JPS6021033A - Frequency shifter - Google Patents

Frequency shifter

Info

Publication number
JPS6021033A
JPS6021033A JP12974683A JP12974683A JPS6021033A JP S6021033 A JPS6021033 A JP S6021033A JP 12974683 A JP12974683 A JP 12974683A JP 12974683 A JP12974683 A JP 12974683A JP S6021033 A JPS6021033 A JP S6021033A
Authority
JP
Japan
Prior art keywords
light
frequency
output
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12974683A
Other languages
Japanese (ja)
Inventor
Koichi Kanayama
光一 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12974683A priority Critical patent/JPS6021033A/en
Publication of JPS6021033A publication Critical patent/JPS6021033A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To expand the volume of information to be processed in optical information processing and optical communication by using acoustooptic elements and arranging a wide band light frequency shifter having fixed output light bearing and output light intensity independently of the shifted quantity of the light frequency. CONSTITUTION:An input light coupling optical element 18 focuses light 22 projected from an input optical fiber 20. When the frequency of ultrasonic wave exciting energy injected from an input terminal 11 is changed, the projecting bearing of diffracted light is also changed. However, the diffracted light is focused on the back focus of an output light coupling optical element 19 by the effect of the element 19 independently of the frequency of the ultrasonic wave exciting energy, so that the diffracted light is guided into an output optical fiber 21. When the coupling loss between the optical element 19 and the output optical fiber 21 is changed by the frequency of the ultrasonic wave exciting energy, the ultrasonic wave energy is controlled to keep the intensity of light taken out from the optical fiber 21 and shifted at its frequency. Consequently, a stable, high-speed and high-band light frequency shifter free from moving parts can be attained.

Description

【発明の詳細な説明】 に業七の利用分野 不発関口1、光の周波aシフターに関するものである。[Detailed description of the invention] Fields of use of Nikarashichi This is related to the unfired exit 1, an optical frequency a shifter.

従来例の構成とその問題点 近年、光を利用した光通信、光情報処理技術が注目され
ている。その中で、光の周波数に周波数変調を行なう光
ヘテロダインの技術が、各分野で研究されつつある。
Conventional configurations and their problems In recent years, optical communications and optical information processing technologies that utilize light have been attracting attention. Among these, optical heterodyne technology, which performs frequency modulation on the frequency of light, is being researched in various fields.

光の周波数に周波数変調をかける手段としてiJ、回折
格子やル射鏡を機械的に移動させ、その移動速度による
光周波数のドツプラシフトを利用する方法などがあるが
、これらは機械的可動部分に高精度が要求されるばかり
でなぐ、その動作立J−り速度が遅いなど実用的なもの
に完成させるにわ1:、問題点が多い。一方、音響光学
効果を利用した超音波進行波による光回折を応用した音
響光学素子は、機械的可動部が無く、高速の動作立]ニ
リを実現できるので有望視されてはいだが、出力さ、!
1だ周波数変調をかけられた光の方位が、変調周波数に
伴い変化するため実用に供されることは無かった。
There are methods to apply frequency modulation to the frequency of light, such as mechanically moving an iJ, diffraction grating, or reflection mirror, and using the Doppler shift of the optical frequency due to the speed of movement, but these methods require high mechanical moving parts. There are many problems in making it practical, such as not only precision being required, but also slow start-up speed. On the other hand, acousto-optic elements that apply light diffraction by ultrasonic traveling waves using acousto-optic effects are seen as promising because they have no mechanically moving parts and can achieve high-speed operation; !
Since the direction of light subjected to single-frequency modulation changes with the modulation frequency, it has never been put to practical use.

第1図に従来から用いられている音響光学効果の模式図
を示す。1は超音波励振エネルギーの入力端子、2は入
力端子1より印加された超音波エネルギーを超音波送波
トランスジー−サ3に効率よく送りこむためのインピー
ダンス整合部である。
FIG. 1 shows a schematic diagram of the acousto-optic effect conventionally used. 1 is an input terminal for ultrasonic excitation energy, and 2 is an impedance matching section for efficiently sending the ultrasonic energy applied from the input terminal 1 to the ultrasonic transmitting transducer 3.

