JPS60209118A - Device for measuring ultrafiltration rate - Google Patents

Device for measuring ultrafiltration rate

Info

Publication number
JPS60209118A
JPS60209118A JP59064818A JP6481884A JPS60209118A JP S60209118 A JPS60209118 A JP S60209118A JP 59064818 A JP59064818 A JP 59064818A JP 6481884 A JP6481884 A JP 6481884A JP S60209118 A JPS60209118 A JP S60209118A
Authority
JP
Japan
Prior art keywords
flowmeter
flow rate
flowmeters
ultrafiltration
dialyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59064818A
Other languages
Japanese (ja)
Other versions
JPH0458565B2 (en
Inventor
Shiro Nakatani
中谷 史郎
Yasuo Igai
猪飼 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Lecip Corp
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Seisakusho KK filed Critical Sanyo Electric Co Ltd
Priority to JP59064818A priority Critical patent/JPS60209118A/en
Publication of JPS60209118A publication Critical patent/JPS60209118A/en
Publication of JPH0458565B2 publication Critical patent/JPH0458565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/13Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using a reference counter

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • External Artificial Organs (AREA)

Abstract

PURPOSE:To enable exact measurement of an ultrafiltration rate by passing liquid at two stages of different flow rates to two flowmeters which measure the inflow and outflow rates of a dialyzer and calibrating the other flowmeter by using the outputs from the respective flowmeters and the preliminarily measured characteristic value of the one flowmeter. CONSTITUTION:The flow rate of the dialyzing liquid to be admitted to a dialyzer 12 is measured by a flowmeter 16 and the flow rate of the waste dialyzing liquid discharged from the dialyzer is measured by a flowmeter 17. The difference between both flow rates is determined as an ultrafiltration rate. On the other hand, the device is changed over to a measurement mode for the ultrafiltration rate and a calibration mode for calibrating either of the flowmeters 16, 17 by a control part 21. The liquid of the prescribed flow rate is first passed to the flowmeters 16, 17 then the liquid of the flow rate different from the previous flow rate is passed thereto in the calibration mode. The other flowmeter is calibrated on the basis of the characteristic of the one flowmeter in an arithmetic part 27 by using the output signals of the flowmeters 16, 17 obtd. at the respective flow rates and the preliminarily measured characteristic value of either one flowmeter.

Description

【発明の詳細な説明】 この発明は透析器から流出する透析排液の流量と透析・
器へ流入する透析液の流量との差を限外濾過□量として
測定する限外濾過測定装置に関する。
[Detailed Description of the Invention] This invention relates to the flow rate of dialysis fluid flowing out from a dialyzer and the dialysis
The present invention relates to an ultrafiltration measurement device that measures the difference between the flow rate of dialysate flowing into a device and the flow rate of dialysate as an ultrafiltration rate.

〈従来技術〉 透析装置は第1図に示すように液供給ライン11を通じ
て透析液が透析器12へ供給され、透析器12からの透
析排液は排液ライン13を通じて排出される。透析器1
2には血液ライン14を通じて患者の血液が供給され、
透析器12内で透析作用によシ老廃物が除去された血液
は血液ライン15を通じて患者に′戻される。
<Prior Art> As shown in FIG. 1, in a dialysis apparatus, dialysate is supplied to a dialyzer 12 through a fluid supply line 11, and dialysis fluid from the dialyzer 12 is discharged through a drainage line 13. Dialyzer 1
2 is supplied with the patient's blood through a blood line 14,
Blood from which waste products have been removed by dialysis in the dialyzer 12 is returned to the patient through a blood line 15.

、従来の限外濾過量測定装置においては液供給う彎ン1
1及び排液ライン13にそれぞれ流量計16及び17が
設けられ、透析器12に流入する透析液の流量F1を流
量計16で測定し、測定値■1を得、透析器12から排
出される透析排液の流量FOを流量計17で測定し、測
定値焉を得、限外濾過量として■。−■1をめていた。
, in the conventional ultrafiltration rate measuring device, the liquid supply curve 1
1 and the drain line 13 are respectively provided with flow meters 16 and 17, the flow rate F1 of the dialysate flowing into the dialyzer 12 is measured by the flow meter 16, the measured value 1 is obtained, and the dialysate is discharged from the dialyzer 12. The flow rate FO of the dialysis effluent was measured with the flow meter 17, and the measured value was obtained, and the amount of ultrafiltration was determined as ■. -■I was looking at 1.

しかしこの従来の限外濾過量測定装置においては次のよ
うな問題点がある。即ち一般に流量計には、測定誤差が
あシ、流量をF、流量計の流量センサ出力信号をEとす
ると、 E−[7十に0という式が成立する。ここにK
は流量−センサ出力信号変換係数、 Eoはゼロ誤差、
つまシ流量Fがゼロの時のセンサ出力信号である。また
、流量計出力値を■とすると、■とEとの間には、 V
、=)tE十εが成立する。ここに声はセンサ出力信号
−流量計出力値変換係数、εはゼロ誤差、即ちセンサ出
力信号がゼロの場合に出力される流量計出力値である。
However, this conventional ultrafiltration rate measuring device has the following problems. That is, in general, a flow meter has a measurement error.If the flow rate is F, and the flow rate sensor output signal of the flow meter is E, then the following formula holds: E-[70 to 0. K here
is the flow rate-sensor output signal conversion coefficient, Eo is the zero error,
This is the sensor output signal when the pick flow rate F is zero. Also, if the flowmeter output value is ■, then between ■ and E, V
, =)tE1ε holds true. Here, the value is the sensor output signal-flowmeter output value conversion coefficient, and ε is the zero error, that is, the flowmeter output value output when the sensor output signal is zero.

