JPS6020850B2 - dielectric porcelain material - Google Patents

dielectric porcelain material

Info

Publication number
JPS6020850B2
JPS6020850B2 JP57200103A JP20010382A JPS6020850B2 JP S6020850 B2 JPS6020850 B2 JP S6020850B2 JP 57200103 A JP57200103 A JP 57200103A JP 20010382 A JP20010382 A JP 20010382A JP S6020850 B2 JPS6020850 B2 JP S6020850B2
Authority
JP
Japan
Prior art keywords
mol
composition
present
glass
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57200103A
Other languages
Japanese (ja)
Other versions
JPS5990303A (en
Inventor
克彦 荒井
正見 福井
信立 山岡
節子 中曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP57200103A priority Critical patent/JPS6020850B2/en
Publication of JPS5990303A publication Critical patent/JPS5990303A/en
Publication of JPS6020850B2 publication Critical patent/JPS6020850B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は非酸化性雰囲気中で鯛結し、酸化性雰囲気中で
塊絹時より低い温度で熱処理して得ることが出来る複合
べロブスカィト型議電体磁器物質に関し、更に詳細には
、誘電体生シートにニッケルを主成分とする導体ペース
トを塗布して焼結した構造の鏡層磁器コンデンサに最適
な誘電体磁器物質に関する。 従来技術 従来の積層磁器コンデンサは、誘電体生シート(グリー
ンシート)に白金、パラジウム等の貴金属の導軍ペース
トを印刷したものを複数枚積み重ねて圧着し、酸化性雰
囲気中で高温焼成を行い、しかる後外部引き出し電極を
設けることによって製作されている。 しかし、白金、パラジウム等の蟹極材料は高価であるた
め、民生用機器が要求する安価な積層磁器コンデンサを
提供することが不可能であった。この種の問題を解決す
るために、ニッケルを主成分とする導電ペーストを生シ
ートに塗布したものを非酸化性雰囲気で競結させること
が考えられる。ところが、非酸化性雰囲気で暁結しても
、この脇絹時の温度が例えば130ぴ0以上のように高
いと、ニッケル導鰭ペーストのニッケル粒子が粒成長す
ると同時に粒子の凝集が生じ、ニッケルが玉状に分布し
た状態となり、良質な電極を形成することが困難であっ
た。また、ニッケルの一部が磁器中に拡散して絶縁が劣
化することがあった。この為、非酸化性雰囲気中に於い
て低温(例えば1250qo以下)で暁結することが可
能な磁器組成物が要求されている。発明の目的 本発明の目的は、非酸化性雰囲気中で低温嬢緒すること
によって得ることが可能であり、且つ上記条件で暁結す
るものであるにも拘らず、絶縁抵抗が比較的高く、誘電
体損失(tan 6)が比較的小さく、更に静電容量×
抵抗(CR)値が比較的大きいコンデンサを得ることが
可能な誘電体磁器物質を提供することにある。 発明の構成 上記目的を達成するための本発明は、 {(舷,−xCax)○}k(TiryZふ)02(但
しxは0.02〜0.27、yは0.01〜0.20
kは1〜1.04の範囲の数値)からなる基本成分と、
10の重量部の前記{(BaMCax)0}k(Ti,
‐yZ★)02に対して0.2〜10.0重量部のLi
20−MeO−SjQガラス(但しMe0はBa○、C
a0、及びSr○の内の1種以上の金属酸化物)とトを
含み、且つ前記Li20一Me○−Si02は、Li2
0とMe0とSjOとの組成をモル%で示す三角図に於
いて、前記Li20が0モル%、前記Me○が35モル
%、前記Si02が65モル%の組成を示す第1の点■
と、前記Li20が0モル%、前記Me○が40モル%
、前記Si02が60モル%の組成を示す第2の点‘B
}と、前記Li20が5モル%、前記Me○が45モル
%、前記Si02が50モル%の組成を示す第3の点{
C}と、前記Li20が48モル%、前記Me0が2モ
ル%、前記Si02が50モル%の組成を示す第4の点
■と、前記Li20が23モル%、前記Me○が2モル
%、前記Si02が75モル%の組成を示す第5の点
TECHNICAL FIELD The present invention relates to a composite berovskite-type electromagnetic porcelain material that can be obtained by tying in a non-oxidizing atmosphere and heat-treating it in an oxidizing atmosphere at a temperature lower than that for lump silk, and more specifically, The present invention relates to a dielectric ceramic material that is most suitable for a mirror layer ceramic capacitor having a structure in which a conductive paste containing nickel as a main component is applied to a dielectric green sheet and then sintered. Conventional technology Conventional multilayer ceramic capacitors are made by stacking and pressing a plurality of dielectric green sheets (green sheets) printed with guiding pastes of precious metals such as platinum and palladium, and firing them at high temperature in an oxidizing atmosphere. After that, it is manufactured by providing external extraction electrodes. However, since crab pole materials such as platinum and palladium are expensive, it has been impossible to provide inexpensive multilayer ceramic capacitors required by consumer devices. In order to solve this type of problem, it is conceivable to apply a conductive paste containing nickel as a main component to a green sheet and then bond it in a non-oxidizing atmosphere. However, even if it is formed in a non-oxidizing atmosphere, if the temperature at the side is high, for example 130 mm or higher, the nickel particles in the nickel guide fin paste will grow and agglomerate at the same time, causing nickel was distributed in a bead-like manner, making it difficult to form a high-quality electrode. In addition, some of the nickel may diffuse into the porcelain, degrading the insulation. For this reason, there is a need for a ceramic composition that can be solidified at low temperatures (for example, below 1250 qo) in a non-oxidizing atmosphere. OBJECTS OF THE INVENTION The objects of the present invention are to have a relatively high insulation resistance, which can be obtained by incubation at low temperatures in a non-oxidizing atmosphere, and which oxidizes under the above conditions; Dielectric loss (tan 6) is relatively small, and capacitance ×
An object of the present invention is to provide a dielectric ceramic material with which a capacitor having a relatively large resistance (CR) value can be obtained. Structure of the Invention The present invention to achieve the above object has the following features:
k is a numerical value in the range of 1 to 1.04);
10 parts by weight of the {(BaMCax)0}k(Ti,
-yZ★) 0.2 to 10.0 parts by weight of Li based on 02
20-MeO-SjQ glass (Me0 is Ba○, C
a0, and one or more metal oxides of Sr○), and the Li20-Me○-Si02 is Li2
In the triangular diagram showing the composition of 0, Me0, and SjO in mol%, the first point (1) indicates a composition of 0 mol% of Li20, 35 mol% of Me○, and 65 mol% of Si02.
, the Li20 is 0 mol%, and the Me○ is 40 mol%.
, the second point 'B where the Si02 has a composition of 60 mol%
}, and a third point showing a composition of 5 mol% of the Li20, 45 mol% of the Me○, and 50 mol% of the Si02 {
C}, a fourth point (3) showing a composition of 48 mol% of the Li20, 2 mol% of the Me0, and 50 mol% of the Si02, 23 mol% of the Li20, 2 mol% of the Me○, A fifth point where the Si02 shows a composition of 75 mol%


