JPS60210493A - Recording material - Google Patents

Recording material

Info

Publication number
JPS60210493A
JPS60210493A JP59067177A JP6717784A JPS60210493A JP S60210493 A JPS60210493 A JP S60210493A JP 59067177 A JP59067177 A JP 59067177A JP 6717784 A JP6717784 A JP 6717784A JP S60210493 A JPS60210493 A JP S60210493A
Authority
JP
Japan
Prior art keywords
glass transition
transition temperature
temperature
δcp
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067177A
Other languages
Japanese (ja)
Inventor
Yoshiji Ichihara
祥次 市原
Yasumitsu Uno
宇野 泰光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59067177A priority Critical patent/JPS60210493A/en
Publication of JPS60210493A publication Critical patent/JPS60210493A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material

Abstract

PURPOSE:To enable to record information and optically read the recorded information, by applying thermal energy to a recording material to generate a thermal hysteresis. CONSTITUTION:Thermal energy is applied to an amorphous substance having a change of specific heat at a glass transition temperature [DELTACp (J.K<-1>.g<-1>)] satisfying the relationship of DELTACp>=0.86exp(-Tg/394.3) and a change of specific heat per one mole of an average molecular weight of molecular component units constituting the substance at the glass transition temperature [M'.DELTACp (J.K<-1>. mol<-1>)] satisfying the relationship of M'.DELTACp>=10.9 to generate a thermal hysteresis. The recording material is once heated to a temperature not lower than the glass transition temperature, followed by slowly or rapidly cooling to obtain a uniform state. After this pretreatment, the positions for recording in the material are irradiated with IR rays, laser light or the like to partially heating the material to a temperature not lower then the glass transition point, followed by rapidly or slowly cooling to impart a thermal hysteresis, whereby parts differing from other parts in density or refractive index are provided, resulting in performing recording.

Description

【発明の詳細な説明】 (用途分野) 本発明は光学記録用材料、更に詳細にはレーザーなどを
用いて熱エネルギーを加えることにより熱履歴差を生じ
させ、これによる屈折率、密度等の変化を利用して情報
を記録し、光学的に読み取りを可能とした記録用材料に
関する。
Detailed Description of the Invention (Field of Application) The present invention uses optical recording materials, more specifically, generates a difference in thermal history by applying thermal energy using a laser or the like, and changes in refractive index, density, etc. due to this. The present invention relates to a recording material that records information using the technology and can be read optically.

(従来技術) 従来、物質の熱的な状態変化を利用1〜だ光学記録用材
料としては、カルコゲナイド系の物質の非晶状態と結晶
状態の間の変化を利用したものが用いられている。カル
コゲナイド系ガラスは、光学記録用材料としては蒸着膜
の状態で用いられる。
(Prior Art) Conventionally, optical recording materials that utilize thermal state changes of substances have been used that utilize changes between the amorphous state and the crystalline state of chalcogenide-based substances. Chalcogenide glass is used as an optical recording material in the form of a vapor-deposited film.

蒸着によって非晶質膜を得る場合、所定の成分を真空中
で固溶化させて急冷し、均一な薄膜な得るという#!造
過程が必要であるが、カルコゲナイドガラスの場合成分
元素が多種であるため組成の均一な薄膜を得ることは困
難である。また力ルプゲナイド系ガラス薄膜は未記栂状
態の初期光学的濃度が大きくコントラストを高くとると
読み出し効率が著しく低くなるという欠点を有する。さ
らにまた、カルコゲナイドガラスには毒物として知られ
る砒素が含まれているという問題点もある。
When obtaining an amorphous film by vapor deposition, a uniform thin film is obtained by solid solutionizing certain components in a vacuum and rapidly cooling them. However, since chalcogenide glass has a wide variety of constituent elements, it is difficult to obtain a thin film with a uniform composition. In addition, the pulgenide-based glass thin film has a drawback that the initial optical density of the unrecorded state is large, and when the contrast is high, the readout efficiency becomes extremely low. Another problem is that chalcogenide glass contains arsenic, which is known to be a poison.

(本発明の概要) 本発明者らは、かかる現状に鑑み均質性の優れた記録材
料を提供すべく種々の検討を実施した結果、非晶性物質
でガラス転移温度での比熱変化の大きい物質、又はガラ
ス転移温度において分子を構成する分子構成単位の平均
分子量1モルあたりの比熱変化が大きなものでは、物質
に熱的エネルギーを加えて熱履歴を生じさせるとこれに
よって大きな屈折率や密度の変化を生じることを発見し
、従来の問題点を解決した新規な記録材料を開発するに
到ったものである。
(Summary of the present invention) In view of the current situation, the present inventors conducted various studies in order to provide a recording material with excellent homogeneity. , or for substances with a large change in specific heat per mole of the average molecular weight of the molecular constituent units that make up the molecule at the glass transition temperature, when thermal energy is applied to the substance to create a thermal history, this causes a large change in the refractive index or density. This led to the development of a new recording material that solved the conventional problems.

