JPH0279035A - Optical frequency shifter - Google Patents

Optical frequency shifter

Info

Publication number
JPH0279035A
JPH0279035A JP22983088A JP22983088A JPH0279035A JP H0279035 A JPH0279035 A JP H0279035A JP 22983088 A JP22983088 A JP 22983088A JP 22983088 A JP22983088 A JP 22983088A JP H0279035 A JPH0279035 A JP H0279035A
Authority
JP
Japan
Prior art keywords
light
output
acousto
optical frequency
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22983088A
Other languages
Japanese (ja)
Inventor
Atsushi Nishikido
淳 錦戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22983088A priority Critical patent/JPH0279035A/en
Publication of JPH0279035A publication Critical patent/JPH0279035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To shift an optical frequency continuously over a wide range by making one of two focuses of an elliptic mirror correspond to an operation point where light incident on an acoustooptic element from a light input means is put under acoustooptic effect and the other correspond to the incidence end of a light output means. CONSTITUTION:The acoustooptic element 1, the elliptic mirror 10, and an optical fiber 11 for output are arranged so that the operation point 12 where the incident light 7 is Bragg-diffracted with a surface acoustic wave 6 and the input end 13 of the optical fiber 11 for output correspond to the two focuses of the elliptic mirror 10. The diffracted light 9 is reflected by the elliptic mirror 10 to go to a light beam 14, which is entered into the optical fiber 11 for output. A lens 15 for input is so arranged that the light beam is focused on the input end 13. The band of the shift quantity of the optical frequency is limited to only the numerical aperture of the optical fiber for output. Consequently, the optical frequency can be varied continuously over a wide range.

Description

【発明の詳細な説明】 (産業上の利用分野〕 木発明は光周波数を変化させる光周波数シフタに関する
ものであり、特に音響光学素子を用いる光周波数シフタ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical frequency shifter that changes optical frequency, and particularly relates to an optical frequency shifter that uses an acousto-optic element.

〔従来の技術〕[Conventional technology]

周知のように、音響光学効果とは弾性表面波による光ビ
ームのブラッグ回折あるいはラマン・ナス回折現象の俗
称であり、1次回折光のみに着目するとこの現象を用い
た音響光学素子には以下のような特性がある。
As is well known, the acousto-optic effect is the common name for the Bragg diffraction or Raman-Nass diffraction phenomenon of a light beam caused by surface acoustic waves. Focusing only on the first-order diffracted light, acousto-optic elements using this phenomenon include the following: It has certain characteristics.