4は音響光学媒体で、超音波送波トランスジー−ザ3が
貼り合わせてあり、光を入出射する光学面6a、ebと
超音波が同じ経路に反射しないように設けた超音波不要
反射防止面7が設けられている。捷た5は、音響光学効
果による光回折に寄与する超音波の存在領域、つまり超
音波束を示している。
Reference numeral 4 denotes an acousto-optic medium, on which an ultrasonic transmitting transducer 3 is bonded, and optical surfaces 6a and eb through which light enters and exits, and an ultrasonic unnecessary reflection prevention device provided to prevent ultrasonic waves from being reflected in the same path. A surface 7 is provided. The curved line 5 indicates the region where ultrasonic waves that contribute to light diffraction due to the acousto-optic effect exist, that is, the ultrasonic flux.

さて、レーザ光などの入射光8を、光入射面6aから入
射した場合を考える。光入射方位を適当に選べば、超音
波励振エネルギーを入力端子1から印加しない、鳴合は
、透過光1oだけが存在するが、超音波励振エネルギー
を入力端子1に印加すると透過光10の一部が音響光学
効果により回折され、回折光9が発生する。この回折光
の周波数v1は入射光の周波数を■。、Ili’j l
K波の周波数を■8とすれば、 ■1−vo±■8 (復号は光入射方位に」、りどちらかをとる)となる。
Now, consider a case where incident light 8 such as a laser beam is incident from the light entrance surface 6a. If the light incidence direction is appropriately selected, only the transmitted light 1o exists when ultrasonic excitation energy is not applied from input terminal 1, but when ultrasonic excitation energy is applied to input terminal 1, only one transmitted light 1o exists. portion is diffracted by the acousto-optic effect, and diffracted light 9 is generated. The frequency v1 of this diffracted light is the frequency of the incident light. , Ili'j l
If the frequency of the K wave is 8, then 1-vo±8 (decoding takes either of the directions of light incidence).

まだ回1ff?光の力位は、透過光1oと回折光9との
なす角θで示すと、 θ磐λ×■a/μ (λ:光波長 μ:超音波の音速) となる。実用上は、光入射方位を固定しそ使用するので
、ある超音波周波数で最大回折効率を1<+る光入射方
位が決定された後で、超音波周波数■8を変化させると
理論上回折条件が満たされなくなるが、実際に取り扱う
超音波束も入射光も有限の大きさを有するので、波面結
線の方向にひろがりがあるので、超音波周波数vaが変
化しても、回折条件をみたす入射光成分が回折され、回
角尤9は存在し得ることになる。
Is it still 1ff? The power level of light is expressed as the angle θ formed by the transmitted light 1o and the diffracted light 9, as follows: θ: λ×■a/μ (λ: wavelength of light μ: sound speed of ultrasonic wave). In practice, the light incident direction is fixed, so after determining the light incident direction that gives a maximum diffraction efficiency of 1 < + at a certain ultrasonic frequency, changing the ultrasonic frequency ■8 will meet the theoretical diffraction condition. However, since both the ultrasonic bundle and the incident light that are actually handled have finite sizes, there is a spread in the direction of the wavefront connection, so even if the ultrasonic frequency va changes, the incident light that satisfies the diffraction condition The component will be diffracted and a diffraction angle likelihood of 9 may exist.

