the second adsorption tower 2 is different. That is, after that, the cleaning water W is introduced into the waste liquid storage tank 3, and the solenoid valves a3+b31d,
Open only e, 4th line M, line m3+n3+2nd
The cleaning water is circulated by assembling a third circulation line from the second line N and the third line N', and while the concentration is similarly detected by the monitor 4, the cleaning wastewater whose concentration is below the standard concentration is discharged. If the concentration detected by the monitor becomes higher than the discharge standard value during cleaning, the discharge is stopped and the fluid is sent to the third circulation line again. When the cleaning is completed, the first adsorption tower 1 whose adsorption capacity is saturated is replaced.

上記の如く洗浄専用の第3吸着塔6を使用することによ
シ廃液が流通するラインやポンプ並びにフードF内の洗
浄効果を一層完壁に行なえるので吸着塔の交換作業を安
全に行なうことができる。
As mentioned above, by using the third adsorption tower 6 exclusively for cleaning, the cleaning effect of the lines through which waste liquid flows, the pump, and the inside of the hood F can be more completely achieved, so that the replacement work of the adsorption tower can be performed safely. I can do it.

本発明の循環ラインは上記例示の如き装置によって実施
されるが、第1〜3(必要によシ更にそれ以上の)循環
ラインを互いに独立させて夫々にモニターを設けたシ、
洗浄ラインのみを完全に独立させたシ、洗浄ラインを専
用化せず例えば個々のラインを現使用ライン、バックア
ップライン、洗浄ラインという様に順々に使い分けるこ
と表ども本発明に含まれる。
The circulation line of the present invention is implemented by the apparatus as exemplified above, but it is also possible to make the first to third (or more if necessary) circulation lines independent of each other and provide a monitor for each.
The present invention also includes making only the cleaning line completely independent, and not dedicating the cleaning line and using each line in sequence as the currently used line, backup line, and cleaning line, for example.

尚放射性よう素を吸着する吸着剤としては銀添着活性炭
、銀ゼオライト、イオン交換樹脂等が例示されるが、と
のうち特に平衡吸着量が最も大きい銀添着活性炭が特に
推奨される。ところで銀添着活性炭の放射性よう未成着
能力は銀含有量の増加と共にほぼ比例的に上昇するがそ
れと同時に価格も上昇するのでむやみに含有量を高める
ことは不経済である。従って銀添着活性炭としては必要
十分々吸着能力を有し、且つ価格もそれ程高騰でないも
の即ち銀含有量が0.5重量−程度のものが推奨される
。尚この様な銀添着活性炭の代表的性状は下記第1表に
示す通シである。
Examples of adsorbents for adsorbing radioactive iodine include silver-impregnated activated carbon, silver zeolite, and ion exchange resins, among which silver-impregnated activated carbon is particularly recommended since it has the largest equilibrium adsorption amount. By the way, the ability of silver-impregnated activated carbon to adhere to radioactivity increases almost proportionally as the silver content increases, but at the same time, the price also increases, so it is uneconomical to increase the content unnecessarily. Therefore, it is recommended that the silver-impregnated activated carbon has sufficient adsorption capacity and the price is not so high, that is, the silver content is about 0.5 weight. The typical properties of such silver-impregnated activated carbon are shown in Table 1 below.

又上記銀添着活性炭を充填して吸着ユニットを形成する
に当たっては、充填密度が0.5 kg / 1前後と
なる様に充填することが望ましい。
Furthermore, when filling the above-mentioned silver-impregnated activated carbon to form an adsorption unit, it is desirable to fill the adsorption unit so that the packing density is approximately 0.5 kg/1.

更に前記実施例においては吸着剤を充填した吸着ユニッ
トだけで吸着塔を形成したものを示したが、例えば医療
関係の機関から排出される廃液中には蛋白(例えばアル
ブミン)の他、一般的な不純物も含まれることが多いの
で、吸着塔を形成するに当たつは吸着ユニットを分割し
、それぞれの被吸着物に対応した吸着層を配する事が望
ましい。
Furthermore, in the above example, an adsorption tower was formed using only an adsorption unit filled with an adsorbent, but for example, in addition to proteins (e.g. albumin), waste liquid discharged from medical institutions contains general Since impurities are often included, when forming an adsorption tower, it is desirable to divide the adsorption unit and arrange adsorption layers corresponding to each adsorbent.