λ ・ f θ= −(1) ■ f、=f、±f(2) ここで、θ::過光からの回折角(偏向角)λ:二人光
波長 fI 二人射光周波数 fo :出射光(回折光)周波数 f:弾性表面波の周波数(光周波数シフト士) ■:音音光光学媒体中弾性表面波の速度第2図に従来の
光周波数シフタを示す。音響光学素子lは、音り光学媒
体2とトランスデユーサ3および吸音材4により構成さ
れている。発振器5より超音波をトランスデユーサ3に
人力すると吸音材4に向かって弾性表面波6が進行する
。この状態で入射光7を音響光学素子1に入射すると、
弾性表面波6による入射光7のブラッグ回折現象で透過
光8と回折光9が現れる。回折光9は出力用レンズ19
を通って出力用光ファイバ11に導入される。このよう
に従来の光周波数シフタは、音響光学素子1の出射光を
出力用レンズ19を用いて光ファイバ11に導入し、出
力光16を得るように音響光学素子、出力用レンズおよ
び出力用光ファイーバが配置されていた。
λ・f θ= −(1) ■ f, = f, ±f (2) Here, θ:: Angle of diffraction from passing light (deflection angle) λ: Wavelength of light from two people fI Frequency of light emitted from two people fo: Output Emitted light (diffracted light) frequency f: Frequency of surface acoustic waves (optical frequency shifter) (2): Speed of surface acoustic waves in acousto-optical medium FIG. 2 shows a conventional optical frequency shifter. The acousto-optic element 1 is composed of a sound optical medium 2, a transducer 3, and a sound absorbing material 4. When an ultrasonic wave is applied to the transducer 3 from the oscillator 5, a surface acoustic wave 6 propagates toward the sound absorbing material 4. When the incident light 7 enters the acousto-optic element 1 in this state,
Due to the Bragg diffraction phenomenon of the incident light 7 caused by the surface acoustic wave 6, transmitted light 8 and diffracted light 9 appear. Diffraction light 9 is output lens 19
is introduced into the output optical fiber 11 through the. In this way, the conventional optical frequency shifter introduces the output light of the acousto-optic element 1 into the optical fiber 11 using the output lens 19, and connects the acousto-optic element, the output lens, and the output light to obtain the output light 16. fiber was placed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の特性式に示されるように入射光の波長が一定の場
合、弾性表面波の周波数即ち周波数シフト量と偏向角は
1対1対応である。したがって、従来技術では特定偏向
角の出射光のみ出力用光ファイバに導入され、特定偏向
角以外は出力用光ファイバには導入されない。したがっ
て、光周波数シフト量の中心周波数が固定で、かつ超狭
帯域に制限されており、光周波数シフト量を連続に変化
させることができないという欠点かあった。本発明は、
上述した従来の欠点を解消し、光周波数を連続で広帯域
にシフトすることのできる光周波数シフタを)是イ共す
ることを目的とする。
As shown in the above characteristic equation, when the wavelength of the incident light is constant, there is a one-to-one correspondence between the frequency of the surface acoustic wave, that is, the amount of frequency shift, and the deflection angle. Therefore, in the prior art, only the emitted light having a specific deflection angle is introduced into the output optical fiber, and the light other than the specific deflection angle is not introduced into the output optical fiber. Therefore, the center frequency of the optical frequency shift amount is fixed and limited to an ultra-narrow band, and there is a drawback that the optical frequency shift amount cannot be changed continuously. The present invention
It is an object of the present invention to provide an optical frequency shifter capable of eliminating the above-mentioned conventional drawbacks and continuously shifting optical frequencies over a wide band.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するために本発明は光入力手段と
、音響光学素子と、楕円鏡と、光出力手段を具備し、楕
円鏡の2つの焦点のうち一方を、光入力手段から音響光
学素子に入射した光が音響光学効果を受ける作用点に対
応させ、他方を、光出力手段の入射端に対応させたこと
を特徴とする。
In order to achieve such an object, the present invention comprises a light input means, an acousto-optic element, an elliptical mirror, and a light output means, and one of the two focal points of the elliptical mirror is connected from the light input means to the acousto-optic device. It is characterized in that the light incident on the element corresponds to the point of action where the light receives the acousto-optic effect, and the other corresponds to the input end of the light output means.

さらに本発明は光入力手段と、音響光学素子と、楕円鏡
と、光出力手段と、楕円鏡と光出力手段の間に設けられ
た回折格子鏡とレンズとを具備し、楕円鏡の2つの焦点
のうち一方を、光入力手段から音響光学素子に入射した
光が音響光学効果を受ける作用点に対応させ、他方を、
回折格子鏡の反射点に対応させたことを特徴とする。
Furthermore, the present invention comprises a light input means, an acousto-optic element, an elliptical mirror, a light output means, a diffraction grating mirror and a lens provided between the elliptical mirror and the light output means, One of the focal points corresponds to the point of action where the light incident on the acousto-optic element from the light input means receives an acousto-optic effect, and the other focal point is
It is characterized in that it corresponds to the reflection point of the diffraction grating mirror.

〔作 用〕[For production]

木発明においては楕円鏡を利用する。 Wood invention uses an elliptical mirror.

楕円の性質上、2つの焦点のうち一方を通過した光線は
楕円鏡面で反射し他方の焦点を必ず通過し、一方の焦点
から楕円鏡面で反射し他方の焦点に至る距離は光線の方
向に依らず等しい。したがって、音響光学効果の作用点
を通過した入射光は楕円鏡面で反射して光ファイバの入
力端または回折格子鏡の反射点に至る。楕円鏡はレンズ
と異なり収差がないため、一方の焦点を通過して広がる
光線を広い範囲にわたって他方の焦点に集光することが
可能である。したがって、光周波数シフト量の帯域は出
力用光ファイバの開口数のみに制限され、光周波数を連
続で広帯域に変化させることが可能となる。
Due to the nature of an ellipse, a ray that passes through one of the two focal points is reflected by the elliptical mirror surface and always passes through the other focal point, and the distance from one focal point to the other focal point after being reflected by the elliptical mirror surface depends on the direction of the ray. are equal. Therefore, the incident light that has passed through the point of action of the acousto-optic effect is reflected by the elliptical mirror surface and reaches the input end of the optical fiber or the reflection point of the diffraction grating mirror. Unlike a lens, an elliptical mirror has no aberrations, so it is possible to condense light rays that pass through one focal point and spread over a wide range onto the other focal point. Therefore, the band of the optical frequency shift amount is limited only by the numerical aperture of the output optical fiber, making it possible to continuously change the optical frequency over a wide band.