E’と、前記第1の点凶と、を順次に結ぶ5本の直線で
囲まれた領域内での組成であることを特徴とする複合べ
ロブスカィト型誘電体磁器物質に係わるものである。 作用効果 上記本発明によれば次の作用結果が得られる。 ■ 低融点のLi20一Me○−Si02ガラスを添加
することにより、低温(例えば120ぴ0以下)での嫌
結が可能になる。‘B} CaTi03系を含むので、
低温での酸化性能が良く、例えば800℃の低温で酸化
熱処理することが可能になる。 に’低温凝結が可能であるので、ニッケル等の卑金属の
鰭極材料を同時に暁結しても、ほぼ完全なコンデンサ電
極を得ることが出来る。 ■ 上記W〜‘C)の理由、及び基本成分に含まれる舷
Ti03が高い比誘電率を得るのに寄与すること、Zの
がねn 8の改良に寄与すること等のために、抵抗率p
が2.32×1びMQ・抑以上、CR値が260のMQ
・rF以上、也n 6が1.5%以下、比護電率ごが2
520以上のコンデンサを得ることが可能になる。 実施例 次に本発明の実施例について述べる。 但し、本発明を明確にするために、本発明の範囲外の実
施例も含まれている。実施例 1〜78(第1表及び第
2表) 第1表及び第2表に示す実施例1〜78の磁器コンデン
サの製造及びその特性測定は次の方法で行った。 まず、複合べロブスカィト構造の焼成物の基本成分であ
る {(舷,★Cax)○}k(TiryZry)Qの
(1−x)、x、(1−y)、y、及びkが第1表に示
す値になるような割合に、純度99.0%以上のBaC
03、CaCQ、Ti02、Zr02を出発原料として
秤量した。次に、秤量した原料を1虫時間、温式混合し
、粉砕した後に乾燥し、約1200qC、2時間、大気
中で仮擁した。 これにより、出発原料はほぼ基本成分となる。次に、{
(筋,〜Cax)○}k(Ti,−yZry)02から
なる基本成分10の重量部に対して第1表に示す割合に
なるように平均粒蓬約5仏ののLi20一Me○−Si
02ガラス粉末を秤量し、このガラス粉末を仮鱗で得た
基本成分に添加し、同時にアクリル酸ェステルポリマー
、グリセリン、縮合リン酸塩の水溶液から成る有機/ゞ
ィンダを15重量部添加し、更に5の重量部の水を加え
たものをボールミルに入れて粉砕及び混合して磁器原料
のスリップを作製した。 尚第1表に示すLj20−MeO−Si02ガラスの組
成は、第2表に示す通りであり、更にこのガラスの成分
であるMeoはBa0、Ca0、Sのの1種又は複数種
であり、その内容(組成)は第2表に示す通りである。 即ち、第2表でモル%で示されているLら0−Me0−
Si02の内のMe0の内容は、滋○、Cao、Sのの
少なくとも1種であり、これ等の割合がMe0の内容の
欄にモル%で示されている。第2表ではL120一Me
○一SiQの具体的組成を2つの欄の組み合せで示した
が、一体化して示すと、例えば実施例1のガラス組成は
Li205モル%、Ca045モル%、Si0250モ
ル%となり、また実施例5のガラス組成はLi2020
モル%、Ba03モル%、Ca。4モル%、S^03モ
ル%、Si。 270モル%となる。 次に、上記スリップを脱泡処理した後に、このスリップ
からドクタープレード法によって長手の生シートを作製
し、これ等を乾燥させた後に、プレスによって第1図に
示す3枚の生シート1,2,3を作製した。 次に、生シート1,2の一方の主面に、ニッケルを主成
分とする導鰭ペースト(Ni91wt%、Mh01M%
、Pb○一Ba○一Si02ガラスぶれ%にピヒクルを
加えたペースト)を約6Amの厚さに印刷することによ
って第2図に示す導電ペースト層4,5を形成し、しか
る後、第2図に示す順序に3枚の生シート1,2,3を
重ね合せ、熱圧着して一体化した。 次に、生シート1,2,3を一体化したものを加熱炉に
入れ100qC/hの温度上昇率で室温から600qC
まで空気中で加熱し、有機/ゞィンダを燃焼させた。 しかる後、加熱炉の雰囲気を空気から中性又は還元性の
非酸化性雰囲気に変えた。尚上記の中性又は還元性の非
酸化性雰囲気を実施例1〜60及び65〜78では日2
2体積%十N298体積%雰囲気、実施例61では日2
零体積%+N210の本頚%雰囲気、実施例62は日2
3本積%+N295体積%雰囲気、実施例筋は日21の
本鏡%十N29の本鏡%雰囲気、実施例64は日275
体積%+N225体積%雰囲気とした。そして加熱炉を
上述の如き非酸化性雰囲気とした状態で生シートの放熱
温度を60ぴCから第1表に示す焼成温度1030qo
〜1紙ぴ0まで100℃′hの比率で上昇させ、上記中
性又は還元性雰囲気中で第1表に示す焼成温度1030
qo〜1斑oqoを3時間保持して生シートの焼成をな
した。次に、中性又は還元性の雰囲気を保った状態で加
熱炉の温度を焼成温度103び0〜1総oqoから実施
例1では100び0まで、実施例2〜78では800℃
まで10ぴC/hの割合で下げ、次に、加熱炉の雰囲気
を中性又は還元性雰囲気から酸化性雰囲気(空気)に変
えて実施例1では1000℃、実施例2〜78では80
0qoに3ぴ分間保持し、その後、室温(約20℃)ま
で空気雰囲気中で冷却した。 これにより、第3図に示す如く生シート1に対応した第
1の磁器層laと生シート2に対応した第2の磁器層2
aと生シート3に対応した第3の磁器層3aとから成り
、これ等の間にペースト層4,5に対応した電極4a,
5aを有する榛結体6が得られた。 尚暁縞体6に於ける磁器層la,2a,3aの厚さは約
50山肌であり、暁結体6の合計の厚さは鰭極4a,5
aを入れて約160〆mであり、その縦幅及び横幅は6
欄であり、電極4a.5aの対向面積は5岬×5側=2
5めである。次に、電極4a,5aが蕗出する暁結体6
の側面に、Znとガラスフリットとビヒクルとから成る
Znペーストを塗布して乾燥し、これを大気中で55び
0の温度で1流ふ間競付け、第4図に示す如くZn電極
届7を形成し、更にこの上にCuを無電界メッキで被着
させてCu層8を形成し、更にこの上に電気メッキ法で
半田層9を設けて、一対の端面電極10,11を形成し
た。次に上述の如く形成した各実施例の積層磁器コンデ
ンサの電気的特性即ち誘電体損失ねn 6、比護電率ご
、抵抗率p、静鰭容量×抵抗CRを測定したところ、第
2表に示す結果が得られた。 尚、比譲隙率ご‘ま、温度25℃、周波数lk比、電圧
(実効値)0.5Vの条件で静電容量を測定し、この測
定値と電極4a,5aの対向面積25磯と電極4a,5
a間の磁器層2aの厚さ0.05脚から計算で求めた。
また、tan 6は比誘電率と同一条件で測定した、第
2表には%で示した。即ち第2表には実際のぬn 6の
値の10折音の値を示す。従って、実際のtan 6の
値は第2表の値の10‐2倍である。また、抵抗率p(
MQ・肌)は、温度25℃に於いてDC50Vを1分間
印加した後に電極10,11間の抵抗値を測定し、この
測定値より計算で求めた。またCRは、測定した静電容
量値と抵抗値とを掛け合せることにより求めた。第1表 第 1 表(続き) 第2表 第 2 表(続き) 第1表及び第2表の本発明の範囲内の実施例2〜24
31〜3〆 36〜50 52〜5ム 斑〜鼠入 70
〜77から明らかなようにト基本成分の{(&,−XC
aX)○}k(Ti,−yZry)02の×が0.02
〜0.27、yが0.01〜0.26、kが1〜1.0
4であり、この基本成分10雄重量部に対して0.2〜
1の重量部の範囲のLi20−Me0一Si02ガラス
を含む複合べロプスカィト型議蟹体磁器は、非酸化性雰
囲気中で1050qo(実施例33)〜1160こ0(
実施例49)の温度で競結し、しかる後、冷却過程にお
ける酸化性雰囲気約800qoの熱処理を行うことによ
って形成することが出来る。 そして、ねn 8が0.5〜1.4%、ごが2520〜
13060 pが2.32×1び〜1.18×107M
Q’仇、CR値が2600〜318加けQ・仏Fの特性
がニッケル電極の積層コンデンサを得ることが出来る。
但し、Li20−Me0−Sj02のガラスの組成は、
この組成を示す第5図の三角図の第1の点■、第2の点
脚、第3の点に}、第4の点■、第5の点脚、第1の点
■を順次に結ぶ5本の直線で囲まれた領域内でなければ
ならない。 尚「第5図の三角図の第1の点■は実施例20のLら0
零モル%、Me035モル%、Si0265モル%の組
成を示し、第2の点脚は実施例21のLi2溝モル%、
Me040モル%、Si0260モル%の組成を示し、
第3の点(C}は実施例22のLi205モル%、Me
045モル%、Si0250モル%の組成を示し、第4
の点皿は実施例23のLi2048モル%、Me02モ
ル%、Si0250モル%の組成を示しト第5の点脚は
実施例24のLi2023モル%、Me02モル%、S
i0275モル%の組成を示す。 第2表の実施例2〜2ム31〜3336〜5052〜5
458〜鼠〆70〜77は上記第1〜第5の点を結ぶ5
本の直線で囲まれる領域内に総て含まれる。次に、本発
明の各成分の限定理由について述べる。 本発明の範囲外の実施例1から明らかなように「 x即
ちCaが零になると、1000qoで酸化熱処理しても
酸化が十分に進まず、pが8.5×1ぴMQ。弧と低く
、tan 6も15.6%と大きい。一方、本発明の範
囲外である実施例78から明らかなように、xが0.2
9になると、ごが860と低くなり、CR値も750と
低くなる。これに対して、xが0.02〜0.27の本
発明の範囲内の実施例のtan6、ご、p、CRはコン
デンサとして満足する値である。本発明の鞄圏外の実施
例56から明らかなようにy即ちZrが受になると、ね
n 6が6.8と大きくなり、またごが1030と低く
なり、またCR値も7のけQ。 rFと低くなる。一方「本発明の範囲外の実施例57力
)ら明らかなように、yが0.28になると、・が11
80と低くなり、CR値も70と低くなる。これに対し
て、yが0.01〜0.26の本発明の範囲内の実施例
ではコンデンサとして満足することが出来る電気的特性
が得られる。本発明の範囲外の実施例51から明らかな
ように、kが0.灘になると、ねn 6が7.2%と大
きくなり、且つpが2.07×1ぴMQ・弧と低くなり
、CRも12と低くなる。 一方ト本発明の範囲外の実施例55から明らかなように
、kが1.05になると、鱗縞が困難になり、繊密な嫌
綾体が得られない。これに対して、kを1〜1.04の
範囲とすると満足するコンデンサを得ることが出来る。
本発明の範囲外の実施例34力)ら明らかなようにガラ
スの添加量がIZ重量部になると、tan 8が3.8
%と大きくなり、CR値が147瓜け○・仏Fと低くな
る。 一方、本発明の範圏外の実施例35から明らかなように
ガラスの添加量が零重量部となると、tan 6が5.
6%と悪くなる。これに対して、10の重量部の基本成
分に対して0.2〜1の重量部のガラスを添加する本発
明の範囲内の実施例では満足な電気的特性が得られる。
本発明の範囲外の実施例25〜30及び69から明らか
なようにLi20一Me0一Si02ガラスの組成比が
第5図で特定する領域外となると、pが1.88×1び
MQ’鰍以下となり、CR値が18皿M014F以下と
なり、また実施例30及び69のように繊密な鱗結体が
得られない場合も生じる。 これに対して、Li20一Me0一Si02が第5図で
特定された領域以内の実施例では満足な電気的特性が得
られる。尚Me0は第2表から明らかなようにBa0、
Ca0、Sのの任意の組み合せ、又は単独であってもよ
い。またMe0の内に含まれる母0、Ca0の母、Ca
は基本成分にも含まれているが、基本成分にBa、Ca
が含まれるとの理由で、この塁を増やしてガラスの舷○
「Caoを減ずることは不可能である。何故なら、ガラ
スの滋○、Caoは基本成分と全く別の作用を発揮して
いる。上述から明らかなように、本発明の範囲内の裏施
例によって次の作用効果が得られる。 【aー 非酸化性雰囲気での凝結温度を低温(103び
0〜115ぴ0)にすることが出来る。 従って、ニッケルペースト等の低融点電極材料を生シー
トに塗布して嫌結させることが出釆る。【bl 酸化熱
処理を暁結後の徐冷の過程で行うことが可能である。 ‘c’日2十N2からなる非酸化性雰囲気の日2の割合
則ち仏/日2十N2×100(体積%)を2〜75%と
変化させても電気的特性の変動が殆んどないので、一般
に用いられる量産用の雰囲気炉を使用することが出来る
。 ‘d} ねn 6が1.5%以下のコンデンサを得るこ
とが出来る。 {e)2520〜13060の範囲の種々の比誘電率ご
を得ることが出来る。 ‘f’ 抵抗率pを2.32×1びMQ・仇以上とする
ことが出釆る。 笹)−35℃〜150q○の温度範囲に於いて比較的大
きな抵抗率pを維持することが出来る。 例えば、本発明に従う実施例31のコンデンサと、ガラ
スを含まない本発明の範囲外の実施例35のコンデンサ
とを、直温槽に入れ、一3守0、20q0、5び○、8
ぷ0、15ぴ○の各温度でDC50Vを1分間印加した
後に抵抗を測定し、計算で抵抗率pを求めたところ、本
発明に従う実施例31のコンデンサでは第6図の曲線R
,で示す結果が縛られ、本発明の範囲に属さない実施例
35のコンデンサでは第6図の曲線R2で示す結果とな
った。この結果から明らかなように、ガラスを添加する
ことにより、15び○の温度に於いてもpが比較的高い
。従って、ガラスは競結温度を下げる効果のみならず、
抵抗率の特性も大幅に改善する。仇)本発明に従って、
ガラスを添加することによってDCバイアス特性を改善
することが出釆る。 例えば、ガラスを添加する本発明に従う実施例19及び
31のコンデンサと、ガラスを添加しない本発明の範囲
外の実施例35のコンデンサを使用し、25山肌当りに
10〜80yの直流バイアス亀圧を印加した状雛で、交
流測定電圧0.別(実効値)、lk世、25qoの条件
で静電容量を測定し、計算で比護軍率ごを求めたところ
、第7図の結果が得られた。第7図に於いて、曲線E,
は実施例19のコンデンサ、曲線E2は実施例31のコ