1常は、この流量計出力値■を最終出力とする場曽、が
殆どで、第1図に示した従来の限外濾過量測・定装置に
おいて、流量計16の出力値Vlは。
1. Most of the time, this flowmeter output value ■ is used as the final output, and in the conventional ultrafiltration rate measurement/measuring device shown in FIG. 1, the output value Vl of the flowmeter 16 is:

V、=、μIEI十ε1=ッl’r (kt)’ン、十
日。Iン十61また。流量計17の出力値■2は゛。
V,=,μIEI1ε1=l'r (kt)'n, ten days. In 161 again. The output value ■2 of the flowmeter 17 is ゛.

V2 =y”2 Ez f 22 =J/u−2(kq
foすEoz)tε2とそれぞれ表わせる。従って限外
濾過量はVx−V+=72ElすLi1z ’ (fi
r E rナビ1)”l”(k2FO+Eo2)+E2
フu+ Ck、+Fi+Eo+ンーε1=(JL2に2
Fo−Ak+閤十%2EO2;シー@oH)す(ε2−
ε、)−−−(17となる。流量計16.17は共に誤
差が全くないものテ6ルナラId、 Vx−Fl、 V
2 =FO、l、たカッチ〃IK1= 1’、 EO1
=(1−、= O、)b2に2=l 、 KO1=g、
= Oで、 V2−Vl= Fo −plとなシ、真の
値と等しくなる。しかし現実には必ず誤差が含まれる。
V2 = y”2 Ez f 22 = J/u-2 (kq
fosEoz)tε2, respectively. Therefore, the ultrafiltration rate is Vx-V+=72ElsLi1z' (fi
r E r Navi 1) “l” (k2FO+Eo2)+E2
Fuu+Ck, +Fi+Eo+n-ε1=(2 to JL2
Fo-Ak + 閤1%2EO2; C@oH) (ε2-
ε, ) ---(17.Both flowmeters 16 and 17 have no errors. 6 Lunar Id, Vx-Fl, V
2 = FO, l, Takatch〃IK1= 1', EO1
= (1-, = O,) 2 = l in b2, KO1 = g,
= O, and V2-Vl=Fo-pl, which is equal to the true value. However, reality always contains errors.

誤差ゼロの場合のセンサ出力信号−流量計出力値変換係
数、流量−センサ出力信号変換係数をそれぞれ)to、
 koとする と 、、Lr :l: )ta+i3.
Pb )IZ−:ノリ+屯μ2 * 1(1=l(o 
十’Kl 1 Ks”Ko+Δに2と書くことができる
。これを用いると(1)式は(2)式となる。
When the error is zero, the sensor output signal-flowmeter output value conversion coefficient and the flow rate-sensor output signal conversion coefficient are respectively)to,
Let ko be ,,Lr:l: )ta+i3.
Pb) IZ-: Nori+Tunμ2*1(1=l(o
1'Kl 1 Ks''Ko+Δ can be written as 2. Using this, equation (1) becomes equation (2).

v、−V、=○α’ ”、l”X ko、t IJ k
z)7”o −(μo+li、μm)Cka+lLk+
9Fate。
v, -V, =○α' ”, l”X ko, t IJ k
z) 7”o − (μo+li, μm) Cka+lLk+
9Fate.

=ノαoko(Fo−ftンナメ’o(Aka9o−1
1V+王−i)十仁0ζ’/”2FI:) −Zip、
tFt ) 十(i、μ2Δに2F。
=ノαoko(Fo-ftnname'o(Aka9o-1
1V + King -i) Junin 0ζ'/"2FI:) -Zip,
tFt) 10(i, 2F in μ2Δ.

−A)b+AR+Fi’)fCo −−−−−−−−(
2)だソし ここで、μo’ko ” lであシ、限外濾過量の真の
値は第1項のみで、他の項は誤差分である。この誤差分
はAk+弓に21吸1う襲2モ01吐。2 * g l
’+ε2の値によシ決まるが、これは流量計によシ異る
。例えば。
-A)b+AR+Fi')fCo ----------(
2) Here, the true value of the ultrafiltration rate is only the first term, and the other terms are errors. 1 attack 2 mo 01 vomit. 2 * g l
It depends on the value of '+ε2, which varies depending on the flowmeter. for example.

透析型止に流入する流量(以下入口側流量と記す)が5
00 g/min 、流量計16の誤差が+1%。
The flow rate flowing into the dialysis type stop (hereinafter referred to as the inlet side flow rate) is 5.
00 g/min, error of flow meter 16 is +1%.

透析器12から流出する流量(以下出口側流量と記す)
が505 me/min 、流量計17の誤差が一1%
と仮定した場合(通常の流量計の誤差は±1%以上であ
るものが多い)、流量計16の出力値は505/min
となシ、全く信じられない値となる。通常限外濾過量の
測定は、真の値の±10%程度の誤差範囲であれば実用
上問題ないが、入口側流量)1 o o me7 mi
n 、出口側流量505m(7/minの場F限外濾過
量の測定誤差が±lO%以内になるた、めには、(50
5−500)X±0.1/2=0.25 ml/ mi
、n以上の分解能を有する流量計が必要となる。これは
500 mg/ min程度の流量の測定に対し誤差が
±0.251500以下、即ち±0.05%以下という
高い精度ということになシ。
Flow rate flowing out from the dialyzer 12 (hereinafter referred to as outlet side flow rate)
is 505 me/min, and the error of flowmeter 17 is 11%.
(The error of normal flowmeters is often ±1% or more), the output value of the flowmeter 16 is 505/min.
This is an absolutely incredible value. Normally, there is no practical problem in measuring the ultrafiltration rate as long as the error is within ±10% of the true value, but the inlet flow rate) 1 o o me7 mi
In order for the measurement error of the field F ultrafiltration amount to be within ±lO% at the outlet side flow rate of 505 m (7/min), (50
5-500)X±0.1/2=0.25 ml/mi
, n or more is required. This means that when measuring a flow rate of about 500 mg/min, the error is less than ±0.251500, that is, less than ±0.05%, which is a high degree of accuracy.