〔実施例] 以下、図面を参照して、本発明の詳細な説明する。〔Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を説明する模式図である。FIG. 1 is a schematic diagram illustrating an embodiment of the present invention.

音響光学素子1は、従来例と同様に音響光学効果2とト
ランスデユーサ3および吸音材4により構成されている
。発振器5から超音波(周波数f1〜f2)をトランス
デユーサ3に入力すると吸音材4に向かって弾性表面波
6が進行する。発振器5からfIなる超音波をトランス
デユーサ3に人力した状態において入射光7を音響光学
素子lに入射すると、弾性表面波6による入射光7のブ
ラッグ回折現象で透過光8と回折光9が現れる。ここで
、回折光9の周波数および回折角は、それぞれ前述した
(2)式および(1)式により表わされる。また、回折
光9の強度は発振器5からトランスデユーサ3に人力さ
れる超音波の′π力に依存する。音#lF光学素子1.
楕円鏡lOおよび出力用光ファイバllは、入射光7が
弾性表面波6によりブラッグ回折される作用点12と、
出力用光ファイバ11の入力端13とが楕円鏡lOの2
つの焦点にそれぞれ対応するように配置されている。回
折光9は楕円鏡lOにより反射されて光線14となり、
出力用光ファイバ11に専大される。人力用レンズ15
は、入力端13で光線が焦点を結ぶように配置されてい
る。人力用レンズにかえて人力用光ファイバを用いるこ
ともでざる。その場合にはその出力端が作用点12に充
分近いように配置される。出力光16の光周波数は、(
2)式に示したようにflだけシフトされてし゛る。ま
た、超音波の周波数をflに変化させた場合においても
同様に入射光7が弾性表面波6により光線J7にブラッ
グ回折−され、回折光17は楕円鏡10によって反射さ
れて光線18となり、出力用光ファイバ11に導入され
る。このとき出力光16の光周波数は(2)式のように
flだけシフトされている。光周波数シフト量がflか
らflに変化する速度は弾性表面波6が音響光学媒体2
を進行する速度に依存する。
The acousto-optic element 1 is composed of an acousto-optic effect 2, a transducer 3, and a sound absorbing material 4, as in the conventional example. When ultrasonic waves (frequency f1 to f2) are input from the oscillator 5 to the transducer 3, surface acoustic waves 6 travel toward the sound absorbing material 4. When the incident light 7 is incident on the acousto-optic element l while the ultrasonic wave fI is manually applied to the transducer 3 from the oscillator 5, the transmitted light 8 and the diffracted light 9 are separated by the Bragg diffraction phenomenon of the incident light 7 due to the surface acoustic wave 6. appear. Here, the frequency and diffraction angle of the diffracted light 9 are expressed by the aforementioned equations (2) and (1), respectively. Further, the intensity of the diffracted light 9 depends on the 'π force of the ultrasonic wave inputted from the oscillator 5 to the transducer 3. Sound #IF optical element 1.
The elliptical mirror 1O and the output optical fiber 11 have a point of action 12 where the incident light 7 is Bragg diffracted by the surface acoustic wave 6,
The input end 13 of the output optical fiber 11 is connected to the elliptical mirror lO2.
They are arranged to correspond to each focal point. The diffracted light 9 is reflected by the elliptical mirror lO and becomes a light beam 14,
It is dedicated to the output optical fiber 11. Human power lens 15
are arranged so that the light beam is focused at the input end 13. It is also possible to use a manual optical fiber instead of a manual lens. In that case, its output end is arranged sufficiently close to the point of application 12. The optical frequency of the output light 16 is (
2) It is shifted by fl as shown in the equation. Furthermore, when the frequency of the ultrasonic wave is changed to fl, the incident light 7 is similarly Bragg-diffracted into a light ray J7 by the surface acoustic wave 6, and the diffracted light 17 is reflected by the elliptical mirror 10 to become a light ray 18, which is output. is introduced into the optical fiber 11 for use. At this time, the optical frequency of the output light 16 is shifted by fl as shown in equation (2). The speed at which the optical frequency shift amount changes from fl to fl is the speed at which the surface acoustic wave 6 changes from fl to acousto-optic medium 2.
depends on the speed at which it progresses.