ンデンサ、曲線E3は本発明の範囲外の実施例35のコ
ンデンサの各DC電圧に於けるごを示す。この結果から
明らかなように、ガラス添加によって直流バイアス簿性
即ち実効負荷特性をズ印劇こ改善することが出来る。実
施例 79〜82(第3表) 第3表に示す如く、実施例79〜82に於いて、実施例
11、1932、58と同一の磁器組成の生シートを実
施例1〜78と同一の方法で作った。 次に、厚さ60ム仇の生シートをプレスで長方形に打ち
抜き、各実施例79〜82で2材女の長方形生シートを
用意し、一番上になる生シートを除いた2針叉の生シー
トに第2図と同一の状態に実施例1〜78と同一のニッ
ケルペーストを同一方法で印刷し、2材女の生シートを
積み重ねで熱圧着させて一体化した。次に、この一体化
したものを50000まで空気中で加熱し、有機/ゞィ
ンダを燃焼させ、しかる後比2容積%+N29接容積%
の雰囲気に変えて1000C/hの割合で第3表の焼成
温度まで昇温させ、この焼成温度を2時間保持した。次
に、100qC/hの割合で800℃まで冷却し、酸化
性雰囲気(空気)に切り換えて800qo、30分間の
酸化熱処理を施し、その後、放冷した。 これにより、第8図に示す如く磁器層12a,12b,
12c,12d,12e等の27の磁器層を有し、且つ
電極13a,13b,13c,13d等の26の電極を
有する鱗結体が得られた。 尚この競結体の幅は2.5脚、長さは3.2肋、厚さは
1.0側である。次に、実施例1〜78と同一の材料及
び方法で焼結体の電極露出両端面に第8図に示す如く端
面電極10,11を形成し、実施例1〜78と同一方法
でtan 6(%)、静電容量C(山F)、絶縁抵抗I
R(×1びMQ)を測定したところ、第3表の初期電気
的特性の欄に示す結果が得られた。 次に、初期値を測定したコンデンサをアルミナ基板の電
極上に半田で固定し、温度8瓦0、直流電圧50Vの印
加状態を保つ高温負荷寿命試験を行】し・、25m時間
、50加時間、100q時間、200餌時間の経時変化
を求めた。 この結果、200畑時間後であっても葵用上十分な特性
を有することが判った。第3表第 3 表(続き) 実施例 83〜90(第4表) 本発明に従ってガラスを添加した場合と、本発明の範囲
外のガラス無添加の場合との等価直列抵抗(ESR)を
比較するために、第4表の実施例総〜86に関しては実
施例1〜78と同一方法で、実施例87〜90に関して
は実施例79〜82と同一方法でコンデンサを作り、静
電容量C、及び等価直列抵抗(ESR)を測定したとこ
ろ「第4表の結果が得られた。 尚、実施例没入8ふ87、89の磁器の組成及び製造条
件は本発明に従う実施例19と同じであり、実施例84
808&90の磁器の組成及び製造条件は本発明の範囲
外の実施例35と同じである。また、第4表に於ける積
層枚数はコンデンサとして働く譲蚤体層の数即ち対向電
極を有する磁器層の数を示し、また一層の厚さ、及び一
層の電極有効面積は1つの譲蟹体層の厚さ及びここの電
極有効面積を示す。等価直列抵抗(ESR)の測定はそ
れぞれの実施例のコンデンサを25℃とし、共振点に於
いて測定した。第4表 第4表の結果から明らかなように、本発明に従ってガラ
スを添加すると、同一の静電容量Cでの等価直列抵抗が
低くなる。 チューナ回路では1000〜220岬Fのチップ状磁器
コンデンサが多く使用され、ESRが例えば250の○
以下であることが望まれているが、本発明によればこの
要望を充足するコンデンサを提供することが出釆る。変
形例 以上、本発明の実施例について述べたが「本発明はこれ
に限定されるものでなく、更に変形可能なものである。 例えば、基本成分を得るための出発原料を、実施例1〜
78で示したもの以外の舷、Ca、TLZrを含む化合
物、例えば、舷0、Ca0トTi02、Tn02等の酸
化物、又は水酸化物等としてもよい。また、酸化温度を
80ぴ○以外の750〜1000qo「好ましくは80
0〜900qoの範囲の温度としてもよい。 即ち、ニッケル等の電極と、磁器の酸化とを考慮して変
更することが可能である。また、非酸化性雰囲気中の焼
成温度も、亀極材料を考慮して考えることが出来る。 また、本発明の目的を阻害しない範囲で他の物質を更に
添加してもよい。 例えば、本発明の磁器に対してMN02を0.05〜0
.1重量%の範囲で添加してもよい。図面の簡単な説明
第1図は実施例1〜78に従う生シートを示す斜視図、
第2図は第1図の生シートにニッケルペーストを印刷し
た状態を示す斜視図、第3図は第2図の生シートを一体
化して嫁結した物を示す断面図、第4図は第3図の焼結
体に端面電極を設けた状態を示す断面図である。 第5図は実施例1〜78に於けるガラスの組成を示すた
めの三角図である。第6図は実施例19及び35のコン
デンサの温度と抵抗率との関係を示す特性図である。第
7図は実施例19 31、及び35のDCバイアス電圧
と比譲亀率の関係を示す特性図である。第8図は実施例
79〜82の積層磁器コンデンサの一部を示す断面図で
ある。1,2,3……生シート、la,lb,lc…・
・・磁器層、4,5・…・・ペースト層、4a,4b…
・・・鰭極、6…・・・競結体、10,11・…・・端
面電極。第1図 第2図 第3図 第4図 第5図 第7図 第8図 第6図
[
The present invention relates to a composite berovskite dielectric ceramic material characterized by having a composition within a region surrounded by five straight lines sequentially connecting E' and the first dot point. Effects According to the present invention, the following effects can be obtained. (2) By adding Li20-Me○-Si02 glass having a low melting point, it becomes possible to freeze at a low temperature (for example, 120 mm or less). 'B} Contains CaTi03 series, so
It has good oxidation performance at low temperatures, making it possible to perform oxidation heat treatment at a low temperature of 800°C, for example. Since low-temperature condensation is possible, almost perfect capacitor electrodes can be obtained even if base metal fin electrode materials such as nickel are simultaneously deposited. ■ For the reasons of W~'C) above, and because the sheath Ti03 included in the basic components contributes to obtaining a high relative permittivity, and contributes to improving the Z glass n8, the resistivity p
is 2.32 x 1 MQ/Suppressor or higher, MQ with CR value of 260
・rF or more, yen 6 is 1.5% or less, specific electric current is 2
It becomes possible to obtain a capacitor of 520 or more. EXAMPLES Next, examples of the present invention will be described. However, in order to clarify the present invention, examples outside the scope of the present invention are also included. Examples 1 to 78 (Tables 1 and 2) The ceramic capacitors of Examples 1 to 78 shown in Tables 1 and 2 were manufactured and their characteristics were measured in the following manner. First, (1-x), x, (1-y), y, and k of {(shelf, ★Cax)○}k(TiryZry)Q, which are the basic components of the fired product with a composite berovskite structure, are the first BaC with a purity of 99.0% or more in proportions that result in the values shown in the table.
03, CaCQ, Ti02, and Zr02 were weighed as starting materials. Next, the weighed raw materials were warm mixed for 1 hour, pulverized, dried, and temporarily held in the air at about 1200 qC for 2 hours. This makes the starting material almost the basic component. next,{
(Stripe, ~Cax)○}k(Ti, -yZry)02 Li20-Me○- Si
02 glass powder was weighed, this glass powder was added to the basic component obtained by temporary scales, and at the same time 15 parts by weight of an organic/indredder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate was added, Further, 5 parts by weight of water was added to the mixture, which was then placed in a ball mill, ground and mixed to produce a porcelain raw material slip. The composition of the Lj20-MeO-Si02 glass shown in Table 1 is as shown in Table 2, and Meo, which is a component of this glass, is one or more of Ba0, Ca0, and S. The contents (composition) are as shown in Table 2. That is, L et al 0-Me0- shown in mol% in Table 2
The content of Me0 in Si02 is at least one of Shigeru, Cao, and S, and the proportions of these are shown in the column of content of Me0 in mol%. In Table 2, L120-Me
○-The specific composition of SiQ is shown as a combination of two columns, but when shown together, for example, the glass composition of Example 1 is Li205 mol%, Ca045 mol%, Si0250 mol%, and the glass composition of Example 5 is Glass composition is Li2020
Mol%, Ba03mol%, Ca. 4 mol%, S^03 mol%, Si. It becomes 270 mol%. Next, after degassing the above-mentioned slip, a long green sheet is made from this slip by the doctor blade method, and after drying, the three green sheets 1 and 2 shown in FIG. , 3 were prepared. Next, on one main surface of the raw sheets 1 and 2, a guide fin paste containing nickel as a main component (Ni91wt%, Mh01M%