すなわち、非晶性物質で、ガラス転移温度での比熱変化
(ΔCp:単位J−に一トノー1)がΔCp≧0.86
 exp (−”7394.3 )又は、ガラス転移温
度における物質を構成する分子構成単位の平均分子量の
1モル当りの比熱変化(M−ΔCp:単位J−に@n′
10!−)M−ΔC1)≧10.9 を満足する非晶性物質に熱的エネルギーを加えて熱履歴
を生じさせると、これによる屈折率や密度の変化が極め
て大きい。しかし−11記条件を満足しない物質では、
その変化Fi極めて1)さいことを発見し、新規々記録
材料を提供することができた。
That is, in an amorphous substance, the change in specific heat at the glass transition temperature (ΔCp: unit J-1) is ΔCp≧0.86.
exp (-"7394.3) or the change in specific heat per mole of the average molecular weight of the molecular constituent units constituting the substance at the glass transition temperature (M-ΔCp: unit J-@n'
10! -)M-ΔC1)≧10.9 When thermal energy is applied to an amorphous material to generate a thermal history, the change in refractive index and density is extremely large. However, for substances that do not satisfy the condition -11,
The changes were significant: 1) I discovered something important and was able to provide new recording materials.

(具体的説明) 次に本発明について詳細に説明する。通常、非晶質の高
分子をそのガラス転移温度より若干低い温度で熱処理を
施すと、ガラス転移温度より高い温度で加熱後急冷1−
だものに比し、密度の高いガラス状態の島分子が得られ
る。この現象は体積緩和現象と呼ばれている。
(Specific Description) Next, the present invention will be described in detail. Normally, when an amorphous polymer is heat-treated at a temperature slightly lower than its glass transition temperature, it is heated at a temperature higher than its glass transition temperature and then rapidly cooled.
The island molecules in a glassy state with a higher density can be obtained than in the case of molasses. This phenomenon is called volume relaxation phenomenon.

すなわち、ガラス転移温度より高い温度に加熱後急冷し
たものを、ガラス転移温度より10℃程度低い温度で熱
処理を施すと、密度は1〜だいに増加し、ある平衡値に
近づく。また、この熱処理を施したものをガラス転移温
度より高い温度に加熱後急冷すると、密度はほぼ熱処理
前の値にもどり、この密度変化は可逆的である。
That is, when a material that has been heated to a temperature higher than the glass transition temperature and then rapidly cooled is subjected to heat treatment at a temperature about 10° C. lower than the glass transition temperature, the density gradually increases from 1 to a certain equilibrium value. Furthermore, when the heat-treated material is heated to a temperature higher than the glass transition temperature and then rapidly cooled, the density returns to approximately the value before the heat treatment, and this change in density is reversible.

同様な密度差は、ガラス転移温度より高い温度から早い
速度で冷却したものと徐冷したものの間でも観測される
。また、仮に冷却速温度が同じでも、高圧下でその圧力
下でのガラス転移温度より高い温度からガラス転移温度
以下に冷却した後常圧に戻したものと、常圧でガラス転
移温度以上の温度から冷却したものの間でも同様な密度
差が観測される。これらの現象は全て、ガラス転移が緩
和現象であることに由来するものでめる〇この密度差は
通常ごく?」1さい。例えばポリスチレンを1℃73分
で冷却した場合と、1℃71日で冷却して得られるガラ
スの密度差は約o、1s %、常圧と600気圧下で1
℃/3分で冷却して得られるガラスの密度差はポリスチ
レンで約0,6チであるにすぎない(Potymer 
Journat、 2 、 644(1971))Qこ
の密度差に基く屈折率の差は1℃/1日という遅い速度
で冷却したものと急冷したものの差でもやつとo、o 
o i程度であり、従来光学記録用材料としての利用の
対象とはならなかった。
Similar density differences are observed between samples cooled quickly and slowly from temperatures above the glass transition temperature. In addition, even if the cooling rate and temperature are the same, there is a difference between cooling from a temperature higher than the glass transition temperature under high pressure to below the glass transition temperature and then returning to normal pressure, and a temperature higher than the glass transition temperature at normal pressure. A similar density difference is observed between those cooled from . All of these phenomena are due to the fact that the glass transition is a relaxation phenomenon.〇This density difference is usually very small? ” 1 year old. For example, when polystyrene is cooled for 73 minutes at 1°C, the density difference between the glass obtained when it is cooled at 1°C for 71 days is approximately 0.1 s %, and 1 s % under normal pressure and 600 atm.
The difference in density of the glass obtained by cooling at °C/3 minutes is only about 0.6 cm for polystyrene (Potimer
Journat, 2, 644 (1971)) Q The difference in refractive index based on this density difference is the difference between those cooled at a slow rate of 1°C/day and those cooled rapidly.
oi, and has not been used as an optical recording material in the past.

