JPS60207809A - Method of operating fluidized-bed burner - Google Patents

Method of operating fluidized-bed burner

Info

Publication number
JPS60207809A
JPS60207809A JP6329284A JP6329284A JPS60207809A JP S60207809 A JPS60207809 A JP S60207809A JP 6329284 A JP6329284 A JP 6329284A JP 6329284 A JP6329284 A JP 6329284A JP S60207809 A JPS60207809 A JP S60207809A
Authority
JP
Japan
Prior art keywords
cell
temperature
unit time
air
fluidization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6329284A
Other languages
Japanese (ja)
Other versions
JPH0359323B2 (en
Inventor
Takeo Notani
武生 野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6329284A priority Critical patent/JPS60207809A/en
Publication of JPS60207809A publication Critical patent/JPS60207809A/en
Publication of JPH0359323B2 publication Critical patent/JPH0359323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To make it possible to correctly detect the fluidization starting period of a medium by detecting an abrupt rise of the rising ratio of the temperature within the layer when starting cells which are in standstill, in a method of controlling the operation and stop of each cell of the fluidized-bed burner having a plurality of cells. CONSTITUTION:Air chambers 3a and 3b are partitioned and formed at the lower part of a porous plate 2 of a main body 1 of a fluidized-bed boiler, and cells 7a and 7b are formed at the upper parts of the air chambers 3a and 3b through a diaphragm 6. In this case, when the cell 7a is started while the cell 7a is in operation, the opening degree of a damper 10 is gradually increased through a timer 9. That is, the opening degree of the damper 10 is stepwisely increased every unit time, and a temperature detector 11 detects the change in the layer temperature within the unit time and supplies a result of the detection to a control box 8. The control box 8 calculates the rising ratio of the temperature within the layer per unit time from the result of the detection, and estimates the fluidization starting time of the cell 7a from the time point where the temperature in the unit time abruptly increases.

Description

【発明の詳細な説明】 この発明は流動層燃焼装置に係り、特に流動層部を複数
の区画に形成した装置の、各区画毎の運転、停止を良好
に行える装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluidized bed combustion apparatus, and more particularly to an apparatus in which a fluidized bed section is formed into a plurality of sections, and which can smoothly operate and stop each section.

流動層燃焼装置は比較的難燃性のものでも良好に燃焼(
焼却)し得るためその利用分野が拡大している。この燃
焼装置の一つとして燃焼により発生した熱を温水、蒸気
等として回収する流動層ボイラがあるが、この流動層ボ
イラの一つとして、流動層を慴数の区画(セル)に形成
し、各セル毎の運転、停止を行うことによりボイラ負荷
を幅広くさせ、かつ流動層の起動を容易に行えるボイラ
が開発されている。この形式のボイラにおいては、各セ
ルの運転状態、とりわけ運転停止中のセルを再起動する
場合にこのセルの流動化開始時点を正確に検知する必要
がある。即ち従来の運転方法では運転中止中のセル(区
画)上方の層の流動媒体の密度は流動化の気体の供給を
受けていないことからその密度は次第に大となって行く
。従って再起動しようとすると運転中のセルよりも流動
化用気体の圧力を大にしないと流動化しないこととなる
。またその層内部の濃度も低いものとなってくる。
Fluidized bed combustion equipment can burn well even relatively flame-retardant materials (
Because it can be incinerated), its fields of use are expanding. One of these combustion devices is a fluidized bed boiler that recovers the heat generated by combustion as hot water, steam, etc.; A boiler has been developed in which the boiler load can be widened by operating and stopping each cell, and the fluidized bed can be easily started. In this type of boiler, it is necessary to accurately detect the operating state of each cell, especially when restarting a cell that has been shut down, when fluidization starts. That is, in the conventional operating method, the density of the fluidized medium in the layer above the cell (section) during which the operation is stopped gradually increases because it is not supplied with fluidizing gas. Therefore, if an attempt is made to restart the cell, fluidization will not occur unless the pressure of the fluidizing gas is made higher than that of the operating cell. Also, the concentration inside the layer becomes low.

