JPS6021023A - Optical isolator element - Google Patents
Optical isolator elementInfo
- Publication number
- JPS6021023A JPS6021023A JP12893783A JP12893783A JPS6021023A JP S6021023 A JPS6021023 A JP S6021023A JP 12893783 A JP12893783 A JP 12893783A JP 12893783 A JP12893783 A JP 12893783A JP S6021023 A JPS6021023 A JP S6021023A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light
- optical isolator
- angle
- magneto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4207—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
- G02B6/4208—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
- G02B6/4209—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/093—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
Abstract
Description
本発明1;L、光アイソレータの改良に関し、更tこ詳
しくは、碌蚤気光学効甲を呈する素子自身に偏光子とし
ての機能をもたぼることによって、外部に偏光子を配置
6シなくても済むように工夫した光アイソレータ素子に
関するものである。
周知のように、光アイソレータは、一方向のみに光を伝
送し、てれとは逆の方向には伝送しないような非可逆性
を右する二端子素子であり、例えば光通信システムで送
信側の装置が受(g側からの反射光による干渉を受(プ
ないようにηる場合などに用いられるものである。
光発振器として、特に、半導体レーリ”−4用いた場合
には、その発振領域内に外部で反04シて戻ってきたレ
ーザー光が入ると発振状態が乱され、その結果、半導体
レーザーの発振波形が歪み、波長や出力が不安定となり
、雑音が増1人するという問題が生じる。そのため、半
導体レーザーを用いた光通信システムでは、半導体レー
ザーと光ファイバーとの間に光アイソレータが組込まれ
る。
従来から使用されている光アイソレータは、ファラデー
回転素子を使用したもので、第1図A、Bに示すように
、光軸Xに−でって順次配段された第1の偏光子1と、
ファラデー回転索子2と、第2の偏光子3とを組合ゼた
ものである。
さて、同図Aに示すように・、半導体レーザー4からの
光が光ファイバー5へ向かう場合(これを順方向という
)について考えると、半導体レーザー4からの光L1は
第1の偏光子1を通ることによって直線偏光1−2とな
り、次いでファラデー回転素子2にJ−3いて外部磁界
I」の作用にJ:す、入用し1.:@線輪光12は、そ
の偏光面が進行方向に向かって例えば時計方向に45度
回転した直線偏光[3となり、その直線偏光L3をその
まま通過さLるように光軸に関し45度回転させて配置
した第2の偏光子3を通って光ファイバー5に入用する
。これに対して、同図Bに示Jような逆方向の場合(例
えば光ファイバー5の端面で反射した光が半導体レーザ
ー4のブラヘ戻ろうとヅる場合)には、反則光L4は第
2の偏光子3をそのまま通過するが、ファラデー回転素
子2にJ:って、今度は反時計方向に45度回転するた
め得られた直線偏光L5は前述の入q」時にお()る直
線偏光L2と比べたときThe present invention 1; L. Concerning the improvement of the optical isolator, in more detail, the element exhibiting a strong optical effect has the function of a polarizer itself, thereby eliminating the need to place a polarizer externally. The present invention relates to an optical isolator element that has been devised so that it can be used easily. As is well known, an optical isolator is a two-terminal element that is irreversible in that it transmits light only in one direction and does not transmit light in the opposite direction. This device is used when the device receives interference from reflected light from the receiver (g side).Especially when a semiconductor Rayleigh"-4 is used as an optical oscillator, its oscillation When laser light that returns from the outside enters the area, the oscillation state is disturbed, and as a result, the oscillation waveform of the semiconductor laser is distorted, the wavelength and output become unstable, and noise increases. Therefore, in an optical communication system using a semiconductor laser, an optical isolator is installed between the semiconductor laser and the optical fiber. As shown in Figures A and B, first polarizers 1 are sequentially arranged along the optical axis X,