楕円の性質上、2つの焦点のうち一方を通過した光線は
楕円鏡面で反射し他方の焦点を必ず通過し、一方の焦点
から楕円鏡面で反射し他方の焦点に至る距離は光線の方
向に依らず等しい。したがって、音響光学効果の作用点
を通過した入射光は楕円鏡面で反射して光ファイバの入
力端に至る。また、楕円鏡はレンズと異なり収差がない
ため一方の焦点を通過して広がる光線を広い範囲に渡り
他方の焦点に集光することが可能である。したがって、
光周波数シフト量の帯域は出力用光ファイバの開口数の
みに制限され、光周波数を連続で広帯域に変化させるこ
とが可能である。
Due to the nature of an ellipse, a ray that passes through one of the two focal points is reflected by the elliptical mirror surface and always passes through the other focal point, and the distance from one focal point to the other focal point after being reflected by the elliptical mirror surface depends on the direction of the ray. are equal. Therefore, the incident light that has passed through the point of application of the acousto-optic effect is reflected by the elliptical mirror surface and reaches the input end of the optical fiber. Furthermore, unlike lenses, elliptical mirrors do not have aberrations, so it is possible to condense light rays that pass through one focal point and spread out over a wide range onto the other focal point. therefore,
The band of the optical frequency shift amount is limited only by the numerical aperture of the output optical fiber, and it is possible to continuously change the optical frequency over a wide band.

第2図は本発明の他の実施例を説明する模式図である。FIG. 2 is a schematic diagram illustrating another embodiment of the present invention.

本実施例においては、楕円鏡lOと出力用光ファイバ1
1の間に回折格子鏡22および出力用レンズ19が設け
られている。回折格子鏡22として、音響光学素子の出
射光の分散を補償する逆分散特性を持つものを用いると
よい。第1図に示した実施例と同様に、発振器5から超
音波(周波数f。
In this embodiment, an elliptical mirror lO and an output optical fiber 1 are used.
1, a diffraction grating mirror 22 and an output lens 19 are provided. As the diffraction grating mirror 22, it is preferable to use one having an inverse dispersion characteristic that compensates for the dispersion of the light emitted from the acousto-optic element. Similar to the embodiment shown in FIG. 1, an ultrasonic wave (frequency f.

〜f2)をトランスデユーサ3に人力すると吸音材4に
向かって弾性表面波6が進行する。発振器5からf、な
る超音波をトランスデユーサ3に人力した状態において
入力用光ファイバ20により入射光7を音響光学素子1
に入射すると、弾性表面波6による入射光7のブラッグ
回折現象で透過光8と回折光9が現れる。人力用光ファ
、イバ20は、その出力端21が、入射光7が弾性表面
波6によりブラッグ回折される作用点12に充分近いよ
うに配置されている。音響光学素子1.楕円鏡lOおよ
び回折格子鏡22は、作用点12と回折格子鏡22の反
射点23とが楕円鏡10の2つの焦点にそれぞれ対応す
るように配置されている。回折光9は楕円鏡10および
回折格子鏡14によって反射されて光線14.24とな
り、出力用レンズ19で出力用光ファイバ11に導入さ
れる。このとき出力光16の光周波数は、f、たけシフ
トされている。また、超音波の周波数をflに変化させ
た場合においても同様に入射光7が弾性表面波6により
ブラッグ回折され、回折光17は楕円鏡lOおよび回折
格子鏡22によって反射されて光線18.24となり、
出力用レンズ19で出力用光ファイバ11に導入される
。このとき出力光20の光周波数はf2だけシフトされ
ている。
~f2) is manually applied to the transducer 3, the surface acoustic wave 6 advances toward the sound absorbing material 4. When the ultrasonic wave f from the oscillator 5 is manually applied to the transducer 3, the input optical fiber 20 transmits the incident light 7 to the acousto-optic element 1.
When the incident light 7 is incident on the surface acoustic wave 6, a transmitted light 8 and a diffracted light 9 appear due to the Bragg diffraction phenomenon of the incident light 7. The human power optical fiber fiber 20 is arranged such that its output end 21 is sufficiently close to the point of action 12 where the incident light 7 is Bragg diffracted by the surface acoustic wave 6 . Acousto-optic element 1. The elliptical mirror IO and the diffraction grating mirror 22 are arranged so that the point of action 12 and the reflection point 23 of the diffraction grating mirror 22 correspond to the two focal points of the elliptical mirror 10, respectively. The diffracted light 9 is reflected by the elliptical mirror 10 and the diffraction grating mirror 14 to become light beams 14.24, which are introduced into the output optical fiber 11 by the output lens 19. At this time, the optical frequency of the output light 16 is shifted by f. Furthermore, when the frequency of the ultrasonic wave is changed to fl, the incident light 7 is similarly Bragg-diffracted by the surface acoustic wave 6, and the diffracted light 17 is reflected by the elliptical mirror 1O and the diffraction grating mirror 22, and the light beam 18.24 Then,
It is introduced into the output optical fiber 11 through the output lens 19 . At this time, the optical frequency of the output light 20 is shifted by f2.