超音波トランスジューサ3から放射され、光回折をひき
おこしたあ七の超音波束5は、音響光学媒体4の超音波
トランスジー−サ3の貼り合せ而の対向面7に達し反射
するが、反射超音波束が反射前の超音波束と同じ経路を
たどると、入射光が反射超音波で再回折されることにな
り実用」二有害な現象をひきおこす。そのため上記音響
光学媒体の上記対向面で反射された超音波束が同じ経路
を戻らぬように超音波不要反射防止面7に対する超音波
の入射1反引力位が異なるように超音波不要反射面7が
設けられ、反射超音波によって入射光8が再回折されな
いようにしである。
The ultrasonic beam 5 emitted from the ultrasonic transducer 3 and causing optical diffraction reaches the opposing surface 7 of the acousto-optic medium 4 where the ultrasonic transducer 3 is bonded and is reflected. If the sound wave bundle follows the same path as the ultrasound bundle before reflection, the incident light will be re-diffracted by the reflected ultrasound wave, causing two harmful phenomena. Therefore, in order to prevent the ultrasonic flux reflected from the opposing surface of the acousto-optic medium from returning along the same path, the ultrasonic unnecessary reflection surface 7 is designed so that the anti-attraction position of the ultrasonic wave on the ultrasonic unnecessary reflection prevention surface 7 is different. is provided to prevent the incident light 8 from being re-diffracted by reflected ultrasound waves.

上記のような音、!!5光学素子を光周波数シフトデバ
イスとして使用する場合、回折され周波数シフトした回
折光の力位が、変調周波数とともに空間的にも変化し、
出力光を効果的に取り出すことができず実用上問題であ
った。
Sounds like the above,! ! 5. When using the optical element as an optical frequency shifting device, the power potential of the diffracted and frequency-shifted light changes spatially with the modulation frequency,
This was a practical problem because the output light could not be extracted effectively.

発明の目的 本発明は、上記の欠点に鑑み、音響光学素子を利用し光
層仮数のシフト量によらず出力光方位、出力光強度が一
定の広帯域光周波数シフタを提供し、光情報処理、光通
信における処理情報量の飛硫1時拡大を図るものである
OBJECTS OF THE INVENTION In view of the above drawbacks, the present invention provides a broadband optical frequency shifter that uses an acousto-optic element and has a constant output light direction and output light intensity regardless of the shift amount of the optical layer mantissa. The aim is to dramatically expand the amount of information processed in optical communications.

発明の構成 この[」的を達成する/Cめに本発明の周波数シフタは
、入射光周波数をシフトする音響光学素子と、入射光を
上1;8庁響光学素子に導く入力光ファイバと、上記入
力光ファイバにょシ導かれた光を集束し上記音響光学素
子に入射させるだめの入力光結合光学素子と、上記音響
光学素子より出力される周波数シフトされた光を出力す
る出力光ノア・1バと、上記音響光学素子より出力され
る周波数シフトされ、シフト周波数により方位が変化す
る光を上記出力光ファイバに導くだめの出力光結合光学
素子とを有するものである。
Structure of the Invention To achieve this goal, the frequency shifter of the present invention includes: an acousto-optic element that shifts the frequency of incident light; an input optical fiber that guides the incident light to an acoustic optical element; an input optical coupling optical element for converging the light guided by the input optical fiber and making it incident on the acousto-optic element; and an output optical node 1 for outputting the frequency-shifted light output from the acousto-optic element. and an output light coupling optical element that guides the frequency-shifted light outputted from the acousto-optic element and whose direction changes depending on the shift frequency to the output optical fiber.

この構成により周波数シフト量が大きく、機械的可動部
のない動作が安定した、取扱い容易な、光周波数シフタ
が実現できる。
With this configuration, it is possible to realize an optical frequency shifter that has a large frequency shift amount, has stable operation without mechanically moving parts, and is easy to handle.