It is a combination of a Faraday rotator 2 and a second polarizer 3. Now, if we consider the case where the light from the semiconductor laser 4 goes toward the optical fiber 5 (this is called the forward direction), as shown in FIG. A, the light L1 from the semiconductor laser 4 passes through the first polarizer 1. This results in linearly polarized light 1-2, which is then transferred to the Faraday rotation element 2 and subjected to the action of an external magnetic field I. :@ Linear light 12 is linearly polarized light [3] whose polarization plane is rotated, for example, 45 degrees clockwise toward the traveling direction, and the linearly polarized light L3 is rotated 45 degrees about the optical axis so that it passes through L3 as it is. The light passes through the second polarizer 3 arranged in the same direction and enters the optical fiber 5. On the other hand, in the case of the opposite direction as shown in FIG. The linearly polarized light L5 passes through the Faraday rotator 2 as it is, but is rotated 45 degrees counterclockwise this time by the Faraday rotator 2, so the obtained linearly polarized light L5 becomes the linearly polarized light L2 that is generated at the time of input q' described above. When compared
【li;i光面が90度回転し
ており、そのため第1の臨光子1によって光の通過がl
止され半導体レーザー4には戻らないのである。かくし
て、上記のような構成とづることによって、光アイソレ
ータとして有効に機能させることがてきる。
しかしながら、上記のような114成の光アイソレータ
においては、ファラデー回転素子の前後にそれぞれ偏光
子を配置する必要があり、光アイソレータが大型化づる
という欠点があった。
特に、半導体レーザーを用いた光通信システムにおいて
用いられる光アイソレータは、極めて高性能のものが要
求され、組込まれる偏光子は、一般に、天然の方解石結
晶を用いてプリズム状に作られたしのであり、このため
例えば−個当り数十万円というような非常に高価なもの
であるので、二個の偏光子を必要とづる光アイソレータ
は半導体レーザーよりも追かに高filliなしのとな
ってしまい、光通信シス1ムを411りな分野で広く発
展させていくうえで非常に大さb問題であった。
本発明は、上記のような従来技術の実情に鑑みなされた
もので、その0的は、磁気光学材料からなる素子のみで
光アイソレータ機能を呈し、その外部には偏光子を全く
設置覆る必要がないようにし、それによって装置の小型
化並びに軽量化を図ることができ、また大幅な低廉化を
図ることができるにうな光アイソレータ素子を提供り゛
ることにある。
上記の目的を達成Jべく案出された本発明は、II磁気
光学材料表面機能を巧みに応用し、磁気光学材料からな
る素子自身が偏光子としての機能をも具備でるように工
夫したもので、両端面にブリコースタ−角の余角に切断
された傾斜面を有し、その傾斜面で1幅光作用を生じる
ように(j4成されている。
以下、図面に阜づさ本発明について詳述する。
第2図は本発明の一実施例を模式的に示す説明図であり
、Aは光が順り向に(半導体レーザー側から光フアイバ
ー側へ)進む場合、Bは光が)勇り向に進む場合をイれ
ぞれ示している。同図に示されているように、本発明に
係る光アイソレータ素子10は、磁気光学効果を呈づ゛
る材料(例えばイツトリウム−鉄−ガーネット単結晶)
からなり、その一方の端面は、軸方向に対し材お1の屈
折率に依存するフリコースタ−角φの余角(即ち90度
−φ)に切断した第1の傾斜面12で、使方の端面も同
様に軸方向に列してブリュースター角φの余角となるよ
うL7J II7した第2の傾斜面13であるが、ii
i+記第1の傾斜面12と第2の傾斜面13とは光軸に
関し相対的に45″フアラデ一回転方向に回転させたど
き面方位が合致する関係にあり、外部磁界1−1の作用
により入用した光の偏光面を光軸に関し/′15度回転
させうる光路長LPをもつ素子である。
前記両端面は綺麗に研磨しておく必要があるが、従来の
ものと異なり特に無原則コートを7+i J゛必要ない
。
この様な構成の光アイソレータ素子の動作は次の如くで
ある。第2図の場合、光アイソ1ノータ素子10の第1
の傾斜面12が半導体レーザー4の方を向くよう配置さ
れている。先ず、同図Aに示すように、半導体レーザー
4から成用される光110は、光アイソレータ素子10
の第1のII!i斜而12面対しブリュースター角φで
入射】る。このどき、入04面(人!JJ光線の伝播方
向と入射点に立てた1頃斜而12の法線とを含む面)内
’C(Q光しくいる成分は全てブリュースター角φの余
角をなして屈11F シ、入射面とは垂直)こ偏光して
いる成分はくの大部分が反射されてしまうことになる。
つまり−ブリュースター角φの余角に切断した端面12
は偏光子としCの1幾1jヒを果たし、入射面内で偏光
している成分のみを光アイソレータ索子10の内部に導
き入れるのである。第1の1頃斜而12で回折して光ア
イソレータ3HT−10の内部に導入された光は、外部
磁界1−1の171−用ににつCその偏光面が例えば光
軸Xに関しu5 iYfツノ向に回転り−る。そのとき
゛前述の如く、第1の1頃斜面120八剣点から第2の
傾斜面13迄の1(ざが、入射した光の偏光面を45度
回転さヒる長さに設定されているので、第2の傾斜面1
3の出用点に達した光は、その進行方向に対して11)
計方向に45度回転した1偏光面をもつ直線偏光となる
。前述の如く、第2の傾斜面13は、光軸に関し第1の
傾斜面12の面方位を45°フアラデ一回転方向に回転
させた面方位を有するブリュスター角の余角に設定され
ているので、前記第2の傾斜面13の出用点に達した光
は、イのまま通過して光フッ・イバー5に達する。
光ファイバー5は、通常石英カラスからなり、極めて細
いものであるから、その※;11;面に照反口」コーテ
ィングを1Mツことが不−i1能で、そのため通常約4