木実施例においては、音響光学効果の作用点を通過した
入射光は楕円鏡面で反射して回折格子鏡の反射点に至る
。この回折格子鏡は、楕円鏡に反射した音響光学素子の
出射光の分散を補償する逆分散特性を持つため、回折格
子鏡を反射した光線は光周波数シフト量に依らず一致す
る。また先に述べたように、楕円鏡はレンズと異なり収
差がないため一方の焦点を通過して広がる光線を広い範
囲に渡り他方の焦点に集光することが可能である。した
がって、光周波数を連続で広帯域に変化させることが可
能である。
In the wooden embodiment, the incident light that has passed through the point of action of the acousto-optic effect is reflected by the elliptical mirror surface and reaches the reflection point of the diffraction grating mirror. Since this diffraction grating mirror has an inverse dispersion characteristic that compensates for the dispersion of the output light of the acousto-optic element reflected by the elliptical mirror, the light rays reflected by the diffraction grating mirror match regardless of the amount of optical frequency shift. Furthermore, as mentioned earlier, unlike a lens, an elliptical mirror has no aberrations, so it is possible to condense a ray of light that passes through one focal point and spreads over a wide range onto the other focal point. Therefore, it is possible to continuously change the optical frequency over a wide band.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光周波数を広い
周波数範囲で連続に変化させることが可能となる6例え
ば、半導体レーザに比べ周波数安定度に優れる気体レー
ザや固体レーザは、発振周波数を広い範囲で掃引するこ
とができず、またその1イ引速度はごく低速である。本
発明は、このような光源の周波数を高速に変化させる技
術として有効である。
As explained above, according to the present invention, it is possible to continuously change the optical frequency over a wide frequency range6.For example, gas lasers and solid-state lasers, which have better frequency stability than semiconductor lasers, It cannot sweep over a wide range, and its single stroke speed is extremely slow. The present invention is effective as a technique for rapidly changing the frequency of such a light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の詳細な説明する扱式図
、 第3図は、従来の光周波数シフタを説明する模式図であ
る。 l・・・音響光学素子、 2・・・音響光学媒体、 3・・・トランスデユーサ、 4・・・吸音材、 5・・・発振器、 6・・・弾性表面波、 7、8.9.14,1647,18.24・・・光線、
10・・・楕円鏡、 11・・・出力用ファイバ、 12・・・作用点、 13・−・入力端、 15・・・入力用レンズ、 19・・・出力用レンズ、 20・・・人力用光ファイバ、 22・・・回折格子鏡、 23・・・反射点。
1 and 2 are schematic diagrams explaining the present invention in detail, and FIG. 3 is a schematic diagram explaining a conventional optical frequency shifter. 1... Acousto-optic element, 2... Acousto-optic medium, 3... Transducer, 4... Sound absorbing material, 5... Oscillator, 6... Surface acoustic wave, 7, 8.9 .14,1647,18.24...ray,
DESCRIPTION OF SYMBOLS 10... Elliptical mirror, 11... Output fiber, 12... Point of action, 13... Input end, 15... Input lens, 19... Output lens, 20... Human power Optical fiber for use, 22... Diffraction grating mirror, 23... Reflection point.