この様な高精度の流量計は非現実的である。Such a highly accurate flow meter is unrealistic.

つまシ、2つの流量計16.17を用い、ただ単にその
出力値の差を限外濾過量として計測を行う従来技術にお
いては前記のΔlpΔkZ 、171’I + 、i!
1%2+ Eol 1 EO2ε1.ε2による誤差分
が生じ、正確な限外濾過量の測定を行うことは不可能で
ある。
In the conventional technology in which two flowmeters 16 and 17 are used and the difference in their output values is simply measured as the amount of ultrafiltration, the above-mentioned ΔlpΔkZ, 171'I + , i!
1%2+ Eol 1 EO2ε1. An error due to ε2 occurs, making it impossible to accurately measure the amount of ultrafiltration.

〈発明の概要〉 この発明の目的は゛流出透析排液の流量と流入透析液の
流量との差から限外濾過量をめる装置において、特に高
精度の流量計を用いることなく。
<Summary of the Invention> The object of the present invention is to provide an apparatus for calculating the amount of ultrafiltration from the difference between the flow rate of outflow dialysis fluid and the flow rate of inflow dialysate, without using a particularly high-precision flowmeter.

正確に限外濾過量を測定できるようにしようとするもの
である。
The purpose is to make it possible to accurately measure the amount of ultrafiltration.

この発明によれば流入透析液の流量測定と、流峠析排液
の流量測定に別々の流量計が用いられ。
According to this invention, separate flowmeters are used to measure the flow rate of the inflowing dialysate and the flow rate of the drained fluid.

湾声器を用いて透析を行い限外濾過量の測定を行う測定
モードと、一方の流量計の特性を基準とし □′て他方
の流量計を較正する較正モードとをモード切替え手段で
切替えられるように構成される。その較正モードに切替
えた状態では流入透析液の測定を行う流量計と、流出透
析排液の測定を行う流量計に、所定流量の液体を流し9
次いで前記の流量とは異なる流量の液体を流すことがで
きる様にされ、それぞれの場合のそれぞれの流量計の出
力信号と、一方の流量計の特性値を用いて、一方の流量
計の特性を基準として他方の流量計が較正される。
The mode switching means can be used to switch between a measurement mode in which dialysis is performed using a voice filter and the ultrafiltration rate is measured, and a calibration mode in which the characteristics of one flowmeter are used as a reference to calibrate the other flowmeter. It is configured as follows. When switched to the calibration mode, a predetermined flow rate of liquid is passed through the flowmeter that measures inflow dialysate and the flowmeter that measures outflow dialysate.
Then, the liquid is allowed to flow at a flow rate different from the aforementioned flow rate, and the characteristics of one of the flowmeters are determined using the output signal of each flowmeter in each case and the characteristic value of one of the flowmeters. The other flowmeter is calibrated as a reference.

く実施例〉 第2図はこの発明による限外濾過量測定装置の実施例を
示し、第1図と対応する部分には同一符号を付けである
。この発明においては、制御部21の制御によシ限外濾
過量を測定するモードと、二つの流量計la4るいは1
7のいずれか一方を較正する較正モードとに切替えるこ
とができる。その較正゛モードでは、流量計16及び1
7に、2回に分けて、′暴なる流量で、それぞれの1回
については同−流量夢の液体を流すことができる様にさ
れる。このためこの実施例では、流量計16と透析器1
2との間の液供給ライン11に操作弁22が、透析器1
2と流量計17との間の排液ライン13に操作弁23が
、また、液供給ライン11と排液ライン13の間に側路
18が設けられ、これには、操作弁24と並列に操作弁
25及びも6がそれぞれ設けられる。
Embodiment> FIG. 2 shows an embodiment of the ultrafiltration rate measuring device according to the present invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this invention, there is a mode in which the amount of ultrafiltration is measured under the control of the control unit 21, and a mode in which the ultrafiltration amount is measured by the control of the control unit 21, and
It is possible to switch to a calibration mode in which either one of 7 is calibrated. In its calibration mode, flow meters 16 and 1
7, the fluid is divided into two parts at an extremely high flow rate, each time being made to flow at the same flow rate. Therefore, in this embodiment, the flow meter 16 and the dialyzer 1
An operation valve 22 is connected to the liquid supply line 11 between the dialyzer 1 and the dialyzer 1.
An operating valve 23 is provided in the drain line 13 between the liquid supply line 11 and the flow meter 17, and a side passage 18 is provided between the liquid supply line 11 and the drain line 13, which includes a side passage 18 in parallel with the operating valve 24. Operation valves 25 and 6 are provided, respectively.

測定モードでは、gfl供給ライン11の透析液は。In measurement mode, the dialysate in the gfl supply line 11 is.

流量計16の流量センサ16a−操作弁22−透析器1
2−操作弁23−流量計17の流量センサ17aを流れ
Flow rate sensor 16a of flow meter 16-operation valve 22-dialyzer 1
2 - Operation valve 23 - Flow through the flow rate sensor 17a of the flow meter 17.

排液ライン13よシ排出される。一方、較正モードでは
、まず操作弁22.23及び25が閉じられ、透析液は
、流量センサ16a−操作弁24−流量センサ17aを
流れる。この段階における較正が終了すると次に操作弁
24が閉じ、操作弁25が開いて、透析液は、流量セン
サ16a−操作弁25−弁26−流量センサ17aを流
れる。
The liquid is discharged through the drain line 13. On the other hand, in the calibration mode, the operating valves 22, 23 and 25 are first closed, and the dialysate flows through the flow rate sensor 16a - the operating valve 24 - the flow rate sensor 17a. When the calibration at this stage is completed, the operation valve 24 is then closed, the operation valve 25 is opened, and the dialysate flows through the flow rate sensor 16a - operation valve 25 - valve 26 - flow rate sensor 17a.