%程度の光が端面で反射するとされている。このため、
光ファイバー5の端面で反則した光L12は、同図Bに
示すように、半導体レーザー4の方に向かって逆行する
ことに4「る。
この反射光は光アイソレータ素子10の第2の)頃斜面
13に入用し、屈折して光アイソレータ素子10の内部
に入る。そして光アイソレータ素子10の内部において
、外部磁界1−1の作用を受けて、光軸に対し今度はそ
の陽光面が反峙計回りに回転することになる。偏光面が
45磨回転して第1の傾斜面12に達した直線偏光は、
第2図Aの場合と比較したとき丁度90洩回転しており
、このため前記第1の傾斜面12で反射して反射光L1
3となる。かくして光ファ、イバー5′c反川し1、二
戻り光は光アイソレータ素子10の第1の+ln斜面1
2で反射されるため半導体レーザー4の方に(J殆んど
戻らなくなる。このようにして、1関のような特定構造
の磁気光学月利により、光アイソレータ素子を構成する
ことが出来るのである。
なj>、第2図において、黒丸並ひに小さな矢印は1扇
先方向を模式的に示すものであり、黒丸は入射面と垂直
なl’lla波を示じ、光軸に垂直な小矢印(,1、人
q4面内での1扁波を、傾いた小矢印は入QJ面から傾
いた偏波をそれぞれ示している。
ところで、磁気光学月利におけるファラデー回111I
7角(°、−′C11)は、光の波長の関数テアリ、し
かも本光明で・は光)フイソレータ素子の端面が1lr
ij”l シているので光軸の入01位1行をずらりこ
とに、」、って光の波長が変化した場合でも偏光面を4
5度回転さぼることができる。このことはある決った形
状の光アイソレータ素子を、別σ)波長の光アイソレー
タに応用づることか出来ることを意味し、広帯域化でき
、また部品点数4低減できる点においてら極めて有効で
ある。1上記実施例は、光アイソレータ東予のり′】2
の傾斜面の面方位を第1の傾斜面の面ブノisL IY
X”l シて光軸に関し相対的1345度ファラデー
回転方向に回転させた構造の例であるが、第3図に示J
゛ように、相対的に225度)7・ラブ−回転方向に回
転させた構造゛としてもよい。その場合の光アイソレー
タとしての動作(ま第2図の場合と同様であるので、対
応する部分には同−rq号をイ」し、それらについての
記載は省略J8゜ところで、最近の半導体レーザーは、
かなり11光度の良い直線偏光を出力し、この直線侃、
光に対して垂直な偏光の戻り光は、さほど半導体レーザ
ーに影響をうえないと言われている。従って、光アイソ
レータにおける光へ躬側の偏光子はさほど消光比の良好
なものでなくてJ、い。
この様な点を考慮づれば、レーザー光が磁気光学材料の
傾斜面に大剣してにで偏光させるようにした構成は、性
能も低下さけることなく極めて良好なllli束がもた
らされる。
本発明は、」−記のJ、うに4!11成した光アイソレ
ータ素子であるから、高浦な偏光子は全く不要となり、
非常に安価に製作でさるし、また構造も極めて筒中で小
型化、軒昂化に適し、更には磁気光学側お1の端面ば傾
斜面であるので無反射コートが不要であり製作しや1い
など数々の優れた効果を奏しうるちのである。[li; i The light surface is rotated by 90 degrees, so the first optical element 1 prevents the light from passing l
It is stopped and does not return to the semiconductor laser 4. Thus, by using the above configuration, it is possible to effectively function as an optical isolator. However, in the 114-component optical isolator as described above, it is necessary to arrange polarizers before and after the Faraday rotation element, which has the disadvantage that the optical isolator becomes large. In particular, optical isolators used in optical communication systems using semiconductor lasers are required to have extremely high performance, and the polarizers incorporated therein are generally made into a prism shape using natural calcite crystals. For this reason, it is extremely expensive, for example, several hundred thousand yen per piece, so an optical isolator that requires two polarizers is even more expensive than a semiconductor laser. This was a huge problem in the wide development of optical communication systems in various fields. The present invention was developed in view of the actual state of the prior art as described above, and its zero purpose is to provide an optical isolator function only with an element made of magneto-optic material, and there is no need to install any polarizer outside the element. It is an object of the present invention to provide an optical isolator element that can reduce the size and weight of the device, and can also significantly reduce the cost. The present invention, which was devised to achieve the above object, skillfully applies the surface function of the II magneto-optic material, and is devised so that the element made of the magneto-optic material itself also functions as a