尚これまでの説明では廃液が頂部から導入されて底部か
ら抜出される塔形式の吸着部を示したが、吸着部は上記
吸着ユニットを水平方向に配置したものであってもよい
Although the explanation so far has shown a column-type adsorption section in which waste liquid is introduced from the top and extracted from the bottom, the adsorption section may be one in which the above-mentioned adsorption units are arranged horizontally.

その他放射性よう素濃度を検出するモニター4としては
Ge半導体検出器やNaIシンチレーションカウンター
等を適用することができる。又本発明方法を実施するに
当たってはフードF内を負圧としフードF内の放射性よ
う素が系外へ漏出することが無い様にすることが望まし
く、放射性よう素の漏出を一層完壁に防止する為にはフ
ードFを含め各ライン、モニター4及びポンプP等を囲
包する外フードの設置が推奨される。
In addition, as the monitor 4 for detecting the radioactive iodine concentration, a Ge semiconductor detector, a NaI scintillation counter, etc. can be used. Furthermore, when carrying out the method of the present invention, it is desirable to maintain a negative pressure in the hood F to prevent the radioactive iodine in the hood F from leaking out of the system, thereby completely preventing leakage of radioactive iodine. In order to do this, it is recommended to install an outer hood that surrounds each line including hood F, monitor 4, pump P, etc.

本発明は以上の様に構成されておシ、以下要約する効果
を得ることができる。
The present invention is configured as described above, and can obtain the effects summarized below.

(1)廃液中の放射性元素を吸着除去するので減衰方式
の様に大規模な貯留槽を必要とせず、又短時間に処理を
完了することができると共に希釈方式の様に大量の希釈
水も要しない。即ち経済的に放射性元素の除去を達成す
ることができる。
(1) Since the radioactive elements in the waste liquid are adsorbed and removed, unlike the attenuation method, a large-scale storage tank is not required, and the treatment can be completed in a short time, and unlike the dilution method, a large amount of dilution water is not required. Not needed. That is, it is possible to economically remove radioactive elements.

(2)モニターによる検出濃度が排出基準値以下になっ
たときにのみ廃液を系外へ排出するので環境汚染の防止
に大きく寄与できる。
(2) Since the waste liquid is discharged from the system only when the concentration detected by the monitor falls below the discharge standard value, it can greatly contribute to the prevention of environmental pollution.

(3)モニターによる検出濃度の変化から第1吸着部の
吸着能力が飽和状態に達したことが確認されると第2吸
着部を経由する循環ラインへの切換えが行なわれるので
除去装置内へ導入された廃液中の放射性元素濃度を確実
に排出基準値化下まで低下させ、系外へ排出することが
できる。
(3) When it is confirmed from the change in concentration detected by the monitor that the adsorption capacity of the first adsorption part has reached a saturated state, the circulation line is switched to the second adsorption part and introduced into the removal equipment. It is possible to reliably reduce the concentration of radioactive elements in the waste liquid to below the discharge standard value and discharge it out of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明方法を実施する為の除去装置を示す
説明図である。 1・・・第1吸着塔 2・・・第2吸着塔3・・・廃液
貯留槽 4・・・モニター5・・・出入口 6・・・第
3吸着塔 M・・・第1循環ライン N・・・第2循環ライン出願
人 株式会社神戸製鋼所
FIGS. 1 and 2 are explanatory diagrams showing a removal apparatus for carrying out the method of the present invention. 1... First adsorption tower 2... Second adsorption tower 3... Waste liquid storage tank 4... Monitor 5... Inlet/outlet 6... Third adsorption tower M... First circulation line N ...Second circulation line applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 放射性元素含有廃液を第1吸着部経由で循環させつつ該
放射性元素を前記第1吸着部に吸着させ、循環ライン中
の廃液の放射性元素濃度を検出し、検出濃度が基準値以
下になったときに該廃液を系外へ排出し、検出濃度の変
化から第1吸着部の吸着能力を勘案して第2吸着部を経
由する循環ラインへの切換えを行ない引続き該循環ライ
ン中の廃液の放射性元素濃度を検出することを特徴とす
る廃液中の放射性元素除去方法。
While circulating the radioactive element-containing waste liquid via the first adsorption part, the radioactive element is adsorbed to the first adsorption part, and the radioactive element concentration of the waste liquid in the circulation line is detected, and when the detected concentration becomes below the reference value. Then, the waste liquid is discharged to the outside of the system, and based on the change in the detected concentration, the adsorption capacity of the first adsorption part is taken into consideration, and the radioactive element in the waste liquid in the circulation line is switched to the circulation line passing through the second adsorption part. A method for removing radioactive elements from waste liquid, characterized by detecting the concentration.
JP6620384A 1984-04-03 1984-04-03 Method of removing radioactive element in waste liquor Pending JPS60210800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6620384A JPS60210800A (en) 1984-04-03 1984-04-03 Method of removing radioactive element in waste liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6620384A JPS60210800A (en) 1984-04-03 1984-04-03 Method of removing radioactive element in waste liquor