The conductive paste layers 4 and 5 shown in FIG. 2 are formed by printing a paste (Pb○-Ba○-Si02 glass blurred paste) to a thickness of about 6 Am, and then the conductive paste layers 4 and 5 shown in FIG. Three green sheets 1, 2, and 3 were stacked on top of each other in the order shown in Figure 3, and were bonded together by thermocompression. Next, the raw sheets 1, 2, and 3 were put into a heating furnace and heated from room temperature to 600 qC at a temperature increase rate of 100 qC/h.
Heated in air to combust the organic/inda. Thereafter, the atmosphere in the heating furnace was changed from air to a neutral or reducing non-oxidizing atmosphere. In Examples 1 to 60 and 65 to 78, the neutral or reducing non-oxidizing atmosphere was
2% by volume 10N298% by volume atmosphere, in Example 61 day 2
Zero volume % + main neck % atmosphere of N210, Example 62 was day 2
3 volume% + N295 volume% atmosphere, example scenario is day 21 main mirror % + N29 main mirror % atmosphere, example 64 is day 275
The atmosphere was 25% by volume + N2 by volume. Then, with the heating furnace in a non-oxidizing atmosphere as described above, the heat dissipation temperature of the raw sheet was changed from 60 pC to the firing temperature 1030 qo shown in Table 1.
~ 1 paper pi 0 at a rate of 100°C'h, and the firing temperature 1030 as shown in Table 1 in the above neutral or reducing atmosphere.
The raw sheet was fired by maintaining the oqo of qo ~ 1 spot for 3 hours. Next, while maintaining a neutral or reducing atmosphere, the temperature of the heating furnace was changed from a firing temperature of 103°C and 0 to 1 total oqo to 100°C and 0°C in Example 1, and to 800°C in Examples 2 to 78.
Next, the atmosphere in the heating furnace was changed from a neutral or reducing atmosphere to an oxidizing atmosphere (air) to 1000°C in Example 1 and 80°C in Examples 2 to 78.
It was held at 0qo for 3 minutes and then cooled to room temperature (about 20°C) in an air atmosphere. As a result, as shown in FIG. 3, a first ceramic layer la corresponding to the raw sheet 1 and a second ceramic layer 2 corresponding to the raw sheet 2 are formed.
a and a third porcelain layer 3a corresponding to the raw sheet 3, between which electrodes 4a, corresponding to the paste layers 4, 5,
5a was obtained. The thickness of the porcelain layers la, 2a, and 3a in the dawn stripe body 6 is about 50 ridges, and the total thickness of the dawn stripe body 6 is the thickness of the fin poles 4a, 5.
It is approximately 160 meters including a, and its length and width are 6
column, and the electrodes 4a. The opposing area of 5a is 5 capes x 5 sides = 2
It's the 5th one. Next, the electrodes 4a and 5a emerge from the dawn formation 6.
A Zn paste consisting of Zn, a glass frit, and a vehicle was applied to the side surface of the electrode, dried, and then tested in the air at a temperature of 55 to 0. A Cu layer 8 was formed by depositing Cu by electroless plating, and a solder layer 9 was further formed by electroplating to form a pair of end electrodes 10 and 11. . Next, the electrical characteristics of the laminated ceramic capacitors of each example formed as described above, namely dielectric loss (n6), dielectric constant, resistivity p, static fin capacitance x resistance CR, were measured, and the results are shown in Table 2. The results shown are obtained. The capacitance was measured under the conditions of a specific porosity, a temperature of 25°C, a frequency lk ratio, and a voltage (effective value) of 0.5V. Electrodes 4a, 5
It was calculated from the thickness of 0.05 mm of the porcelain layer 2a between a.
Further, tan 6 was measured under the same conditions as the dielectric constant, and is shown in % in Table 2. That is, Table 2 shows the values of 10 orthogonal notes of the actual value of n6. Therefore, the actual value of tan 6 is 10-2 times the value in Table 2. Also, the resistivity p(
MQ/skin) was obtained by measuring the resistance value between electrodes 10 and 11 after applying DC 50V for 1 minute at a temperature of 25°C, and calculating from this measured value. Further, CR was determined by multiplying the measured capacitance value and resistance value. Table 1 Table 1 (Continued) Table 2 Table 2 (Continued) Examples 2 to 24 within the scope of the present invention in Tables 1 and 2
31~3〆 36~50 52~5mm Spotted ~ Mouse 70
~77, it is clear that the basic component {(&, -XC
x of aX)○}k(Ti, -yZry)02 is 0.02
~0.27, y is 0.01-0.26, k is 1-1.0
4, and 0.2 to 10 parts by weight of this basic component
Composite velopskite type crab porcelain containing Li20-Me0-Si02 glass in the range of 1 part by weight ranges from 1050 qo (Example 33) to 1160 qo (
It can be formed by competitive bonding at the temperature of Example 49) and then heat treatment in an oxidizing atmosphere of about 800 qo during the cooling process. And 0.5-1.4% of n8, 2520~
13060 p is 2.32 x 1 ~ 1.18 x 107M
It is possible to obtain a multilayer capacitor with a nickel electrode having a CR value of 2,600 to 318 plus Q and F characteristics.
However, the composition of the glass of Li20-Me0-Sj02 is
In the triangular diagram in Figure 5 showing this composition, sequentially place the first point ■, the second dot leg, the third point}, the fourth point ■, the fifth dot leg, and the first point ■. It must be within the area surrounded by the five connecting straight lines. Note that the first point ■ in the triangular diagram in FIG.
The composition is 0 mol%, Me035 mol%, Si0265 mol%, and the second point is the Li2 groove mol% of Example 21,
Showing the composition of Me040 mol% and Si0260 mol%,
The third point (C} is 205 mol% of Li in Example 22, Me
045 mol%, Si0250 mol%, and the fourth
The dot plate shows the composition of Example 23 with 2048 mol% Li, 2 mol% Me0, and 250 mol% Si0.
It shows the composition of i0275 mol%. Examples 2-2 in Table 2 31-3336-5052-5
458~Nejiji70~77 are 5 connecting the first to fifth points above.