−5= 本発明者等がポリメタクリル酸メチル、ポリカーボネー
ト、ポリビニルカルバソール、ポリz−チルイミド、ポ
リエーテルスルホン等を検討した結果、これら高分子化
合物をガラス転移温度より若干低い温度で熱処理を施す
と、ガラス転移温度より高い温度で加熱急冷したものに
比し、大きな屈折率の差のあるものが得られた。
-5= As a result of the inventors' studies on polymethyl methacrylate, polycarbonate, polyvinylcarbasol, polyz-thylimide, polyethersulfone, etc., it was found that when these polymer compounds are heat-treated at a temperature slightly lower than the glass transition temperature, A material with a large difference in refractive index was obtained compared to that obtained by heating and rapidly cooling at a temperature higher than the glass transition temperature.

さらにこれらの高分子体のガラス転移点温度での比熱変
化は、大きな屈折率変化を示さない高分子体(例えば、
ポリ塩化ビニル、ポリスチレン、ポリエチレンテレフタ
レートなど)に比べて大きいことを発見した。
Furthermore, the specific heat change at the glass transition temperature of these polymers is different from that of polymers that do not show large refractive index changes (e.g.
It was discovered that this material is larger than polyvinyl chloride, polystyrene, polyethylene terephthalate, etc.).

本発明者らは、この屈折率変化とエンタルピー緩和の関
係を鉛量研究し、ガラス転移温度Tfでの比熱変化が、
ある値より大きいとTfより10〜20℃低い温度で熱
処理したものとTf以−Lの塩度から急冷したものとの
密度差、屈折率差が光学記録用材料として用いられる充
分な変化量であることを見出した。
The present inventors studied the relationship between this refractive index change and enthalpy relaxation by the amount of lead, and found that the specific heat change at the glass transition temperature Tf is
If the value is larger than a certain value, the difference in density and refractive index between the material heat-treated at a temperature 10 to 20°C lower than Tf and the material rapidly cooled from a salinity of -L above Tf is sufficient to be used as an optical recording material. I discovered something.

すなわち1本発明者等は、ガラス転移温度’16− における定圧比熱の変化量、すなわち、ガラス状態と液
体状態の定圧比熱をTtに外挿した値の差Δcpが、T
fi絶対温度で表わしたとき、多くの高分子や極性が比
較的小さな低分子物質についてΔCp = Q、805
 exp (TV/394.3 ) −■なる関係式で
表わされることを見出した。表1及び第1図に通常の高
分子のTtとΔCp(JK−1r’lおよび0式から計
算された値を示す。表1に示したΔCP 、)実測値と
式■の値の比の標準偏差は0.052であった。
In other words, the inventors have determined that the amount of change in the specific heat at constant pressure at the glass transition temperature '16-, that is, the difference Δcp between the values obtained by extrapolating the specific heat at constant pressure in the glass state and the liquid state to Tt, is Tt.
fi When expressed as absolute temperature, ΔCp = Q, 805 for many polymers and low-molecular substances with relatively small polarity.
It has been found that it is expressed by the relational expression exp (TV/394.3) -■. Table 1 and Figure 1 show the Tt and ΔCp (values calculated from JK-1r'l and 0 formulas) of ordinary polymers. The standard deviation was 0.052.

(以下余白) また、B 、Wunderl Ich (J、Phys
、Cheffl、、 64.1052(1960))は
、高分子の分子構成単位の平均分子量1モルあたりのT
tでの比熱変化、すなわち、繰返し単位あたりの分子量
t” M s繰返し単位中に含まれる構成単位の数をn
としたとき、M−ΔCp/n=M−ΔCp (J K−
’ mol −”)で表わされる値は物質によらずほぼ
一定でめるとしているoしかし、この文献中の構成単位
の数nの数え方は少しあいまいなところを残している〇
そこで本発明者等はnの数え方全次の通り定義1−だ。
(Left below) Also, B, Wunderl Ich (J, Phys.
, Cheffl, 64.1052 (1960)), T per mole of the average molecular weight of the molecular constituent units of a polymer.
The change in specific heat at t, i.e. the molecular weight per repeating unit t” M sThe number of constituent units contained in the repeating unit is n
When, M-ΔCp/n=M-ΔCp (J K-
It is said that the value expressed in 'mol-'') is almost constant regardless of the substance. However, the method of counting the number of constituent units n in this document is a little ambiguous. Therefore, the inventor of the present invention etc. is the definition 1- of all the ways to count n as follows.

即ち、本発明における高分子体を構成する構成単位は主
鎖中の原子や基については1回転可能な単結合に挾まれ
たブロック、例えば、−C+。
That is, the structural unit constituting the polymer in the present invention is a block sandwiched between single bonds that can rotate once in terms of atoms or groups in the main chain, for example, -C+.

−c=:c −、To −、−s −、−co−、−5
o2+。
-c=:c -, To -, -s -, -co-, -5
o2+.

lと数え、側鎖については、−CH3、−C1,−F−
OH等、単結合で主鎖に結合しがっ只1個のclo、 
N、S等の元素及びその水素化物あるいはハ 9− ロゲン元素等、IIXさな側鎖基は0とし、その他のて
nをめ、M・ΔCp/ n = M・Δりをめた。結果
を表2及び第2図に示すが、平均値は9.75J K−
” mol−’ ・、標準偏差は、表2に示すものにつ
いては、0.55であった。
For the side chain, -CH3, -C1, -F-
Only one clo is connected to the main chain with a single bond such as OH,
IIX small side chain groups such as elements such as N and S and their hydrides or halogen elements were set to 0, other factors were set as n, and M·ΔCp/n = M·Δ was calculated. The results are shown in Table 2 and Figure 2, and the average value is 9.75J K-
"mol-'. The standard deviation was 0.55 for those shown in Table 2.