実施例の説明 以下、本発明の一実施例について、図面を参J](1し
ながら説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明の一実施例における光の周波数シフタ
の構造模式図を示すものである。第2図において、14
は音響光学媒体で、たとえば光透過性のガラス材料また
は単結晶制料で構成さ7している。13は超音波トラン
スジー−−サで、音響光学媒体14の主面上に配置され
ており、これにはインピーダンス整合部12を介して、
超音波励振エネルギーの入力端子11が接続されている
。17は、超音波不安反射防止面で、上記音響光学媒体
14の主面に対向する位置に配置されている。16aは
光入射面で、1−記音響光学媒体14の主面と交差する
ように設けられており、入力光ファイバ2゜から放射さ
れる光22を、集束するだめの入力元結合光学素子18
を介して、入射光23が入射するようになっている。丑
だ、16bは光出射面で、j二足r4−響光学媒体14
の光入射面16aと対向する位置に配置さノ′12、音
響光学効果によシ回折された回折光d1上記光出射面よ
り出射され、出力光結合光学素子19を介して出力光フ
ァイバー21に導かれる。
FIG. 2 shows a schematic structural diagram of an optical frequency shifter in one embodiment of the present invention. In Figure 2, 14
is an acousto-optic medium, for example made of a light-transmitting glass material or a single crystal material. Reference numeral 13 denotes an ultrasonic transducer, which is disposed on the main surface of the acousto-optic medium 14, and is connected to the ultrasonic transducer through an impedance matching section 12.
An input terminal 11 for ultrasonic excitation energy is connected. Reference numeral 17 denotes an ultrasonic anxiety reflection prevention surface, which is disposed at a position facing the main surface of the acousto-optic medium 14 . Reference numeral 16a denotes a light incident surface, which is provided so as to intersect with the principal surface of the acousto-optic medium 14 described in 1- above, and is an input source coupling optical element 18 for converging the light 22 emitted from the input optical fiber 2°.
Incident light 23 is made to enter through. 16b is the light exit surface, j biped r4 - acoustic optical medium 14
The diffracted light d1 diffracted by the acousto-optic effect is emitted from the light exit surface and guided to the output optical fiber 21 via the output light coupling optical element 19. It will be destroyed.

以」二のように構成された光の周波数シフターについて
、以下その動作について説明する。
The operation of the optical frequency shifter configured as described above will be explained below.

寸ず、超音波励振エネルギーの入力端子11より、超1
3波励4Hエネルギーが61人されると、超音波トラン
スジー−ザ13に吸収され易い状態に変換するだめのイ
ノビーダンス整合部12を介シテ、超音波トランスジー
−サ13は、音響光学媒体14の中に超音波束15を放
射する。ここに、入力光ファイバー20より導かれた光
22が、入力元結合光学素子18を介して適当な入射方
位で入射される。入力光結合光学素子18は、入力光フ
ァイバー20から放射される光22を集束する役割を有
し、曲面レンズや光の進行方向と垂直方向に屈折率が変
化するような媒質からなるものである。
From the ultrasonic excitation energy input terminal 11, ultra 1
When 61 3-wave excitation 4H energy is applied, the ultrasonic transducer 13 passes through the Innovidance matching unit 12 to convert it into a state that is easily absorbed by the ultrasonic transducer 13, and the ultrasonic transducer 13 transfers it to the acousto-optic medium 14. An ultrasonic beam 15 is emitted into the . The light 22 guided from the input optical fiber 20 is incident here via the input source coupling optical element 18 in an appropriate incident direction. The input light coupling optical element 18 has a role of converging the light 22 emitted from the input optical fiber 20, and is made of a curved lens or a medium whose refractive index changes in a direction perpendicular to the direction in which the light travels.