polarizer. , has inclined surfaces cut at complementary angles to the Bricoster angle on both end faces, and is configured so that a single-width light effect is produced on the inclined surfaces.The present invention will be described in detail with reference to the drawings below. Figure 2 is an explanatory diagram schematically showing an embodiment of the present invention, where A shows the case where the light travels in the forward direction (from the semiconductor laser side to the optical fiber side), and B shows the case where the light travels in the forward direction (from the semiconductor laser side to the optical fiber side). Each case is shown in the following direction. As shown in the figure, the optical isolator element 10 according to the present invention is made of a material exhibiting a magneto-optic effect (for example, yttrium-iron-garnet single crystal).
One end face is a first inclined face 12 cut at an angle complementary to the fricoster angle φ (i.e. 90 degrees - φ) which depends on the refractive index of the material 1 with respect to the axial direction. The end face is also a second inclined surface 13 that is aligned in the axial direction and is L7J II7 so that it is a complementary angle to Brewster's angle φ, but ii
The first inclined surface 12 and the second inclined surface 13 in i+ are in a relationship such that their plane orientations match when rotated by one rotation of 45 inches relative to the optical axis, and the action of the external magnetic field 1-1 This element has an optical path length LP that can rotate the plane of polarization of the light input by /'15 degrees with respect to the optical axis. Both end faces must be polished neatly, but unlike conventional ones, there is no special need. In principle, a coating of 7+i J is not necessary. The operation of an optical isolator element with such a configuration is as follows. In the case of FIG.
The inclined surface 12 of the semiconductor laser 4 is arranged so as to face the semiconductor laser 4 . First, as shown in FIG.
The first II! i is incident on the 12 planes at Brewster's angle φ]. At this time, in the incident plane 04 (the plane that includes the propagation direction of the JJ ray and the normal line of 1 and 12 set at the point of incidence) 'C (all the components of the Q ray are the remainder of Brewster's angle φ). Most of the polarized light component will be reflected. In other words, the end face 12 cut at the complementary angle of Brewster's angle φ
serves as a polarizer, and only the components polarized within the plane of incidence are introduced into the optical isolator cable 10. The light diffracted by the first angle 12 and introduced into the optical isolator 3HT-10 is caused by the external magnetic field 1-1 171-. It rotates towards the horn. At that time, as mentioned above, the angle from the first slope 120 to the second slope 13 is set to a length that rotates the polarization plane of the incident light by 45 degrees. , second inclined surface 1
The light that has reached the point of use in 3 is 11) with respect to its traveling direction.