このような状態でセル起動時に流動化開始空気量以上の
空気を投入すると既に運替仲のセルの層温度を例えば1
50℃以上も低下させてしまい蒸気条件が変動してしま
う。また他の運転中のセルに対する空気供給量が過剰と
なって高02分圧下で多量の窒素酸化物(NOx )が
生成されることになる。また逆に空気供給量が流動化開
始空気量以下であると起動時間が長くなるという問題が
ある。口のため従来からセルの流動開始時期を的確に検
知する方法が要望されているかいづれの方法もその要望
を満足させるには至っていない。
In such a state, if more air than the fluidization start air amount is injected when starting the cell, the layer temperature of the cell that is already in operation will be raised to 1, for example.
This causes the temperature to drop by 50°C or more, causing fluctuations in steam conditions. In addition, the amount of air supplied to other operating cells becomes excessive, and a large amount of nitrogen oxides (NOx) is generated under high partial pressure. Conversely, if the air supply amount is less than the fluidization starting air amount, there is a problem that the startup time becomes longer. Therefore, there has been a demand for a method for accurately detecting the timing of cell flow initiation, but none of these methods has been able to satisfy that demand.

先ず、半実験式により被起動セルの流動化開始に必要な
空気量を算出する一般式を定め、この式に基づいて供給
空気量から流動化開始時期を推定する方法がある。しか
し、流動媒体の性状、その粒径、粒度分布、媒体層に対
する燃料投入の有無、停止中のセル温度、セル内に対す
る層内伝熱管の有無等の種々の要因によって流動化開始
時期は相違する。従って一般式による流動化開始時点の
推定(」きわめて不正確なものとならざるを得す、少く
ともこの方法のみでは実用に耐えることができない。
First, there is a method of determining a general formula for calculating the amount of air required to start fluidizing the activated cell using a semi-empirical formula, and estimating the time to start fluidizing from the amount of supplied air based on this formula. However, the timing at which fluidization starts varies depending on various factors such as the properties of the fluidized medium, its particle size, particle size distribution, whether or not fuel is injected into the media layer, the cell temperature during stoppage, and the presence or absence of heat exchanger tubes in the cell. . Therefore, estimation of the fluidization start point using the general formula (") is inevitably extremely inaccurate, and at least this method alone cannot be put to practical use.

次に目視による方法も考えられるが、層内および空塔部
は運転中のセルによって媒体の一部飛散、燃焼ガス等に
よって視界がきかず、かつ元来流動層の表面は水面の如
く画然としたものではないため、やはり正確な検知は困
難である。
Next, visual inspection may be considered, but visibility is difficult within the bed and in the empty tower due to some of the media being scattered due to operating cells, combustion gas, etc., and the surface of the fluidized bed is originally as clear as the surface of water. Therefore, accurate detection is still difficult.

また目視部の形成のために火炉構造に対して特別配慮を
せねばならず、特に実用プラントにおいては安全上、経
済上問題がある。
In addition, special consideration must be given to the furnace structure in order to form the viewing section, which poses safety and economic problems, especially in practical plants.

この発明は上述した問題点に鑑み構成したものであり、
各セル内の流動媒体の流動化開始時期を正確に検知し得
る運転方法を提供することを目的とする。
This invention was constructed in view of the above-mentioned problems,
It is an object of the present invention to provide an operating method capable of accurately detecting the timing at which fluidization of a fluidizing medium in each cell begins.

要するにこの発明は、被起動セルにおいて流動化を開始
する時点に層内の温度上昇率が急激に高くなることに着
目し、この温度変化を検知することにより媒体の流動化
開始時期を検知することを内容とする方法である。
In short, this invention focuses on the fact that the rate of temperature rise in the layer rapidly increases at the time fluidization starts in the activated cell, and detects the timing at which fluidization of the medium starts by detecting this temperature change. This is a method in which the content is

次にこの発明の詳細な説明するのに先立って、流動化開
始時期と層内温度の上昇率の変化との関係について、発
明者等の実験結果も含めて考察する。
Next, prior to a detailed explanation of the present invention, the relationship between the fluidization start time and the change in the rate of increase in temperature in the bed will be discussed, including experimental results by the inventors.