さて、音響光学媒体14に入射された光23i2、上記
超音波束16により回折され、透過光24の一一部が超
音波励振エネルギーの周波数だけ7ノトした回折光24
として出力され、光出射面16bを介して音響光学媒体
14の外に出射され、曲面レンズや、光の進行方向と垂
直な方向にj+j 4)−r率が変化するような媒質か
らなる出力光結合光学素子19に入射される。出力光結
合光学素子19ば、出力光ファイバー21に、回折光2
4を導入する役割を有し、音響光学効果による光回折中
心点から出力光結合光学素子までの距離が、上記出力光
結合光学素子の焦点距離と同一となる点に配置されてい
る。入力端子11よシ注入される。
Now, the light 23i2 incident on the acousto-optic medium 14 is diffracted by the ultrasonic bundle 16, and a portion of the transmitted light 24 is a diffracted light 24 whose frequency is equal to the frequency of the ultrasonic excitation energy by 7 notes.
Output light is emitted from the acousto-optic medium 14 via the light emitting surface 16b, and is made of a curved lens or a medium in which the j+j4)-r ratio changes in the direction perpendicular to the direction in which the light travels. The light is incident on the coupling optical element 19. The output light coupling optical element 19 connects the diffracted light 2 to the output optical fiber 21.
4, and is arranged at a point where the distance from the center point of light diffraction due to the acousto-optic effect to the output light coupling optical element is the same as the focal length of the output light coupling optical element. It is injected through the input terminal 11.

超音波励損エネルギーの周波数が変化すると、回折光2
4の出射方位は変化するが、出力光結合光学素子19の
効果により、k1音波励振エネルギーの周波数によらず
、回折光は、出力光結合光学素子19の後方で、上記出
力光結合光学素子19の後方焦点に集束されるので、こ
の集束点に配置された出力光ファイバー21に上記回折
光は導入されることになる。出力光結合光学素子19と
、出力光フーγイバー21の結合損失が、超音波励振エ
ネルギーの周波数により変化する場合は、超音波励振エ
ネルギーを加減して、出力光ファイバー21からとり出
)Nれる周θU数ノットされた光の強度を一定に保つこ
とができる。回折に寄与した残りの超音波束け、上記音
響光学Q%j、休14の超音波不要反射防止面17で、
反射前後で、超音波が同じ経路を通らぬように反射さh
、反射超音波による光の円回折を防11−シている。
When the frequency of ultrasonic excitation energy changes, the diffracted light 2
Although the output direction of the output light coupling optical element 19 changes, due to the effect of the output light coupling optical element 19, regardless of the frequency of the k1 acoustic wave excitation energy, the diffracted light is transmitted to the output light coupling optical element 19 behind the output light coupling optical element 19. Since the diffracted light is focused at the rear focal point of the diffracted light, the diffracted light is introduced into the output optical fiber 21 disposed at this focusing point. If the coupling loss between the output optical coupling optical element 19 and the output optical fiber 21 changes depending on the frequency of the ultrasonic excitation energy, adjust the ultrasonic excitation energy to increase or decrease the frequency extracted from the output optical fiber 21. It is possible to keep the intensity of the light divided by several knots of θU constant. The remaining ultrasonic bundle that contributed to diffraction, the acousto-optic Q%j, and the ultrasonic unnecessary reflection prevention surface 17 of the rest 14,
Ultrasonic waves are reflected so that they do not follow the same path before and after reflection.
11- Prevents circular diffraction of light due to reflected ultrasonic waves.