流量センサ16aの出力信号をEl、流量をFとする、
と前記によシ、El=KIF+丘o1・・・(3)であ
る。
Let El be the output signal of the flow rate sensor 16a, and let F be the flow rate.
According to the above, El=KIF+hill o1 (3).

iた。流量センサ16aの出力信号は1通常微少!11 信号であるため、この出力信号E1を流量に対応した流
量計出力値Vlに変換する必要があり、この変換は(3
)式のFをVlとおき、 Vlについて解いた式で行う
。この変換は流量計16の信号処理回路161)で行う
が、この信号処理回路161)での変換で固有の誤差が
生ずるため、一般的には、 Vx = 、/JJ、Ex
+ε、・・・(4)という関係となる。
It was. The output signal of the flow rate sensor 16a is normally very small! 11 signal, it is necessary to convert this output signal E1 to a flowmeter output value Vl corresponding to the flow rate, and this conversion is (3
) Set F in the equation to Vl, and perform the calculation using the equation solved for Vl. This conversion is performed by the signal processing circuit 161) of the flowmeter 16, but since an inherent error occurs in the conversion in the signal processing circuit 161), generally Vx = , /JJ, Ex
+ε,...(4) is the relationship.

他方、流量センサ17aについても、固有の流量−セン
サ出力信号変換式があシ、これはE2 = KgF+ 
Eo:z・・・(5)と表わせる。
On the other hand, the flow rate sensor 17a also has a unique flow rate-sensor output signal conversion formula, which is E2 = KgF+
It can be expressed as Eo:z...(5).

また流量計16におけると同様、信号処理回路17bで
流量センサ17aの出力信号E2を流量計出力値■に変
換する式は、 V2 =)lzE2+ε2・・・(6)
と表わされる。
Similarly to the flowmeter 16, the formula for converting the output signal E2 of the flow rate sensor 17a into the flowmeter output value ■ in the signal processing circuit 17b is: V2 =)lzE2+ε2...(6)
It is expressed as

以下に較正モードで流量計16の特性を基準として流量
計17を較正する場合について説明する。
A case will be described below in which the flowmeter 17 is calibrated in the calibration mode based on the characteristics of the flowmeter 16.

基準となる流量計16の特性値%、 e、は、予め行わ
れるそのセンサ出力信号Elと出力値Vlについての゛
回帰分析における回帰直線からま凱既知でめシφ0 :較正モードにおける2種類の流量をそれぞれFo。
The characteristic value %, e, of the flowmeter 16 as a reference is known from the regression line in the regression analysis of the sensor output signal El and output value Vl performed in advance. The flow rate is Fo.

Fo、流量センサ16a及び17aの流量Foの場合の
出力信号をそれぞれbl及びEC2、流量FOの場合の
出力信号をそれぞれKQI’及びEC2’、また流量F
Oの場合の流量計16及び17の出力値をそれぞれ■1
及び”−1流量BpO2の場合の出力値をそれぞれVO
1’及びVl、流量計17の〃についての出力値変換係
数を%c2とすると、較正モードでは同一の流量Fo、
Fa’を流すのでそれぞれの場合においてVO2= V
QI 、 VQ2’= VQI’、つまD 、 (4)
及び(6)式よりそれぞれt kc2.Ec辻E2 %
 EC,1+ ’i: 、 + 、A’CZEcj+ε
z =P+’EQ 1’+ε1でなければならない。従
ってこの2つの式よシ。
Fo, the output signals of the flow rate sensors 16a and 17a in the case of the flow rate Fo are respectively bl and EC2, and the output signals in the case of the flow rate FO are respectively KQI' and EC2', and the flow rate F
The output values of flowmeters 16 and 17 in case of O are respectively ■1
and “-1 flow rate BpO2, the output value is VO
1' and Vl, and the output value conversion coefficient for 〃 of the flowmeter 17 is %c2, then in the calibration mode, the same flow rate Fo,
Since Fa' is flowing, in each case VO2 = V
QI, VQ2'= VQI', Tsuma D, (4)
and (6), respectively, t kc2. Ec Tsuji E2 %
EC,1+'i: , +,A'CZEcj+ε
It must be z = P + 'EQ 1' + ε1. Therefore, these two formulas.

となる。そこで演算部27が、制御部21の制御のもと
にEQ、l’、 Eog 、 FAl’、 ECiを直
接数シ込み、それらの値と′ξ)流量計16についての
既知の出力値変換係数〃1及心61を用いて、流量計1
7の出力値変換係数乃武びE2を(7)及び(8)式か
らめる。
becomes. Therefore, the calculation unit 27 directly inputs EQ, l', Eog, FAl', and ECi under the control of the control unit 21, and converts these values and 'ξ) known output value conversion coefficient for the flowmeter 16. 〃Using 1 and 61, flow meter 1
The output value conversion coefficient E2 of 7 is calculated from equations (7) and (8).

そして、測定モードでの信号処理回路161)及び17
bにおけるセンサ出力信号Ex及びE2から流量計出力
値v1及びV2への変換式をVl 7P1ビ、+6.・
・(4)に対し、 V2 =)tc2E2すε2と較正
する。
Then, the signal processing circuits 161) and 17 in the measurement mode
The conversion formula from the sensor output signals Ex and E2 at b to the flowmeter output values v1 and V2 is Vl 7P1 Bi, +6.・
- For (4), calibrate as V2 =)tc2E2sε2.

例えばfi、 = 95 、 E、 = 5.15でF
a = 50 o′ml/min、 F。
For example, fi, = 95, E, = 5.15 and F
a = 50 o'ml/min, F.

= 40 ome/fninノときEO1= 5.37
 、 Eal=4.32 、 Eoa −502Eal
l’= 4.Oji!の場合を例示すると、 (3) 
f(’7)及び(8)式から。
= 40 ome/fnin time EO1 = 5.37
, Eal=4.32, Eoa-502Eal
l'=4. Oji! To illustrate the case of (3)
From f('7) and equation (8).