第1図において、ボイラ本体1の多孔板2の下部には複
数の空気室3a、3b、3cが区画形成してあり、各空
気室に対する空気の供給、遮断を行うことによりその上
部の媒体を流動化させ、または停止させる。なお図示の
ものにおいては媒体層内には隔壁は形成していないが、
静止層高さの全部または一部の高さに隔壁を形成しても
よい。以下、各空気室の上部の媒体配置部を、隔壁の有
無に係りなく各々セルと称することにする。第1図の場
合においては空気室3a、3bに対して流動化空気が供
給され、その上部のセル4a、4bの媒体が流動化され
流動層を形成している。一方セル4cはこれから起動を
開始するところであり、空気室3cに対する空気供給量
を徐々に増加させているところである。空気供給量の増
加と共に静止層内には流動化空気が徐々に浸透し、流動
用空気で層中の加熱物の燃焼が徐々に行われ、または供
給空気が予熱されているとその熱により層温度が上昇し
始める。さらに空気供給量を増加し、媒体の流動化が開
始すると運転中の隣室4b等のセルから高温の媒体と急
激に混合するため層温度は急上昇する。
In FIG. 1, a plurality of air chambers 3a, 3b, and 3c are defined in the lower part of the perforated plate 2 of the boiler body 1, and by supplying and shutting off air to each air chamber, the medium in the upper part can be removed. cause fluidization or cessation. Note that in the illustrated example, partition walls are not formed within the medium layer;
The partition wall may be formed at all or part of the height of the stationary layer. Hereinafter, the medium arrangement portion above each air chamber will be referred to as a cell, regardless of the presence or absence of a partition wall. In the case of FIG. 1, fluidizing air is supplied to the air chambers 3a and 3b, and the medium in the cells 4a and 4b above them is fluidized to form a fluidized bed. On the other hand, the cell 4c is about to start up, and the amount of air supplied to the air chamber 3c is gradually increasing. As the amount of air supply increases, fluidizing air gradually penetrates into the stationary bed, and the fluidizing air gradually burns the heated material in the bed, or if the supplied air is preheated, the heat causes the bed to cool down. The temperature begins to rise. When the air supply amount is further increased and fluidization of the medium starts, the layer temperature rapidly increases because the medium is rapidly mixed with a high temperature medium from a cell such as the adjacent chamber 4b which is in operation.

以上の場合において、静止層にある程度燃料を投入して
おいた場合には流動化開始と共に燃料の燃焼状態が急激
に良好となり、層温度はより急速に上昇する。
In the above case, if a certain amount of fuel has been charged into the stationary bed, the combustion state of the fuel will suddenly improve as fluidization begins, and the bed temperature will rise more rapidly.

第2図は熱風炉を用いてセルの起動を行う場合について
示す。この場合にはセルの起動に当っては流動化空気と
して熱風炉5で加熱した空気を供給するようにしてあり
、セル4cの起動に当ってはこの熱風を供給する。熱風
の供給量を徐々に増加させると静止層内にこの加熱ガス
は浸透し、その層の温度は上昇するが、その層の昇温)
ま比較的緩かである。しかし流動化が開始するとこの静
止層であった部分の粒子と隣室の上部の高温媒体粒子と
の混合は急速に行なわれその層温度は急上昇する。この
場合発明者等は以上の小吏を実験的にも確認し、いづれ
のセル起動方法においても、セルの流動化開始と共にセ
ル内の温度(は急上昇することが確認できた。
FIG. 2 shows a case where a hot air stove is used to start up the cell. In this case, air heated by the hot blast furnace 5 is supplied as fluidized air when starting the cell, and this hot air is supplied when starting the cell 4c. When the supply of hot air is gradually increased, this heated gas penetrates into the stationary layer and the temperature of that layer increases;
Well, it's relatively lenient. However, when fluidization begins, the particles in this stationary layer rapidly mix with the high temperature medium particles in the upper part of the adjacent chamber, and the temperature of the layer rises rapidly. In this case, the inventors also experimentally confirmed the above-mentioned problem, and were able to confirm that in any cell startup method, the temperature inside the cell (temperature) rose rapidly as the cell began to fluidize.

第3図はこの発明の実施例を示す。図中流動層ボイラ本
体lの多孔板2の下部には空気室3a、3bが区画形成
してあり、その上部には隔壁6を介してセルフa、7b
が形成しである。
FIG. 3 shows an embodiment of the invention. In the figure, air chambers 3a and 3b are formed in the lower part of the perforated plate 2 of the fluidized bed boiler main body l, and air chambers 3a and 7b are formed in the upper part through the partition wall 6.
is formed.