(以下余白) 10− さらに、本発明者等は、これら2つの規則を共によく満
足する物質と、一方もしくけ両方が少なからずけずれる
物質について、その物質のTrより10〜20℃低い温
度で熱処理を施した後の屈折率や密度とTvより高い温
度から急冷したものの屈折率や密度の差の大きさとを比
較した結果、密度差や屈折率差の大きな物質は、ΔCp
 (J −に、−’・t−1)が。
(The following is a blank space) 10- Furthermore, the present inventors have determined that a substance that satisfies both of these two rules and a substance that deviates from one or both of these rules by a certain amount at a temperature 10 to 20 degrees Celsius lower than the Tr of the substance. As a result of comparing the refractive index and density after heat treatment with the magnitude of the difference in refractive index and density of the material rapidly cooled from a temperature higher than Tv, it was found that materials with large density differences and refractive index differences have ΔCp
(J-to, -'・t-1).

ΔCp≧0,86 exp (Tr/ 394.3 )
の範囲にあるかあるいは、MΔcp (J −に−’ 
・mol−1)が、 M−ΔCp/n = M−ΔCp≧10.9の範囲にあ
ることを見出した0これらの結果は、おそらく、ΔCp
+M・ΔCpの大きなものがガラス状態でのエンタルピ
ーや比容の緩和しうる緻が大きいことを意味していると
考えられる。もちろん、分子屈折Rと屈折率0%繰返し
単位当りの分子量Ms”lB度ρの関係が、ローレンツ
−ローレンツの式 で表わされることを考えると、より大きな屈折率変化を
得るには、屈折率が太き(、R/Mすなわち比屈折の大
きな高分子が好ましいことは当然であり、そのような高
分子が、一般的にいえば極性の大きな高分子とほぼ対応
することは当然である。
ΔCp≧0,86 exp (Tr/394.3)
or MΔcp (J − to −′
・mol-1) was found to be in the range of M-ΔCp/n = M-ΔCp≧10.9 These results probably indicate that ΔCp
It is considered that a large value of +M·ΔCp means that the enthalpy and specific volume in the glass state can be relaxed and the density is large. Of course, considering that the relationship between the molecular refraction R and the molecular weight Ms"lB degrees ρ per 0% refractive index repeating unit is expressed by the Lorentz-Lorentz equation, in order to obtain a larger refractive index change, the refractive index is It goes without saying that a polymer with a large thickness (R/M, that is, a large specific refraction) is preferable, and it is natural that such a polymer generally corresponds to a polymer with a large polarity.

またsTfでの体膨張率の変化Δαにも、■式と同じ形
の0式が成立することを本発明者等は見出した。
The present inventors have also found that Equation 0, which has the same form as Equation (2), holds true for the change Δα in the coefficient of body expansion at sTf.

Δα=7.72xlO″exp(−Tr/394.3)
(K−1)・−・−■そして、Δα≧8.55 x I
 Cr’ exp(−Tp/394.3 ) (K’一
つとなる物質も密度変化や屈折率変化が大きいことを見
出した。体膨張率の測定は比熱の測定よね困難である点
は問題である。
Δα=7.72xlO″exp(-Tr/394.3)
(K-1)・−・−■And Δα≧8.55 x I
Cr' exp (-Tp/394.3) (K' We found that the substance that is one has large changes in density and refractive index.The problem is that measuring the coefficient of expansion of a body is more difficult than measuring specific heat. .

なお、光記録に用いるためには、材料のガラス転移温度
が50℃以上であることが必要であり、さらには、85
℃以上であることが好ましい0ガラス転移温度が50℃
以下では室温での安定性が悪く、記録状態が長期間安定
であるためには、ガラス転移温度が50℃以上、より好
ましくけ、85℃以上であることが必要である。
In addition, in order to use it for optical recording, it is necessary that the glass transition temperature of the material is 50°C or higher, and furthermore, the glass transition temperature of the material must be 85°C or higher.
The zero glass transition temperature is preferably 50°C or higher.
Below this, the stability at room temperature is poor, and in order for the recording state to be stable for a long period of time, the glass transition temperature needs to be 50° C. or higher, more preferably 85° C. or higher.

13− これ等の条件を幽す高分子体は、例えば、ポリメタクリ
ル酸メチル、ポリカーボネート、ポリビニルカルバゾー
ル、ポリエーテルイミド、ポリエーテルスルボン等から
選ぶことができる。
13- The polymer that meets these conditions can be selected from, for example, polymethyl methacrylate, polycarbonate, polyvinylcarbazole, polyetherimide, polyethersulfone, and the like.