、PC2=91jX ””11“ゝ12−=77、γ夕
5.02−4.02 とl]、測定モードでの、信号処理回路16b及び17
:、1)・におけるセンサ出力信号から流量計出力値へ
の変換式は、 Vl = 95XEl−5,15K対し
、 ■2=99.75XE2+4.255と較正される
, PC2=91j
The conversion formula from the sensor output signal to the flowmeter output value in :, 1) is calibrated as follows: Vl = 95XE1-5,15K, 2 = 99.75XE2 + 4.255.

以上の様に較正モードで、流量計16の特性(y”’ 
y&l、EO1’+ 61 )を基準として流量計17
の特性≠2゜ε2)が較正される。この後、測定モード
に入る訳であるが、以下に測定モードにおける測定誤差
について述べる。
As described above, in the calibration mode, the characteristics of the flowmeter 16 (y"'
y&l, EO1'+61) as reference flow meter 17
The characteristic of ≠2°ε2) is calibrated. After this, the measurement mode is entered, and the measurement error in the measurement mode will be described below.

測°定モードでの流量センサ16aを流れる透析液流量
をFL、流量センサ17aを流れる透析排液流量をlt
”oとし、その時の流量センサ16a及び17aの出力
信号をそれぞれEl及びEo、流量計出力値をそれぞれ
■1及び■0とすると、(3)及び(5)式から。
The flow rate of dialysate flowing through the flow rate sensor 16a in the measurement mode is FL, and the flow rate of dialysis fluid flowing through the flow rate sensor 17a is LT.
``o'', the output signals of the flow rate sensors 16a and 17a at that time are El and Eo, respectively, and the flowmeter output values are ``1'' and ``0'', respectively, then from equations (3) and (5).

E1=== KIFx −1−EOI 、 Eo = 
KgFo −1−Eogで。
E1=== KIFx −1−EOI, Eo=
In KgFo-1-Eog.

信号処理回路16b及び17’bにおける流量計出力値
への変換式はそれぞれ(4)及び(9)式から■1=l
t−ξ+ε、・・・(10λVo=)lczEo+εZ
−−−(11)である。従って限外濾過量の測定値Uo
bは次式のようになる。
The conversion formula to the flowmeter output value in the signal processing circuits 16b and 17'b is obtained from equations (4) and (9), respectively: ■1=l
t-ξ+ε,...(10λVo=)lczEo+εZ
---(11). Therefore, the measured value of ultrafiltration rate Uo
b is as shown in the following equation.

ところで先の較正モードで述べた様に、tLczEcs
:+ 6zチ1Ecl+ E +なので(3)及び(5
)式から〃z(Kg Fo + E” )+とx=、u
r (KIFG+EO1) +6. L、たがってPc
zEoz−)t、fDax’ =、7t 1 f!a 
Fc+ε+ )aC2Ks F’−ezとなり、これを
(12)に代入すると。
By the way, as mentioned in the previous calibration mode, tLczEcs
:+6zchi1Ecl+E+, so (3) and (5
) From the formula, z(Kg Fo + E”)+ and x=, u
r (KIFG+EO1) +6. L, therefore Pc
zEoz-)t, fDax' =, 7t 1 f! a
Fc+ε+ )aC2Ks F'-ez, and when this is substituted into (12).

Fo’+Eogおよび膓−KIFQ +EO1,EO1
’−KIFO’+ EOlからそEC2−ECZ’ れぞれに2=−〜−了一−−−(+4)漁−に、=ユニ
旦昨−Ctt7ノFc−Fc Fc−1− なので(7) I (14)及び(15)を(13)に
代入して。
Fo'+Eog and 膓-KIFQ +EO1, EO1
'-KIFO'+ EOl to so EC2-ECZ' To each 2=-~-Ryoichi--(+4) fishing-to, =unidan last-Ctt7ノFc-Fc Fc-1- So (7 ) I Substitute (14) and (15) into (13).

となる。becomes.

さて、限外濾過量の真の値をUreとすると、 Ure
は透析排液流量Foから透析液流量F1を引いたもの/
1−、′1 (17)式を引いて 8 = ()ob L#a となシ、その誤差率△は、△= lrεすなわち限外濾
過量の測定誤差は’ 、、/”7 + K1という流量
計16の特性値のみに依存し、流量計17の特性値には
全く依存しない。換言すると、較正によシ全く同一の特
性をもった流量計を2個使用する場合と等価の状態とな
る。
Now, if the true value of ultrafiltration rate is Ure, then Ure
is the dialysis fluid flow rate Fo minus the dialysate flow rate F1/
1-,'1 Subtracting the equation (17), we get 8 = ()ob L#a, and the error rate △ is △= lrε, that is, the measurement error of the ultrafiltration rate is ',, /''7 + K1 It depends only on the characteristic value of the flowmeter 16, and does not depend on the characteristic value of the flowmeter 17 at all.In other words, the calibration results in a state equivalent to using two flowmeters with exactly the same characteristics. becomes.

ここで、先の例の場合について説明すると。Now, let's explain the case of the previous example.

JllH= 95 、 Fo −50ome/min 
、 Fo’= 400me/mjJl 。
JllH=95, Fo -50ome/min
, Fo'=400me/mjJl.

EC1= 5.37 、 ]Joi茅=4.32 なの
で。
Because EC1=5.37, ]JoiKaya=4.32.

5.37−4.32 △= 95 X −I m−0,0025500−40
0 となノ、限外濾過量の測定誤差は−0,25%となる。
5.37-4.32 △= 95 X -I m-0,0025500-40
0, the measurement error of ultrafiltration amount is -0.25%.

なお、測定モードでは、透析液流量として■1を。In addition, in the measurement mode, set ■1 as the dialysate flow rate.