発明の効果 以上のように、本人施例によれば可動部分のない安定な
高速、高帯域の光の周波数シフタが可能になり、光情報
処理や光通信などに用いる場合、取り扱える情報量の飛
躍的拡大を実現できることによる実用的効果は大なるも
のがある。
Effects of the Invention As described above, according to his own examples, it has become possible to create a stable, high-speed, high-bandwidth optical frequency shifter with no moving parts, which will dramatically increase the amount of information that can be handled when used in optical information processing, optical communications, etc. The practical effects of being able to expand the market are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の音響光学素子の構造を示す図、第2図
は、本発明による実施例における光の周波数シフターの
構造模式図である。 18・ 入力光結合光学素子、19・−・・出力光結合
光学素子、20・−人力光ファイノ<−、21・・・・
−出力光ファイバー。
FIG. 1 is a diagram showing the structure of a conventional acousto-optic element, and FIG. 2 is a schematic diagram of the structure of an optical frequency shifter in an embodiment according to the present invention. 18. Input light coupling optical element, 19...Output light coupling optical element, 20.-Human power optical fiber <-, 21...
- Output optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 音響光学効果の一部に超音波励振用トランスジユーサを
有してなる音9光学素子と、上記音響光学素子に人身」
する光を導く入力光ファイバーと、」−配光フアイバー
により導かれた光を集束し上記音響光学素子に勇入する
/ζめの入力光結合光学素子と、上記音響>IQ ニア
−素子より出力される方向の異なる出力)°Cを1q定
方向に集束して取り出す出力光結合光学素子と、上記出
力光結合光学素子により集束された出ノJ尤を導出する
だめの出力光ファイバーとをイ」する周波数シフター。
A sound optical element having an ultrasonic excitation transducer as a part of the acousto-optic effect, and a human body attached to the acousto-optic element.
an input optical fiber that guides the light to be transmitted, an input optical coupling optical element that focuses the light guided by the light distribution fiber and enters the acousto-optic element; An output light coupling optical element that focuses and takes out the output (different directions) °C in a constant direction of 1q, and an output optical fiber for deriving the output focused by the output light coupling optical element. frequency shifter.
JP12974683A 1983-07-15 1983-07-15 Frequency shifter Pending JPS6021033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12974683A JPS6021033A (en) 1983-07-15 1983-07-15 Frequency shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12974683A JPS6021033A (en) 1983-07-15 1983-07-15 Frequency shifter

Publications (1)

Publication Number Publication Date
JPS6021033A true JPS6021033A (en) 1985-02-02

Family

ID=15017175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12974683A Pending JPS6021033A (en) 1983-07-15 1983-07-15 Frequency shifter

Country Status (1)

Country Link
JP (1) JPS6021033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279035A (en) * 1988-09-16 1990-03-19 Nippon Telegr & Teleph Corp <Ntt> Optical frequency shifter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582825A (en) * 1981-06-17 1983-01-08 ヘ−ゼルタイン・コ−ポレ−シヨン Acoustic-optical type channeling processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582825A (en) * 1981-06-17 1983-01-08 ヘ−ゼルタイン・コ−ポレ−シヨン Acoustic-optical type channeling processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279035A (en) * 1988-09-16 1990-03-19 Nippon Telegr & Teleph Corp <Ntt> Optical frequency shifter

Similar Documents

Publication Publication Date Title
JPH04110916A (en) Multiplexing device for semiconductor laser
KR950703748A (en) ENHANCING THE NONLINEARITY OF AN OPTICAL WAVEGUIDE
US5937129A (en) Waveguide grating structure having linear and nonlinear waveguiding film
JPS6021033A (en) Frequency shifter
JPH02126242A (en) Light wavelength converting device
JP3762654B2 (en) Optical device
JPH0318833A (en) Higher harmonic wave generating element and higher harmonic wave generator
JPS6020090Y2 (en) Optical path switching device
KR20000032760A (en) Integrated typed optical coupler using phase-grating structure
JPH09214069A (en) Laser light pattern forming device and die laser apparatus
JPS5814115A (en) Thick film optical circuit
JPS60112024A (en) Light wavelength converter
JPS6191632A (en) Optical demultiplexer
JPS58205825A (en) Optical wavelength demultiplexer/multiplexer
SU701323A1 (en) Planar acousto-optical line of adjustable signal delay
JP2000329957A (en) Optical branching and demultiplexing device
JPS58129425A (en) Ultrasonic light switch
NL8602425A (en) REFLECTOR FOR OPTICAL FIBERS.
JPH036075A (en) Higher harmonic generator device
JPS61255306A (en) Optical multiplexer and demultiplexer
JP2002014256A (en) Laser beam coupling module
JPH03192314A (en) Optical multiplexing and branching device
JPS59140415A (en) Optical branch coupler
JPH0230002B2 (en)
JPH06337446A (en) Waveguide type acoustic optical device