本発明を光学d]シ録媒体とE−で用いるときけ、本発
明材料をフィルム、シート、テープ、モノフィラメント
等目的に応じた形状に成形される。媒体としては、本発
明共重合体の単独相で構成することもできるが、ポリエ
ステル、ナイロン等の他の基材を検層して用いることも
できる。
When the present invention is used as an optical recording medium or an optical recording medium, the material of the present invention is formed into a film, sheet, tape, monofilament, or other shape depending on the purpose. The medium can be composed of a single phase of the copolymer of the present invention, but other base materials such as polyester and nylon can also be used by logging.

また光学記録用材料に履歴差を生じさせる為に熱的エネ
ルギーを加えるが、熱的エネルギーを加えるために使用
する光の波長によっては、感度を向上させるだめに例え
ば染料の如き化合物などを光学記録用材料に少量添加す
ることもできる。
In addition, thermal energy is applied to optical recording materials to create history differences, but depending on the wavelength of the light used to apply thermal energy, compounds such as dyes may be added to optical recording materials to improve sensitivity. It can also be added in small amounts to the ingredients used.

本発明光学記録用材料に記録するときけ、成形された記
録用材料金一旦ガラス転移点以」二に加熱した後、徐冷
又は急冷して、均一な状態となるように予備処理’eL
、次いで記録すべき位置に赤外線又はレーザー光等を照
射して部分的にガラス転14− 移点以上に昇温した後、急冷又は徐冷することによって
前記予備処理とけ異った熱履歴を与えて密度、屈折率の
相異する部分を形成し、これによって記録が行なわれる
When recording on the optical recording material of the present invention, the molded recording material is heated to a temperature above the glass transition point and then slowly or rapidly cooled to obtain a uniform state through pretreatment.
Then, the position to be recorded is irradiated with infrared rays or laser light, etc. to partially raise the temperature above the glass transition point, and then rapidly or gradually cooled to give a thermal history different from that of the pretreatment. This forms portions with different densities and refractive indexes, and recording is performed using these portions.

従って、予備処理は記録時の熱履歴とは対照的な熱履歴
を与え、記録するときに急冷する場合には、記録媒体を
加熱炉又はレーザー光線等でガラス転位点以上に加熱し
た後に徐冷するか、あるいけガラス転移点より若干低い
温度、一般にはガラス転移点よりa〜50℃、好1しく
は5〜20℃低い温度で熱処理が行なわれる。加圧下に
徐冷又は熱処理することもできる。
Therefore, pretreatment gives a thermal history that is in contrast to the thermal history at the time of recording, and when rapidly cooling the recording medium during recording, the recording medium is heated to above the glass transition point in a heating furnace or laser beam, and then slowly cooled. The heat treatment is carried out at a temperature slightly lower than the glass transition point, generally a to 50° C., preferably 5 to 20° C. lower than the glass transition point. Slow cooling or heat treatment under pressure can also be carried out.

一方、記録時に徐冷されるときは、予備処理は急冷され
る。
On the other hand, when slow cooling is performed during recording, rapid cooling is performed in the preliminary process.

通常、ガラス転移は幅を持った温度域で起こる。Glass transition usually occurs over a wide range of temperatures.

したがって本発明の光学記録用材料をガラス転移温度以
上で加熱し転移を起こさせる場合、このことを考慮に入
れる必要がある。
Therefore, this must be taken into consideration when heating the optical recording material of the present invention above its glass transition temperature to cause a transition.

一般に、予備処理又は記録時の加熱は、ガラス転移温度
よりも5℃以上、好ましくは10℃以上で加熱すると良
い。温度の」ユ限は特になく光学記録用材料の分解温度
以下で行なわれる。
Generally, heating during pretreatment or recording is preferably performed at a temperature of 5° C. or higher, preferably 10° C. or higher, than the glass transition temperature. There is no particular temperature limit, and the process is carried out below the decomposition temperature of the optical recording material.

記録された記録媒体の保存は、通常ガラス転移点より3
0℃以−ヒ、好ましくは50℃以上低い温度で行なわれ
る。
Recorded recording media are usually stored at a temperature of 3° below the glass transition point.
It is carried out at a temperature lower than 0°C, preferably lower than 50°C.

また、記録の読み取りは、可視光、レーザー光等を照射
し、記録部の屈折率変化、反射率変化、表面凹凸に基づ
く光の反射方向の変化、あるいは、光線透過速度の変化
を測定することによって行なうことができる。
In addition, reading a record involves irradiating it with visible light, laser light, etc., and measuring changes in the refractive index and reflectance of the recorded area, changes in the direction of light reflection based on surface irregularities, or changes in light transmission speed. This can be done by

次に本発明上実施例によって説明するが、本発明はこれ
によってなんら限定されるものではない。
Next, the present invention will be explained by examples, but the present invention is not limited thereto.