Claims (1)

【特許請求の範囲】 1)光入力手段と、音響光学素子と、楕円鏡と、光出力
手段を具備し、前記楕円鏡の2つの焦点のうち一方を、
前記光入力手段から前記音響光学素子に入射した光が音
響光学効果を受ける作用点に対応させ、 他方を、前記光出力手段の入射端に対応させたことを特
徴とする光周波数シフタ。 2)光入力手段と、音響光学素子と、楕円鏡と、光出力
手段と、前記楕円鏡と前記光出力手段の間に設けられた
回折格子鏡とレンズとを具備し、前記楕円鏡の2つの焦
点のうち一方を、前記光入力手段から前記音響光学素子
に入射した光が音響光学効果を受ける作用点に対応させ
、 他方を、前記回折格子鏡の反射点に対応させたことを特
徴とする光周波数シフタ。
[Claims] 1) comprising a light input means, an acousto-optic element, an elliptical mirror, and a light output means, one of the two focal points of the elliptical mirror;
An optical frequency shifter characterized in that the light inputting means corresponds to a point of action where light incident on the acousto-optic element receives an acousto-optic effect, and the other corresponds to an input end of the light outputting means. 2) comprising a light input means, an acousto-optic element, an elliptical mirror, a light output means, a diffraction grating mirror and a lens provided between the elliptical mirror and the light output means; One of the two focal points corresponds to a point of action where light entering the acousto-optic element from the light input means receives an acousto-optic effect, and the other one corresponds to a reflection point of the diffraction grating mirror. optical frequency shifter.
JP22983088A 1988-09-16 1988-09-16 Optical frequency shifter Pending JPH0279035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22983088A JPH0279035A (en) 1988-09-16 1988-09-16 Optical frequency shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22983088A JPH0279035A (en) 1988-09-16 1988-09-16 Optical frequency shifter

Publications (1)

Publication Number Publication Date
JPH0279035A true JPH0279035A (en) 1990-03-19

Family

ID=16898341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22983088A Pending JPH0279035A (en) 1988-09-16 1988-09-16 Optical frequency shifter

Country Status (1)

Country Link
JP (1) JPH0279035A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694853A (en) * 1979-12-27 1981-07-31 Toshiba Corp Optical communication system
JPS6021033A (en) * 1983-07-15 1985-02-02 Matsushita Electric Ind Co Ltd Frequency shifter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694853A (en) * 1979-12-27 1981-07-31 Toshiba Corp Optical communication system
JPS6021033A (en) * 1983-07-15 1985-02-02 Matsushita Electric Ind Co Ltd Frequency shifter

Similar Documents

Publication Publication Date Title
JP3059761B2 (en) Method and apparatus for forming asynchronous diffraction grating of optical fiber
US4460250A (en) Acousto-optical channelized processor
US7414773B2 (en) Device for dispersing light pulses of which the spectral amplitude is programmable
US4945539A (en) Acousto-optic tunable filter
US4390247A (en) Continuously variable delay line
US4164717A (en) Acoustooptic modulation and deflection
US4448494A (en) Acousto-optical signal detector
US4110788A (en) Multiple wavelength acoustooptic deflection
US5909304A (en) Acousto-optic tunable filter based on isotropic acousto-optic diffraction using phased array transducers
JPS596092B2 (en) Multiplex optical communication equipment
US4216440A (en) Surface acoustic wave tuning for lasers
JPH0279035A (en) Optical frequency shifter
US3626753A (en) Acousto-holographic method and apparatus for internally imaging and interferometrically analyzing objects
US3516729A (en) Cylindrical lens compensation of wideaperture bragg diffraction scanning cell
US5641954A (en) Programmable delay line using laser diode taps
US3509489A (en) Laser deflection
GB2249845A (en) Acousto-optic device
US5247388A (en) Continuously variable delay lines
US4886346A (en) Method and apparatus for improving the angular aperture of an aodlf
US4500175A (en) Method and apparatus for light chopping by acousto-optic refraction
US3805196A (en) Acousto-optical systems
US5361159A (en) Angular acousto-optical deflection device and spectrum analyzer using such a device
JP2992122B2 (en) Deflected beam generator
EP1936434A1 (en) Active temporal modulation of ultrashort pulse trains using reconfigurable optical gratings
SU701323A1 (en) Planar acousto-optical line of adjustable signal delay