Everything is contained within the area surrounded by the straight line of the book. Next, the reasons for limiting each component of the present invention will be described. As is clear from Example 1, which is outside the scope of the present invention, ``When x, that is, Ca, becomes zero, oxidation does not proceed sufficiently even if the oxidation heat treatment is performed at 1000 qo, and p becomes as low as 8.5 x 1 pi MQ. , tan 6 is also large at 15.6%.On the other hand, as is clear from Example 78, which is outside the scope of the present invention, x is 0.2%.
When it reaches 9, the value becomes as low as 860, and the CR value also becomes as low as 750. On the other hand, tan6, p, and CR of the embodiments within the range of the present invention in which x is 0.02 to 0.27 are values that are satisfactory as a capacitor. As is clear from Example 56, which is outside the bag range of the present invention, when y, that is, Zr becomes negative, n6 becomes large at 6.8, and g becomes low at 1030, and the CR value is also 7 times Q. It becomes low as rF. On the other hand, as is clear from "Example 57 outside the scope of the present invention", when y becomes 0.28, .
The CR value becomes as low as 80, and the CR value also becomes as low as 70. On the other hand, in embodiments within the scope of the present invention in which y is 0.01 to 0.26, electrical characteristics that can be satisfied as a capacitor are obtained. As is clear from Example 51, which is outside the scope of the present invention, k is 0. In the Nada, n6 increases to 7.2%, p decreases to 2.07×1piMQ・arc, and CR also decreases to 12. On the other hand, as is clear from Example 55, which is outside the scope of the present invention, when k is 1.05, it becomes difficult to form scale stripes, and a delicate cylindrical body cannot be obtained. On the other hand, if k is set in the range of 1 to 1.04, a satisfactory capacitor can be obtained.
As is clear from Example 34, which is outside the scope of the present invention, when the amount of glass added is IZ parts by weight, tan 8 becomes 3.8.
%, and the CR value is as low as 147 瓜Ke○・F. On the other hand, as is clear from Example 35, which is outside the scope of the present invention, when the amount of glass added is zero parts by weight, tan 6 becomes 5.
It gets worse at 6%. In contrast, embodiments within the scope of the invention in which 0.2 to 1 part by weight of glass is added to 10 parts by weight of the base component give satisfactory electrical properties.
As is clear from Examples 25 to 30 and 69, which are outside the scope of the present invention, when the composition ratio of Li20-Me0-Si02 glass is outside the range specified in FIG. The CR value is 18 plates M014F or less, and there are also cases where delicate scale bodies cannot be obtained as in Examples 30 and 69. On the other hand, in the embodiment where Li20-Me0-Si02 is within the region specified in FIG. 5, satisfactory electrical characteristics can be obtained. As is clear from Table 2, Me0 is Ba0,
Any combination of Ca0 and S may be used alone. Also, the mother 0 included in Me0, the mother of Ca0, Ca
is also included in the basic components, but the basic components include Ba and Ca.
This base was increased and a glass gunwale was added because it included
"It is impossible to reduce Cao. This is because Cao, which is the vitality of glass, exhibits an effect completely different from that of the basic components. The following effects can be obtained: [a] The condensation temperature in a non-oxidizing atmosphere can be made low (103 and 0 to 115 p0). [bl] It is possible to carry out oxidation heat treatment during the slow cooling process after freezing. 'C' day 2 in a non-oxidizing atmosphere consisting of 20 N2 Even if the ratio of 20 N2 x 100 (volume %) is changed from 2 to 75%, there is almost no change in the electrical characteristics, so a commonly used atmospheric furnace for mass production should be used. 'd} A capacitor with n 6 of 1.5% or less can be obtained. {e) Various dielectric constants in the range of 2520 to 13060 can be obtained. 'f' Resistivity p It is possible to make the resistivity p to be 2.32×1 and MQ×2 or more. It is possible to maintain a relatively large resistivity p in the temperature range of -35°C to 150q○. For example, the present invention The capacitor of Example 31, which does not contain glass, and the capacitor of Example 35, which does not include glass and is outside the scope of the present invention, were placed in a direct temperature bath.
After applying DC 50V for 1 minute at each temperature of 0 and 15 0, the resistance was measured and the resistivity p was calculated, and it was found that the capacitor of Example 31 according to the present invention had the curve R shown in FIG.
, and the capacitor of Example 35, which does not fall within the scope of the present invention, had the results shown by curve R2 in FIG. As is clear from this result, by adding glass, p is relatively high even at temperatures of 15 to 10 degrees. Therefore, glass not only has the effect of lowering the competitive temperature, but also
The resistivity characteristics are also significantly improved. (en) According to the present invention,
It is possible to improve the DC bias characteristics by adding glass. For example, using the capacitors of Examples 19 and 31 according to the present invention in which glass is added, and the capacitor of Example 35 which is outside the scope of the present invention and in which no glass is added, a DC bias turtle pressure of 10 to 80 y is applied to 25 hills. With the applied condition, the AC measurement voltage was 0. When the capacitance was measured under the conditions of 25 qo (effective value), lk, and 25 qo, and the ratio of protection forces was calculated, the results shown in Fig. 7 were obtained. In Figure 7, curve E,