実施例1 次式で示されるポリエーテルイミド(ガラス転移温度4
87°K) ・0(3 をガラス転移源If以上の温度、492°にで加熱後急
冷したサンプルAとこの急冷したサンプルをガラス転移
温度より約10℃低い温度である4770にで5時間熱
処理したサンプルBの屈折率の変化量を測定したところ
、0.021と極めて大きな変化があった。この高分子
体のガラス転移一温度での比熱変化は、ΔCp = 0
.26 JloK−fで第1図から予mサレル1cp(
D値0.23 J/’に−y K対して、1.13倍も
の大きな値を示している。また汀・ΔCpの値では、こ
の高分子体の分子構成単位の数nはn = 81: M
=74.1となりM−ΔCp==193J10K・ml
 となり第2図で表わされた一般の高分子体に比べて極
めて大きな値を示していることがわかる。
Example 1 Polyetherimide represented by the following formula (glass transition temperature 4
87°K) ・0(3) was heated to 492°, a temperature higher than the glass transition source If, and then rapidly cooled. Sample A and this rapidly cooled sample were heat-treated at 4770°C, which is about 10°C lower than the glass transition temperature, for 5 hours. When we measured the amount of change in the refractive index of sample B, we found an extremely large change of 0.021.The change in specific heat of this polymer at the glass transition temperature is ΔCp = 0.
.. 26 JloK-f from Figure 1 pre-m Sarel 1 cp (
The D value is 0.23 J/', which is 1.13 times as large as -y K. Also, according to the value of ΔCp, the number n of molecular constituent units of this polymer is n = 81: M
=74.1 and M-ΔCp==193J10K・ml
It can be seen that this value is extremely large compared to the general polymer shown in FIG.

実施例2 ポリメタクリル酸メチル(ガラス転移温度3840K)
のフィルムを作成し、このフィルムをガラス転移温度以
上の温度400°に迄加熱後急冷した。
Example 2 Polymethyl methacrylate (glass transition temperature 3840K)
This film was heated to a temperature of 400° above the glass transition temperature and then rapidly cooled.

この急冷したフィルムを3740Kに加熱し5時間熱処
理した。急冷して得られたフィルムと熱処理後のフィル
ムの屈折率を測定したところ0.0071の屈折率変化
がめった。このフィルムのガラス転17− 移温度での比熱変化は ΔCp=0.34 Jloに−
fで第1図から予想される値o、a OJ70に−9に
対して大きな値を示している。またi・ΔCpの値も1
1.3J10に−mole で第2図に示した一般の面
分子体に比べて大きな値を示した。
This rapidly cooled film was heated to 3740K and heat treated for 5 hours. When the refractive index of the film obtained by rapid cooling and the film after heat treatment was measured, a change in refractive index of 0.0071 was found. The change in specific heat at the glass transition temperature of this film is ΔCp=0.34 Jlo-
The values o and a expected from FIG. 1 for f are larger than -9 for OJ70. Also, the value of i・ΔCp is 1
At 1.3J10, -mole showed a larger value than that of the general face molecule shown in FIG.

なお、分子構成単位の数nはn = 3 で M−33
,4である0また、Δαは3,30 x 10”−’に
1で、0式からめた値2.(11x 10−’ K−1
の1.13倍である0 実施例3 ポリビニルカルバゾール(ガラス転移温度476’K)
の高分子体を、実施例1と同様の方法で、ガラス転移温
度以上493cK迄加熱後急冷したサンプルAとガラス
転移温度よりI O’に低い温度4660にで5時間熱
処理したサンプルBとの屈折重金測定したとと60.(
l l 5と大きな差があった。ガラス転移温度での比
熱変化はΔCp = 0.26 J/ 0K−9で81
図から予想される値0.24 J/’に−fに比べて充
分大@ftfdik示り、、M−1jcp =16.7
 、J/”K −molでこの値も一般の高分子体に比
べて充分太き18− な値(第2図参照)を示している。
In addition, the number n of molecular constituent units is n = 3 and M-33
, 4 is 0. Also, Δα is 1 in 3,30 x 10"-', and the value obtained from the formula 0 is 2.(11 x 10-' K-1
Example 3 Polyvinyl carbazole (glass transition temperature 476'K)
Refraction of sample A, which was prepared by heating the polymer to 493 cK above the glass transition temperature and then quenching it in the same manner as in Example 1, and sample B, which was heat-treated at 4660 cK, which is lower than the glass transition temperature, for 5 hours. The weight was measured at 60. (
There was a big difference between 1 and 5. The specific heat change at the glass transition temperature is ΔCp = 0.26 J/81 at 0K-9
The expected value from the figure is 0.24 J/', which is sufficiently large compared to -f @ftfdik, M-1jcp = 16.7
, J/''K-mol, which is 18-mol, which is sufficiently large compared to general polymers (see Figure 2).

なお、分子構成単位の数nは、n = 3でM==64
.4である。
In addition, the number n of molecular constituent units is n = 3 and M = = 64
.. It is 4.