透析排液流量として■0をそれぞれ(10)及び(uX
で算出し、さらに演算部27でVo −Vxを算出しそ
の結果を限外濾過量として表示部28に表示する。
■0 as the dialysis effluent flow rate (10) and (uX
Further, the calculation section 27 calculates Vo -Vx, and the result is displayed on the display section 28 as the ultrafiltration amount.

この発明による限外濾過量測定装置を透析装置に内蔵し
、もしくは併置し、透析装置としての準備モードに入っ
た場合に、前述した較正モードも自動的に行われ、その
後透析モードに移シ、透析モードでは測定モードのみが
行われるようにしても良いし、透析モードにおいて1周
期的に較正モードが自動的に行われるようにしても良い
。また必要に応じて手動で較正モードに設定して前述し
た較正を行い、その後、測定モードに手動で切替えても
よい。
When the ultrafiltration rate measuring device according to the present invention is built into or placed alongside a dialysis machine and enters the preparation mode as a dialysis machine, the above-mentioned calibration mode is automatically performed, and then the dialysis mode is entered. Only the measurement mode may be performed in the dialysis mode, or the calibration mode may be automatically performed periodically in the dialysis mode. Alternatively, if necessary, the calibration mode may be manually set to perform the above-described calibration, and then the measurement mode may be manually switched.

第3図はマイクロコンピュータを用いたこの発明の実施
例を示し、第2図と対応する部分には同一符号を付けで
ある。マイクロコンピュータ29の中央処理装置(以下
CPUと記す)30は読出し専用メモリ(以下ROMと
記す)31内に記憶されているプログラムを解読実行す
ることによシ各種処理を行い、その処理に必要とするデ
ータ、処理途中のデータを必要に応じて読み書き可能な
メモリ(以下RAMと記す)32内に記憶する。CPU
30は入出力部33を介して、弁制御信号を弁制御回路
34へ与え。
FIG. 3 shows an embodiment of the invention using a microcomputer, and parts corresponding to those in FIG. 2 are given the same reference numerals. A central processing unit (hereinafter referred to as CPU) 30 of the microcomputer 29 performs various processes by decoding and executing programs stored in a read-only memory (hereinafter referred to as ROM) 31, and stores information necessary for the processing. The data to be processed and the data being processed are stored in a readable/writable memory (hereinafter referred to as RAM) 32 as necessary. CPU
30 provides a valve control signal to the valve control circuit 34 via the input/output section 33.

弁制御回路34の出力により操作弁22.23.24.
25を切替え制御し、また、入出力部33を通じて流量
計16.17の流量計出力値Vl、V2および較正モー
ドでの流量センサ16a及び17aの出力信号を取込む
ことができ、更にV2−Vlを演算し1表示部28の表
示回路28aにその結果を供給し、これを表示器z8b
に表示する。流量計16については予めサンプル点での
センサ出力信号と流量計出力値との間で回帰分析を行い
、その回帰直線から係15.ε1の値がめられ、これら
f値がROM 31内に格納されている。
The output of the valve control circuit 34 causes the operating valves 22, 23, 24.
25 can be switched and controlled, and the flowmeter output values Vl and V2 of the flowmeter 16.17 and the output signals of the flow rate sensors 16a and 17a in the calibration mode can be taken in through the input/output section 33. is calculated and the result is supplied to the display circuit 28a of the 1 display section 28, and this is displayed on the display z8b.
to be displayed. Regarding the flowmeter 16, a regression analysis is performed in advance between the sensor output signal at the sample point and the flowmeter output value, and from the regression line, the coefficient 15. The values of ε1 are determined and these f values are stored in the ROM 31.

この実施例においては、起動されるとROM31内に固
定されたプログラムにより較正モードに入シ。
In this embodiment, when started, a program fixed in the ROM 31 enters the calibration mode.

第4図の流れ図に示すようにステップS1で操作弁22
.23及び25はいずれも閉じられ、他方操作弁24は
開かれ、透析液は流量センサ16aを通った後。
As shown in the flowchart of FIG. 4, in step S1, the operating valve 22
.. 23 and 25 are both closed, while the operating valve 24 is opened and the dialysate passes through the flow rate sensor 16a.

透析器12を通ることなく・、操作弁24を通シ流量セ
ンサ17aを流れる。この状態で、ステップS2で同一
流量FOに対する流量センサ16a及び17aの出力信
号Eel及び凸2の値をRAM32に取シ込んだ後、ス
テップS3で、ROM31内のプログラムによシ、工1
033を経由し、弁制御回路34によシ、操作弁22.
2324が閉じられ、操作弁25が開かれる。操作弁2
5の流路には弁26が設けられておシ、これで前述の場
合と異った任意の流量FOを流すことができる。この状
態で、ステップS4で流量Fo′に対する流量センサ1
6a及び17a ノ出力信号EQI’及びgJをRAM
32に取9込む。次にステップS5で、流量計16につ
いての既知の出力値変換係数p1及びε1の値をROM
31から読み出す。そしてステップS6で(ワ)及び(
8)式に基づいて〃c汲びε2を算出し、ステップS7
で測定モードにおける流量計17の出力値変換係数とし
てμC2及びε2の値をRAM32に格納する。
It flows through the operation valve 24 and the flow rate sensor 17a without passing through the dialyzer 12. In this state, in step S2, the output signal Eel of the flow rate sensors 16a and 17a and the value of convex 2 for the same flow rate FO are imported into the RAM 32, and then in step S3, the program in the ROM 31 is loaded.
033, the valve control circuit 34, and the operation valve 22.
2324 is closed and the operating valve 25 is opened. Operation valve 2
A valve 26 is provided in the flow path 5, which allows an arbitrary flow rate FO different from that in the above case to flow. In this state, in step S4, the flow rate sensor 1 for the flow rate Fo'
6a and 17a output signals EQI' and gJ are stored in RAM.
Add 9 to 32. Next, in step S5, the values of the known output value conversion coefficients p1 and ε1 for the flowmeter 16 are stored in the ROM.
Read from 31. Then, in step S6, (wa) and (
8) Calculate c pump ε2 based on the formula, and step S7
Then, the values of μC2 and ε2 are stored in the RAM 32 as output value conversion coefficients of the flowmeter 17 in the measurement mode.