Publications (1)

Publication Number Publication Date
JPS60210800A true JPS60210800A (en) 1985-10-23

Family

ID=13309043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6620384A Pending JPS60210800A (en) 1984-04-03 1984-04-03 Method of removing radioactive element in waste liquor

Country Status (1)

Country Link
JP (1) JPS60210800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285171B1 (en) * 2012-07-31 2013-09-11 日立Geニュークリア・エナジー株式会社 Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP2014121702A (en) * 2012-11-20 2014-07-03 Toshiba Corp Iodine adsorbent, tank for water treatment, and iodide compound treatment system
JP2020534997A (en) * 2017-09-27 2020-12-03 ブリュッヒャー ゲーエムベーハー Methods for treating and / or purifying water and water purification plants for implementing those methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285171B1 (en) * 2012-07-31 2013-09-11 日立Geニュークリア・エナジー株式会社 Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP2014121702A (en) * 2012-11-20 2014-07-03 Toshiba Corp Iodine adsorbent, tank for water treatment, and iodide compound treatment system
JP2020534997A (en) * 2017-09-27 2020-12-03 ブリュッヒャー ゲーエムベーハー Methods for treating and / or purifying water and water purification plants for implementing those methods

Similar Documents

Publication Publication Date Title
JP2014122806A (en) Method for manufacturing radionuclide adsorbent, apparatus for manufacturing the same, and radionuclide adsorbent
JPS60210800A (en) Method of removing radioactive element in waste liquor
US4219414A (en) Method for fluid purification and deionization
JPS63305297A (en) Treatment of radioactive waste liquid
JP2013051305A (en) Chelate material regeneration method and substrate processing apparatus
JP7386188B2 (en) Radioactive waste liquid treatment method and radionuclide adsorption tower manufacturing method
JP2000189957A (en) Regenerating method of water softening device
JP6354990B2 (en) Treatment method of contaminated water
JPS6148798A (en) Sight bunker pool water purifying facility
JP2576155B2 (en) Multi-layer ion exchanger
JPS5815016B2 (en) How to clean ion exchange resin
JP6434318B2 (en) Tank decontamination method
JPS62140423A (en) Manufacturing equipment for semiconductor integrated circuit device
JP2974087B2 (en) Adsorption and separation method of the target component in solution
RU2105366C1 (en) Water cleaning system for solid radioactive waste cooling ponds
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JP2022044163A (en) Method for processing radioactive wastewater
JPH03196890A (en) Washing water-circulating and-treating device in solder dipping machine
JPH10170696A (en) Treating method of radioactive cleaning waste water
JPH0331799A (en) Method for demineralizing condensate
JPS62237712A (en) Degassing and oil pouring method for oil-filled apparatus
JPS62180710A (en) Method for regenerating oil adsorbent
JPH05123496A (en) Recycling treatment of dry cleaning solvent
JP3238619B2 (en) Regeneration method of desalination equipment