It becomes linearly polarized light with one plane of polarization rotated 45 degrees in the diagonal direction. As described above, the second inclined surface 13 is set at a complementary angle to the Brewster angle, and has a surface orientation obtained by rotating the surface orientation of the first inclined surface 12 by 45° in the Farad rotation direction with respect to the optical axis. Therefore, the light that has reached the output point of the second inclined surface 13 passes through as it is and reaches the optical fiber 5. Since the optical fiber 5 is usually made of quartz glass and is extremely thin, it is impossible to apply a 1M coating on its surface.
It is said that about 10% of the light is reflected at the end facets. For this reason,
The light L12 reflected at the end face of the optical fiber 5 travels backward toward the semiconductor laser 4, as shown in FIG. 13, and is refracted and enters the inside of the optical isolator element 10. Then, inside the optical isolator element 10, under the action of the external magnetic field 1-1, its sunny surface is now opposite to the optical axis. The linearly polarized light whose polarization plane has rotated 45 times and reached the first inclined plane 12 is
When compared with the case in FIG. 2A, the rotation is exactly 90 degrees, and therefore the reflected light L1
It becomes 3. Thus, the optical fiber, fiber 5'c, and second return light are directed to the first +ln slope 1 of the optical isolator element 10.
Since it is reflected by the laser beam 2, it hardly returns to the semiconductor laser 4.In this way, an optical isolator element can be constructed using a magneto-optical structure with a specific structure such as the first one. In Figure 2, the black circles and the small arrows schematically indicate the direction one sector ahead, and the black circles indicate the l'lla waves perpendicular to the incident plane, and the ones perpendicular to the optical axis. The small arrow (, 1, 1) indicates one flat wave in the q4 plane, and the tilted small arrow indicates the polarization tilted from the input QJ plane.By the way, the Faraday cycle 111I in magneto-optical monthly interest
The 7th angle (°, -'C11) is a function of the wavelength of light, and in this light, the end face of the fiisolator element is 1lr.
Since the optical axis is shifted by 1 line, even if the wavelength of the light changes, the plane of polarization can be changed to 4.
It can be rotated 5 degrees. This means that an optical isolator element with a certain shape can be applied to an optical isolator of a different wavelength (σ), which is extremely effective in that it can be made broadband and the number of parts can be reduced by four. 1 The above embodiment is an optical isolator Toyo glue']2
The plane orientation of the inclined plane is L IY of the first inclined plane
This is an example of a structure in which X"l is rotated in the direction of Faraday rotation by 1345 degrees relative to the optical axis, as shown in Figure 3.
It is also possible to have a structure rotated in the 7-love-rotation direction (relatively 225 degrees). The operation as an optical isolator in that case (as it is the same as in the case of Fig. 2, the corresponding parts are marked with the same number as -rq, and the description thereof is omitted.J8゜By the way, recent semiconductor lasers ,
It outputs linearly polarized light with a fairly high luminosity, and this linear direction,
It is said that returning light with a polarization perpendicular to the light does not have much of an effect on semiconductor lasers. Therefore, the polarizer on the side facing the light in the optical isolator does not have a very good extinction ratio. Taking these points into consideration, the configuration in which the laser beam is polarized on the inclined surface of the magneto-optic material provides an extremely good lli flux without deteriorating the performance. Since the present invention is an optical isolator element that has been constructed according to J.
It can be manufactured at a very low cost, and its structure is extremely suitable for downsizing and eaves in the cylinder.Furthermore, since the end face of the magneto-optical side is an inclined surface, no anti-reflection coating is required, making it easy to manufacture. It has many excellent effects such as:
第1図A、Bは従来技4(jの説明図、第2図A。
Bは本発明に係る光アイソレータ素子の一実施例を示り
説明図、第3図は他の実施例を承り説明図である。
1・・・第1の偏光子、2・・・ファラデー回転素子、
3・・・第2の偏光子、4・・・半導体レーザー、5・
・・光ファイバー、10・・・光アイソレータ素子、1
2・・・第1のllr+斜面、13・・・第2の傾斜面
。1A and 1B are explanatory diagrams of conventional technique 4 (j), FIG. 2A is an explanatory diagram showing one embodiment of the optical isolator element according to the present invention, and FIG. It is an explanatory diagram. 1... First polarizer, 2... Faraday rotation element,
3... Second polarizer, 4... Semiconductor laser, 5...