この較正モードの処理を行った後、CPU30はROM
31内のプログラムによシ、操作弁22.23を開き、
操作弁24.25を閉じて測定モードに入る。
After processing this calibration mode, the CPU 30
According to the program in 31, open the operating valves 22 and 23,
Close the operation valves 24 and 25 to enter the measurement mode.

測定モードでは、流量計16及び17のセンサ出力信号
E1及びEOは、それぞれ信号処理回路16b及び17
1)で、先の実施例におけると同様、較正モードでめた
出力値変換係数を用いた(10)及び(U)式により、
それぞれ流量計出力値V1及び■に変換され。
In the measurement mode, sensor output signals E1 and EO of flowmeters 16 and 17 are output to signal processing circuits 16b and 17, respectively.
In 1), as in the previous example, using equations (10) and (U) using the output value conversion coefficient obtained in the calibration mode,
They are converted into flowmeter output values V1 and ■, respectively.

入出力部33を通じてCPU3oに取シ込まれる。The data is input to the CPU 3o through the input/output section 33.

そして更に■−■1が演算され、その結果が限外ヂ過量
として表示回路28aを介して表示器281)に表示さ
れる。
Then, (1) - (1) is further calculated, and the result is displayed on the display 281) as the limit excess amount via the display circuit 28a.

以上、流量計16の特性を基準として流量計17を較正
する場合について例示したが1両者を置き換えて、流量
計17の特性を基準にして流量計16を較正することも
全く同様にして行える。
The case where the flowmeter 17 is calibrated based on the characteristics of the flowmeter 16 has been described above, but it is also possible to calibrate the flowmeter 16 based on the characteristics of the flowmeter 17 in exactly the same manner by replacing both of them.

なお、流量計16と17は必ずしも、同種のものでなく
ても良く1例えば16を電磁式流量計、17を超音 ゛
波式流量計という具合に別種のもので構成しても良い。
Note that the flowmeters 16 and 17 are not necessarily of the same type, and may be constructed of different types, such as 16 being an electromagnetic flowmeter and 17 being an ultrasonic flowmeter.

また互いに異なる2種類の同一流量(Fo 、 Fo’
 )の透析液を流量計16及び17に流す手段としては
実施例に限らない。例えば制御部21や弁制御回路34
等によって制御される流量切り替え手段の設定場所は、
実施例における側路18中に限らず、液供給ライン11
−側路18−排液ライン止の流路中の他の場所でもよい
。あるいはまた実施例における側路18と弁22〜26
を省き、液供給ライン1に透析器12−排液ライン13
の流路中に前記と同様に制御される流量切シ替え手段を
設け、較正モードでは透析器12を通じて互いに異なる
2種類の同一流量の透析液を流量計16及び17に流す
ようにしてもよい。
In addition, two different types of the same flow rate (Fo, Fo'
) The means for flowing the dialysate to the flowmeters 16 and 17 is not limited to the embodiment. For example, the control section 21 and the valve control circuit 34
The setting location of the flow rate switching means controlled by
Not only in the side channel 18 in the embodiment, but also in the liquid supply line 11
- Side channel 18 - Other locations in the flow path of the drain line stop may be used. Alternatively, the bypass 18 and valves 22-26 in embodiments
Omit the dialyzer 12-drain line 13 to the fluid supply line 1.
A flow rate switching means controlled in the same manner as described above may be provided in the flow path, and in the calibration mode, two different types of dialysate having the same flow rate may be made to flow through the dialyzer 12 to the flowmeters 16 and 17. .

この場合は較正モードで、透析器12の血液流路と透析
液流路の間で水分の移動が起こらないように。
In this case, in the calibration mode, no movement of water occurs between the blood flow path and the dialysate flow path of the dialyzer 12.

両流路内の圧力が等しくなるように制御する。The pressure in both channels is controlled to be equal.

また、較正モードで流す液体は透析液に限らない。Further, the liquid flowing in the calibration mode is not limited to dialysate.

〈効果〉 以上の様に、この発明によれば、透析器の出口細極流量
と入口側流量の差を限外濾過量としてめる限外濾過量の
測定において、従来二つの流量計を用いる場合には避け
られなかった二つの流量計の特性の違いによる測定誤差
を解消することができる。しだがって特に高精度の流量
計を用いることなく、高精度の測定が可能になる。また
透析排液にさらされている流量センサの流路を清浄な透
析液にて洗浄することができる。しかも流量計の特性値
については、一つの計量計についてのみ把握すれば足り
、調整の手間を著しく減少させることができる。
<Effects> As described above, according to the present invention, two flowmeters are conventionally used to measure the ultrafiltration rate, which is the difference between the outlet flow rate and the inlet flow rate of the dialyzer. Measurement errors caused by differences in characteristics between the two flowmeters, which were unavoidable in some cases, can be eliminated. Therefore, high-precision measurement is possible without using a particularly high-precision flow meter. Further, the flow path of the flow rate sensor exposed to the dialysis fluid can be cleaned with clean dialysis fluid. Moreover, it is sufficient to know the characteristic values of the flowmeter for only one meter, and the effort required for adjustment can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の限外ヂ過量測定装置の概略図。 第2図はこの発明による限外濾過量測定装置の一例を示
すブロック図、第3図はマイクロコンピュータを用いた
場合のこの発明の限外濾過量測定装置の一例を示すブロ
ック図、第4図は第3図に示した装置の較正モード時の
動作例を示す流れ図である。 11:液供給ライン、12:透析器。 13二排液ライン、 16. l’7 :流量計、18
:側路21:制御部。 22〜25:操作弁、26二弁、27:演算部。 29二マイクロコンピュータ、34:弁制御回路特許出
願人 株式会社三陽電機製作所 第1図 第2図 /d 第4図
FIG. 1 is a schematic diagram of a conventional extreme excess amount measuring device. FIG. 2 is a block diagram showing an example of the ultrafiltration rate measuring device according to the present invention, FIG. 3 is a block diagram showing an example of the ultrafiltration rate measuring device of the present invention using a microcomputer, and FIG. 4 is a flowchart showing an example of the operation of the apparatus shown in FIG. 3 in a calibration mode. 11: Liquid supply line, 12: Dialyzer. 13 two drain lines, 16. l'7: Flowmeter, 18
: Side path 21: Control section. 22 to 25: operation valve, 26 two valves, 27: calculation section. 292 Microcomputer, 34: Valve control circuit Patent applicant Sanyo Electric Manufacturing Co., Ltd. Figure 1 Figure 2/d Figure 4