実施例4 ポリカーボネート(ガラス転移温度426°K)のフィ
ルム全作成し、このフィルムをガラス転移温度以上の温
度443°1(迄加熱後急冷した。この急冷したフィル
ム′ft416°にで約5時間熱処理した。急冷したフ
ィルムと熱処理したフィルムの屈折率全測定し比較した
ところ0.009の差がめった。このフィルムのガラス
転移温度での比熱変化はΔcp = 0.26 J/’
Kパフ で第1図から予想される値0,27 JloK
−fとほぼ同じであったがi・ΔCp= 11.OJl
oKamole で一般の高分子体に比べて大きな値を
示した。
Example 4 A whole film of polycarbonate (glass transition temperature 426°K) was prepared, and this film was heated to a temperature of 443°1 (above the glass transition temperature) and then rapidly cooled. This rapidly cooled film was heat-treated at 416° for about 5 hours. When the refractive index of the rapidly cooled film and the heat-treated film were completely measured and compared, a difference of 0.009 was rarely found.The change in specific heat of this film at the glass transition temperature was Δcp = 0.26 J/'
The expected value from Figure 1 for K puff is 0.27 JloK
-f, but i・ΔCp=11. OJl
oKamole showed a larger value than that of general polymers.

なお、分子構成単位の数nはn = 6でM==42.
4である。またΔαは3.13 x lo−’に一’で
、0式からめた値2.62 X 10−’の1.19倍
と大きな値を有している。
In addition, the number n of molecular constituent units is n=6 and M==42.
It is 4. Further, Δα is 1 in 3.13 x lo-', which is 1.19 times the value calculated from the equation 0, which is 2.62 x 10-', which is a large value.

実施例5 次式で示されるポリエーテルスルホン(ガラス転移温度
497°1<) の高分子体と実施例1と同様の方法で、ガラス転移温度
以」−の温度513°[(迄加熱後急冷1.たサンプル
と、このサンプル′5r4870にで約5時間熱処理し
たサンプルとの屈折率を測定比較1.だところ0.00
9の差があった。ガラス転移温度での比熱変化はΔCp
 = 0.24 JloK−yで第1図から予想される
値0.23 JloK−fとほぼ同様の値を示すものの
、M−ΔCp = 13,9 JloK−mo暑 で一
般の昼分子体に比べて大きな値を示している〇 なお、構成単位の数nはn = 4でM:5B、0であ
る0 比較例1 ポリ塩化ビニル(ガラス転移温度349°K)のフィル
ムを作成し、このフィルムをガラス転移温度以上の温度
373°に迄加熱後急冷したフィルムと、このフィルム
を339°にで約5時間熱処理したフィルムの屈折率を
測定し比較したところ、その差は0.001でほとんど
差が見られなかった0このフィルムのガラス転移温度で
の比熱変化は、ΔCp = 0,30 Jloに−9で
第1図から予想される値0.33 Jloに−fより若
干小さいものの同程度の値を示し、i・Δcpについて
も荷・ΔCp = 9,4 JloK・moleで第2
図に示した値と一致しているOなお、分子構成単位の数
nはn=2でM=31.3である 比較例2 ポリエチレンテレフタレート(ガラス転移温度340°
K)の高分子体をガラス転移温度以上の温度345’に
迄加熱後急冷したサンプルと、このサンプルを3300
にで約5時間熱処理したサンプルとの屈折率の比較金し
たところ、差はo、o o oで差は見られなかった0 この高分子体のガラス転移温度での比熱変化はΔCp 
= 0.34 J/ ’に−9で第1図から予想される
値0.34 J/’に−tと一致した。またM・Δcp
につい21− てもM−ΔC1)=9,3 J/ OK−moleで第
2図に示した値と一致する。
Example 5 A polymer of polyether sulfone (glass transition temperature 497°1<) represented by the following formula was heated to a temperature of 513° above the glass transition temperature and then rapidly cooled in the same manner as in Example 1. 1. Measurement and comparison of the refractive index of the sample and a sample heat-treated with this sample '5r4870 for about 5 hours 1. But 0.00
There was a difference of 9. The change in specific heat at the glass transition temperature is ΔCp
= 0.24 JloK-y, the value expected from Figure 1 0.23 Although it shows almost the same value as JloK-f, M-ΔCp = 13,9 JloK-mo heat compared to general diurnal molecules. 〇The number n of structural units is n = 4 and M: 5B, 0. Comparative Example 1 A film of polyvinyl chloride (glass transition temperature 349°K) was created, and this film When we measured and compared the refractive index of a film that was heated to 373° above the glass transition temperature and then rapidly cooled, and a film that was heat-treated at 339° for about 5 hours, the difference was 0.001, which was almost the same. The change in specific heat of this film at the glass transition temperature is ΔCp = 0.30 Jlo -9, which is the value expected from Figure 1, 0.33 Jlo -f, which is slightly smaller than, but on the same level. For i・Δcp, load・ΔCp = 9,4 JloK・mole and the second
Comparative Example 2 Polyethylene terephthalate (glass transition temperature 340 °
A sample in which the polymer of K) was heated to a temperature of 345' above the glass transition temperature and then rapidly cooled, and this sample was heated to a temperature of 3300
A comparison of the refractive index with a sample heat-treated for about 5 hours in a resin revealed that the difference was o, o o o, and no difference was observed.The change in specific heat of this polymer at the glass transition temperature is ΔCp
= 0.34 J/' to -9, which coincided with the expected value from Figure 1 to 0.34 J/' to -t. Also M・Δcp
For 21-mole, M-ΔC1)=9.3 J/OK-mole, which agrees with the value shown in FIG.