Curve E2 shows the capacitor of Example 19, curve E3 shows the capacitor of Example 35, which is outside the scope of the present invention, at each DC voltage. As is clear from this result, the addition of glass can dramatically improve the direct current bias characteristics, that is, the effective load characteristics. Examples 79 to 82 (Table 3) As shown in Table 3, in Examples 79 to 82, green sheets having the same porcelain composition as Examples 11, 1932, and 58 were made by method. Next, a raw sheet with a thickness of 60 mm was punched into a rectangular shape using a press, and rectangular raw sheets of 2 materials were prepared in each of Examples 79 to 82. The same nickel paste as in Examples 1 to 78 was printed on the raw sheet in the same state as shown in FIG. 2 using the same method, and the two raw sheets were stacked and bonded together by thermocompression. Next, this integrated product is heated in air to 50,000 to combust the organic/indredder, and then the ratio is 2% by volume + N29 contact volume%.
The atmosphere was changed to 1, and the temperature was raised to the firing temperature shown in Table 3 at a rate of 1000 C/h, and this firing temperature was maintained for 2 hours. Next, it was cooled to 800° C. at a rate of 100 qC/h, switched to an oxidizing atmosphere (air), subjected to oxidation heat treatment at 800 qo for 30 minutes, and then allowed to cool. As a result, as shown in FIG. 8, the ceramic layers 12a, 12b,
A scale body having 27 porcelain layers such as 12c, 12d and 12e and 26 electrodes such as electrodes 13a, 13b, 13c and 13d was obtained. The width of this composite body is 2.5 feet, the length is 3.2 feet, and the thickness is 1.0 feet. Next, as shown in FIG. 8, end electrodes 10 and 11 were formed on both exposed end surfaces of the sintered body using the same material and method as in Examples 1 to 78, and tan 6 was formed in the same manner as in Examples 1 to 78. (%), capacitance C (mountain F), insulation resistance I
When R (×1 and MQ) was measured, the results shown in the initial electrical characteristics column of Table 3 were obtained. Next, the capacitor whose initial value was measured was fixed on the electrode of the alumina board with solder, and a high-temperature load life test was performed by maintaining the applied state of temperature 8 0 and DC voltage 50 V], 25 m hours, 50 hours. , 100q hours, and 200 feeding hours. As a result, it was found that even after 200 field hours, it had sufficient properties for use in hollyhocks. Table 3 Table 3 (continued) Examples 83 to 90 (Table 4) Comparison of equivalent series resistance (ESR) when glass is added according to the present invention and when no glass is added outside the scope of the present invention In order to do this, capacitors were made in the same manner as Examples 1 to 78 for Examples 86 to 86 in Table 4, and in the same manner as Examples 79 to 82 for Examples 87 to 90, and the capacitance C, When the equivalent series resistance (ESR) was measured, the results shown in Table 4 were obtained.The composition and manufacturing conditions of the porcelains of Examples 87 and 89 were the same as those of Example 19 according to the present invention. , Example 84
The composition and manufacturing conditions of porcelain 808 & 90 are the same as Example 35, which is outside the scope of the present invention. In addition, the number of laminated layers in Table 4 indicates the number of composite layers that act as a capacitor, that is, the number of porcelain layers having opposing electrodes, and the thickness of one layer and the effective electrode area of one layer represent the number of composite layers that function as a capacitor. The thickness of the layer and the effective area of the electrode here are shown. The equivalent series resistance (ESR) of each of the capacitors of each example was set at 25° C. and measured at the resonance point. As is clear from the results in Table 4, adding glass according to the present invention lowers the equivalent series resistance at the same capacitance C. In tuner circuits, chip-shaped ceramic capacitors with an ESR of 1000 to 220 F are often used, and capacitors with an ESR of, for example, 250
Although the following is desired, according to the present invention, it is possible to provide a capacitor that satisfies this demand. Modification Examples The embodiments of the present invention have been described above, but the present invention is not limited thereto and can be further modified. For example, the starting materials for obtaining the basic components were
Other than those shown in 78, compounds containing Ca, TLZr, for example, oxides or hydroxides of Ca0, Ti02, Tn02, etc. may be used. In addition, the oxidation temperature should be set to 750 to 1000 qo other than 80 qo (preferably 80 qo).
The temperature may range from 0 to 900 qo. That is, it is possible to make changes taking into account the electrodes made of nickel or the like and the oxidation of the ceramic. Furthermore, the firing temperature in a non-oxidizing atmosphere can also be determined taking into consideration the Kame electrode material. Further, other substances may be further added within a range that does not impede the object of the present invention. For example, for the porcelain of the present invention, MN02 is 0.05 to 0.
.. It may be added in an amount of 1% by weight. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing green sheets according to Examples 1 to 78;
Figure 2 is a perspective view showing the raw sheet shown in Figure 1 printed with nickel paste, Figure 3 is a cross-sectional view showing the raw sheet shown in Figure 2 integrated and married, and Figure 4 is the raw sheet shown in Figure 2. FIG. 4 is a cross-sectional view showing a state in which end electrodes are provided on the sintered body of FIG. 3; FIG. 5 is a triangular diagram showing the composition of glasses in Examples 1 to 78. FIG. 6 is a characteristic diagram showing the relationship between temperature and resistivity of the capacitors of Examples 19 and 35. FIG. 7 is a characteristic diagram showing the relationship between the DC bias voltage and the yield rate of Examples 19, 31, and 35. FIG. 8 is a sectional view showing a part of the laminated ceramic capacitors of Examples 79 to 82. 1, 2, 3...raw sheet, la, lb, lc...・
... Porcelain layer, 4, 5... Paste layer, 4a, 4b...
...Fin pole, 6... Composite body, 10, 11... End face electrode. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 Figure 6