Claims (1)

【特許請求の範囲】 透析器へ流入する透析液の流量を一つの流量計で測定し
、上記透析器から流出する透析排液の流量を別の流量計
で測定し9両流量の差を限外濾過量とする限外−過量測
定装置において、限外濾過量測定モードと、上記二つの
流量計のいずれか一方を較正する較正モードとのモード
切換え手段と。 上記較正モードにおいて、二つの流量計に、所定流量の
液体を流し9次いで前記の流量と異なる流量の液体を流
し、それぞれの流量において得られたそれぞれの流量計
からの出力信号と予め測定された一方の流量計の特性値
とを用い、前記の一方の流量計の特性を基準として他方
の流量計を較正する較正手段とを備えた限外濾過量測定
装置。
[Claims] The flow rate of the dialysate flowing into the dialyzer is measured with one flowmeter, and the flow rate of the dialysis fluid flowing out from the dialyzer is measured with another flowmeter, thereby limiting the difference between the two flow rates. In the ultrafiltration rate measuring device, mode switching means between an ultrafiltration rate measurement mode and a calibration mode for calibrating either one of the two flowmeters. In the above calibration mode, a predetermined flow rate of liquid is flowed through the two flowmeters, and then a liquid with a flow rate different from the above flow rate is flowed, and the output signal from each flowmeter obtained at each flow rate and the pre-measured An ultrafiltration rate measuring device comprising: a calibration means for calibrating the other flowmeter based on the characteristics of the one flowmeter using the characteristic values of the one flowmeter.
JP59064818A 1984-03-31 1984-03-31 Device for measuring ultrafiltration rate Granted JPS60209118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064818A JPS60209118A (en) 1984-03-31 1984-03-31 Device for measuring ultrafiltration rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064818A JPS60209118A (en) 1984-03-31 1984-03-31 Device for measuring ultrafiltration rate

Publications (2)

Publication Number Publication Date
JPS60209118A true JPS60209118A (en) 1985-10-21
JPH0458565B2 JPH0458565B2 (en) 1992-09-17

Family

ID=13269207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064818A Granted JPS60209118A (en) 1984-03-31 1984-03-31 Device for measuring ultrafiltration rate

Country Status (1)

Country Link
JP (1) JPS60209118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308519A (en) * 1987-05-11 1988-12-15 バクスター、インターナショナル、インコーポレイテッド Improved flow rate measuring system
JP2002035114A (en) * 2000-07-19 2002-02-05 Jms Co Ltd Blood circuit capable of coping with emergency

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346628B2 (en) 2009-03-11 2013-11-20 株式会社堀場エステック Mass flow controller verification system, verification method, verification program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152916A (en) * 1984-01-20 1985-08-12 Sanyo Denki Seisakusho:Kk Apparatus for measuring amount of ultrafiltration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152916A (en) * 1984-01-20 1985-08-12 Sanyo Denki Seisakusho:Kk Apparatus for measuring amount of ultrafiltration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308519A (en) * 1987-05-11 1988-12-15 バクスター、インターナショナル、インコーポレイテッド Improved flow rate measuring system
JP2002035114A (en) * 2000-07-19 2002-02-05 Jms Co Ltd Blood circuit capable of coping with emergency
JP4556154B2 (en) * 2000-07-19 2010-10-06 株式会社ジェイ・エム・エス Blood circuit for emergency situations

Also Published As

Publication number Publication date
JPH0458565B2 (en) 1992-09-17

Similar Documents

Publication Publication Date Title
DE19882239B3 (en) Vortex flowmeter with signal processing
US4486303A (en) Ultrafiltration in hemodialysis
US5648605A (en) Flowmeter calibration method
JPH11326161A (en) Sampling device for exhaust gas
US4850220A (en) Apparatus for measuring amount of ultrafiltrate and concentration of receiving solvent in dialysis
JP3274742B2 (en) Calibration method for a pair of sensors provided in a dialysis circuit
JPH0752114B2 (en) Measuring device for dialysis target
JPS60209118A (en) Device for measuring ultrafiltration rate
JPS60152916A (en) Apparatus for measuring amount of ultrafiltration
JPH0355770B2 (en)
CN101430216B (en) Mass flow sensor and control system and realize the method that mass rate controls
US3927563A (en) Flow rate measuring system with calibration means
US5789249A (en) Method for calibrating an analysis system, and an analysis system
JPH0217439A (en) Magnetic type oxygen meter
JPH0538747Y2 (en)
JPS5910227B2 (en) Ultra-filtration measuring device
JPH02304345A (en) Automatically correcting method for dissolved oxygen analyzer
JPH02278126A (en) Liquid level measuring apparatus
JPS6211863B2 (en)
JPS6267428A (en) Instrument for measuring particulates in water
JP2580585Y2 (en) Pure water dilution sampling device
JPS6042690A (en) Gas analyzer in container for nuclear reactor
Madariaga et al. Applications of computers in the study of solution equilibria—I LEHENA, a program for polynomial data fitting
JPH01244356A (en) Method and apparatus for measuring ion activity
JPH0212109B2 (en)