... Optical fiber, 10 ... Optical isolator element, 1
2...first llr+slope, 13...second slope.
Claims (1)
た傾斜面であるが、内傾斜面は光軸に関し相対的に45
1狂b L < l;L 225度ファラデー回転方向
に回転さけたとぎ面方位が合致する関係をイjし、外部
磁場の作用にJ:り偏光面を45度回転ざUoうる光路
長をもつ磁気光学vJ料からなることを1rj Ij2
どりる光アイソレータ素子。1. Both end surfaces (sloped surfaces cut to the complementary angle of the Noriko-Sku angle, but the inner slope is 45 mm relative to the optical axis)
1 madness b L <l; L 225 degrees Faraday rotation direction is rotated and the plane orientation coincides with Ij, and the action of an external magnetic field J: has an optical path length that rotates the polarization plane by 45 degrees Uo 1rj Ij2 consisting of magneto-optical VJ material
Doriru optical isolator element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12893783A JPS6021023A (en) | 1983-07-15 | 1983-07-15 | Optical isolator element |
NL8402233A NL192407C (en) | 1983-07-15 | 1984-07-13 | Optical isolator. |
FR8411193A FR2549246B1 (en) | 1983-07-15 | 1984-07-13 | OPTICAL INSULATOR |
GB08417899A GB2143337B (en) | 1983-07-15 | 1984-07-13 | Optical isolator |
DE19843426138 DE3426138C2 (en) | 1983-07-15 | 1984-07-16 | Optical one-way line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12893783A JPS6021023A (en) | 1983-07-15 | 1983-07-15 | Optical isolator element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6021023A true JPS6021023A (en) | 1985-02-02 |
JPS6230609B2 JPS6230609B2 (en) | 1987-07-03 |
Family
ID=14997087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12893783A Granted JPS6021023A (en) | 1983-07-15 | 1983-07-15 | Optical isolator element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021023A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102230994A (en) * | 2011-06-29 | 2011-11-02 | 武汉电信器件有限公司 | Faraday magneto optic isolator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5670519A (en) * | 1979-11-15 | 1981-06-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Light isolator |
-
1983
- 1983-07-15 JP JP12893783A patent/JPS6021023A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5670519A (en) * | 1979-11-15 | 1981-06-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Light isolator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102230994A (en) * | 2011-06-29 | 2011-11-02 | 武汉电信器件有限公司 | Faraday magneto optic isolator |
Also Published As
Publication number | Publication date |
---|---|
JPS6230609B2 (en) | 1987-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2710451B2 (en) | Polarization independent optical isolator | |
US4272159A (en) | Optical circulator | |
JPS6317426A (en) | Optical isolator | |
US3267804A (en) | Optical circulator | |
US3432223A (en) | Modulator for a light beam | |
JPH0283523A (en) | Optical isolator | |
JPS6021023A (en) | Optical isolator element | |
JPH07191280A (en) | Optical isolator | |
JPH01241502A (en) | Polarizing element for optical isolator | |
JPS59119315A (en) | Optical isolator | |
JPS5828561B2 (en) | optical isolator | |
JPH0477713A (en) | Optical isolator independent of polarization | |
JPH0246419A (en) | Optical isolator | |
JPS6145219A (en) | Optical isolator | |
JPH04221922A (en) | Polarization independent type optical isolator | |
GB2143337A (en) | Optical isolator | |
JPS6257012B2 (en) | ||
JPS58176616A (en) | Fiber type isolator | |
JPH04102821A (en) | Polarization nondependent type optical isolator | |
JPS5837521B2 (en) | Hikari Kahengensuki | |
JPS6230608B2 (en) | ||
JPS6257971B2 (en) | ||
JPS61102621A (en) | Optical isolator | |
SU1755239A1 (en) | Polarizing prism | |
JPS6030734Y2 (en) | High reverse loss compact optical isolator |