Claims (1)

【特許請求の範囲】 1 {(Ba_1_−_xCa_x)O}_k(Ti_
1_−_yZr_y)O_2(但しxは0.02〜0.
27、yは0.01〜0.26、kは1〜1.04の範
囲の数値)からなる基本成分と、 100重量部の前記
{(Ba_1_−_xCa_x)O}_k(Ti_1_
−_yZr_y)O_2に対して0.2〜10.0重量
部のLi_2O−MeO−SiO_2ガラス(但しMe
OはBaO、CaO、及びSrOの内の1種以上の金属
酸化物)と、を含み、且つ前記Li_2O−MeO−S
iO_2は、Li_2OとMeOとSiOとの組成をモ
ル%で示す三角図に於いて、 前記Li_2Oが0モル
%、前記MeOが35モル%、前記SiO_2が65モ
ル%の組成を示す第1の点(A)と、 前記Li_2O
が0モル%、前記MeOが40モル%、前記SiO_2
が60モル%の組成を示す第2の点(B)と、 前記L
i_2Oが5モル%、前記MeOが45モル%、前記S
iO_2が50モル%の組成を示す第3の点(C)と、
前記Li_2Oが48モル%、前記MeOが2モル%
、前記SiO_2が50モル%の組成を示す第4の点(
D)と、 前記Li_2Oが23モル%、前記MeOが
2モル%、前記SiO_2が75モル%の組成を示す第
5の点(E)と、 前記第1の点(A)と、 を順次に結ぶ5本の直線で囲まれた領域内の組成である
ことを特徴とする複合ペロブスカイド型誘電体磁器物質
[Claims] 1 {(Ba_1_−_xCa_x)O}_k(Ti_
1_-_yZr_y)O_2 (however, x is 0.02 to 0.
27, y is a numerical value in the range of 0.01 to 0.26, k is a numerical value in the range of 1 to 1.04), and 100 parts by weight of the above {(Ba_1_−_xCa_x)O}_k(Ti_1_
-_yZr_y) 0.2 to 10.0 parts by weight of Li_2O-MeO-SiO_2 glass (however, Me
O contains one or more metal oxides of BaO, CaO, and SrO, and the Li_2O-MeO-S
iO_2 is the first point in the triangular diagram showing the composition of Li_2O, MeO, and SiO in mol%, where the Li_2O is 0 mol%, the MeO is 35 mol%, and the SiO_2 is 65 mol%. (A) and the Li_2O
is 0 mol%, the MeO is 40 mol%, the SiO_2
a second point (B) showing a composition of 60 mol%;
i_2O is 5 mol%, the MeO is 45 mol%, the S
A third point (C) showing a composition of 50 mol% iO_2,
The Li_2O is 48 mol%, and the MeO is 2 mol%.
, the fourth point where the SiO_2 has a composition of 50 mol% (
D), the fifth point (E) showing a composition of 23 mol% of the Li_2O, 2 mol% of the MeO, and 75 mol% of the SiO_2, and the first point (A), in sequence. A composite perovskide dielectric ceramic material characterized by having a composition within a region surrounded by five connecting straight lines.
JP57200103A 1982-11-15 1982-11-15 dielectric porcelain material Expired JPS6020850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200103A JPS6020850B2 (en) 1982-11-15 1982-11-15 dielectric porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200103A JPS6020850B2 (en) 1982-11-15 1982-11-15 dielectric porcelain material