なお、分子構成単位の数nばn = 7でM=27.5
ある0
In addition, the number of molecular constituent units n = 7 and M = 27.5
Some 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一般の高分子体のガラス転移温度での比熱変
化とガラス転移温度の関係を示す図、第2図は、一般の
高分子体の分子構成単位のモル尚りのガラス転移温度で
の比熱変化とガラス転移温度の関係を示した図である。 特許出願人 三菱油化株式会社 代理人 弁理士 古 川 方 利 (ほか1名) −22= 第1図 第2図 joo 300 400
Figure 1 shows the relationship between the change in specific heat and the glass transition temperature of a general polymer at the glass transition temperature, and Figure 2 shows the glass transition temperature of a typical polymer in terms of moles of molecular constituent units. FIG. 3 is a diagram showing the relationship between specific heat change and glass transition temperature at . Patent applicant Mitsubishi Yuka Co., Ltd. agent Patent attorney Katsutoshi Furukawa (and 1 other person) -22= Figure 1 Figure 2 joo 300 400

Claims (1)

【特許請求の範囲】 ガラス転移温度が3231以上で、かつ、下記(1)又
は下記(2)で示される非晶性高分子体で形成されたこ
とを特徴とする熱的エネル゛ギーを那えることによって
物理特性を変化せしめて情報の記録・読出しを行なうた
めの記録材料〇 (1)ガラス転移温度における定圧比熱の変化(ΔCp
:単位J単位−1・rl)が次式で示される高分子体 −T? ΔCp≧o、5sexp(/ ) 394.3 Ttニガラス転移温度単位”K (2)ガラス転移温度における、分子構成単位の平均分
子量1モル尚りの比熱変化(M・ΔCp:単位J−に−
”・mol−”)が次式で示される高分子体 M・Δcp≧10.9
[Scope of Claims] A thermal energy storage device characterized by having a glass transition temperature of 3231 or higher and being formed of an amorphous polymer shown in (1) or (2) below. Recording materials for recording and reading information by changing physical properties by
: unit J unit -1・rl) is a polymer body represented by the following formula -T? ΔCp≧o, 5sexp(/) 394.3 Tt Ni glass transition temperature unit “K (2) Specific heat change (M・ΔCp: unit J− to −
"・mol-") is represented by the following formula: polymer M・Δcp≧10.9
JP59067177A 1984-04-04 1984-04-04 Recording material Pending JPS60210493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067177A JPS60210493A (en) 1984-04-04 1984-04-04 Recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067177A JPS60210493A (en) 1984-04-04 1984-04-04 Recording material

Publications (1)

Publication Number Publication Date
JPS60210493A true JPS60210493A (en) 1985-10-22

Family

ID=13337342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067177A Pending JPS60210493A (en) 1984-04-04 1984-04-04 Recording material

Country Status (1)

Country Link
JP (1) JPS60210493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840873A (en) * 1986-07-11 1989-06-20 Kuraray Co., Ltd. Production of optical recording medium
JP2008539136A (en) * 2005-04-28 2008-11-13 ベクトン・ディキンソン・フランス・ソシエテ・アノニム Method for identifying containers and / or finished products obtained from containers, especially used in medicine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840873A (en) * 1986-07-11 1989-06-20 Kuraray Co., Ltd. Production of optical recording medium
JP2008539136A (en) * 2005-04-28 2008-11-13 ベクトン・ディキンソン・フランス・ソシエテ・アノニム Method for identifying containers and / or finished products obtained from containers, especially used in medicine

Similar Documents

Publication Publication Date Title
CA1327645C (en) Device for reversible optical data storage
EP0294932B1 (en) A method for recording and erasing information
Hummel et al. Handbook of optical properties: thin films for optical coatings
CN1185642C (en) Rewriting optical informatino recording medium
JPH0473387B2 (en)
JPS60210493A (en) Recording material
JPS61152487A (en) Photo-information recording medium
JPS60219646A (en) Optical information recording medium
US7645499B2 (en) Optical information recording medium and manufacturing method thereof
Peng et al. Measurement of the thermal coefficients of rewritable phase-change optical recording media
JPS62172541A (en) Optical recording carrier
JP2001209970A (en) Information recording medium, method of producing the same and method of recording and reproducing the same
JPH04229431A (en) Phase exchange type reversible optical recording carrier
Kojima et al. ZrO2-based interface films realizing a dual-layer phase-change optical disk utilizing a blue-violet laser
JPS63317939A (en) Optical information recording medium
JP2940176B2 (en) Optical recording medium and recording / reproducing method thereof
JPH02276675A (en) Recording method
JPS6015194A (en) Material for optical recording
JPS6352346A (en) Optical disk element
JPS61271638A (en) Production of optical disk substrate
Natansohn et al. Azo polymers for reversible optical storage
JPH0254441A (en) Optical information recording member
Lee et al. Investigation of basic optical characteristics in Te-Ge binary thin films for the optical memory
JPS6153090A (en) Optical disk
Kondo et al. Evaluation of thermal tolerance in initializing thin optical discs