Publications (2)

Publication Number Publication Date
JPS5990303A JPS5990303A (en) 1984-05-24
JPS6020850B2 true JPS6020850B2 (en) 1985-05-24

Family

ID=16418885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200103A Expired JPS6020850B2 (en) 1982-11-15 1982-11-15 dielectric porcelain material

Country Status (1)

Country Link
JP (1) JPS6020850B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3475063D1 (en) * 1983-11-30 1988-12-15 Taiyo Yuden Kk Low temperature sinterable ceramic materials for use in solid dielectric capacitors or the like, and method of manufacture
DE3476653D1 (en) * 1983-11-30 1989-03-16 Taiyo Yuden Kk Low temperature sintered ceramic materials for use in solid dielectric capacitors or the like, and method of manufacture
JPS61147404A (en) * 1984-12-18 1986-07-05 太陽誘電株式会社 Dielectric ceramic composition
JPS61147405A (en) * 1984-12-18 1986-07-05 太陽誘電株式会社 Dielectric ceramic composition
JPS62131415A (en) * 1985-11-30 1987-06-13 太陽誘電株式会社 Dielectric porcelain compound
JPH0614496B2 (en) * 1990-05-16 1994-02-23 太陽誘電株式会社 Porcelain capacitor and method of manufacturing the same
JP4696342B2 (en) * 2000-07-28 2011-06-08 住友化学株式会社 Method for producing barium-based composite metal oxide powder
JP2002226263A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric ceramic and laminated ceramic capacitor
JP4652595B2 (en) * 2001-03-21 2011-03-16 京セラ株式会社 Dielectric porcelain with excellent temperature characteristics

Also Published As

Publication number Publication date
JPS5990303A (en) 1984-05-24

Similar Documents

Publication Publication Date Title
KR100201202B1 (en) Monolithic ceramic capacitor
JPS61147404A (en) Dielectric ceramic composition
JPS60118666A (en) Dielectric ceramic composition
JPS6020850B2 (en) dielectric porcelain material
JPS62157604A (en) Dielectric porcelain compound
JPH0552604B2 (en)
JPS6224388B2 (en)
JPH0552602B2 (en)
JPS63281309A (en) Porcelain capacitor
JPS6020851B2 (en) dielectric porcelain material
JPS62157607A (en) Dielectric porcelain compound
JPH0524654B2 (en)
JP2002293621A (en) Dielectric ceramic composition
KR930004741B1 (en) Solid dielectric capacitor and method of manufacture
KR930011190B1 (en) Solid dielectric capacitor and of manufacturing method thereof
JPS60118667A (en) Dielectric ceramic composition
JP2521856B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0234552A (en) Dielectric porcelain composition
JPH0518202B2 (en)
JPH0552603B2 (en)
JPS6224385B2 (en)
JP2521855B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521857B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0234551A (en) Dielectric porcelain composition
JPS6114608B2 (en)