ここでセルフbは運転中であり、かつセルフaをこれか
ら起動する場合を想定してこの実施例を示す。なお、各
センサ、制御部はセルフa側についてのみ図示している
が、他のセルに対してももとより取り付けである。8は
記憶と指令信号を発する制御箱であり、セルフaの起動
に当ってはタイマ9を介してダンパ1oの開度を徐々に
増加させる。すなわち、単位時間毎にダンパ開度を段階
的に増加させ、この単位時間内での層温度の変化を温度
検知器11により検知し、制御箱8に人力する。制御箱
8はこの検知結果により、単位時間当りの層内温度の上
昇率を算出し、単位時間における温度が急上昇した時点
をもってセルフaの流動化開始時を推定する。
Here, this embodiment will be described assuming that self-service b is in operation and self-service a is about to be started. Although each sensor and control section are shown only on the cell a side, they can be attached to other cells as well. Reference numeral 8 denotes a control box for storing memory and issuing command signals, and when starting the self-a, the opening degree of the damper 1o is gradually increased via a timer 9. That is, the damper opening degree is increased stepwise for each unit time, and changes in layer temperature within this unit time are detected by the temperature detector 11 and manually inputted to the control box 8. Based on this detection result, the control box 8 calculates the rate of increase in the temperature in the layer per unit time, and estimates the time when the fluidization of the self-a starts when the temperature in the unit time suddenly increases.

なお温度は検知器を層内に直接配置する外、流動層壁面
の外側に密着して配置することにより検知するようにし
て検知器の寿命を延長させることもできる。メンブレン
構造の壁面の場合に(j水管の影響のないフィン中央部
に配置すると良い。
In addition to directly arranging the detector within the bed, the temperature can also be detected by arranging the detector in close contact with the outside of the wall surface of the fluidized bed, thereby extending the life of the detector. In the case of a wall with a membrane structure (j), it is best to place it in the center of the fin where it will not be affected by the water pipe.

第4図はこの検知状態の一例を示す。被起動セルに対し
ては、単位時間1.を設定して、空気供給量を段階的に
増加させる。図示の場合には単位時問丸を10秒とし、
単位時間毎の空気増加量を2ooNm’/ hとする。
FIG. 4 shows an example of this detection state. For activated cells, unit time 1. to increase the air supply amount step by step. In the case shown, the unit time circle is 10 seconds,
Let the air increase amount per unit time be 2ooNm'/h.

最初の段階においては温度上昇は比較的少く、かつ上昇
率もほぼ一定している。しかし所定時間(図示のものは
約120秒)経過した時点において湿iは急上昇し流動
化開始が推定される。図示の場合は単位時間(1,) 
(図示例では10秒)に対する上昇温度(Te)が約8
℃に急上昇し、流動化開始が確認される。なお5℃以上
の温度上昇があれば流動化が開始していることが実験的
に確認できた。
In the first stage, the temperature rise is relatively small and the rate of rise is almost constant. However, after a predetermined period of time (approximately 120 seconds in the illustrated example), the humidity i suddenly increases, and it is assumed that fluidization has started. In the case shown, unit time (1,)
(10 seconds in the illustrated example), the temperature rise (Te) is approximately 8
℃, and the start of fluidization is confirmed. It was experimentally confirmed that fluidization started when the temperature increased by 5°C or more.

この時点でダンパlOの開度調節は一旦停止し、流動状
態を保持する。但し、この時点における空気供給量は流
動状態を保持−する最低流量であるからチャネリングや
バブリングを生じ易いので、以後空気供給量を適正に制
御する。以上空気供給を段階的に増加させる場合につい
て説明したが、もとよりこれに限るものではなく、ダン
パ開度を連続的に増大させる等して空気供給量を連続的
に増加させてもよい。但し、段階的増加の方が単位時間
当りの昇温率を検知するのは容易であると言える。
At this point, the adjustment of the opening degree of the damper IO is temporarily stopped and the fluid state is maintained. However, since the air supply amount at this point is the minimum flow rate that maintains the fluid state, channeling and bubbling are likely to occur, so the air supply amount is appropriately controlled from now on. Although the case where the air supply is increased in stages has been described above, the present invention is not limited to this, and the air supply amount may be increased continuously by, for example, increasing the damper opening degree continuously. However, it can be said that it is easier to detect the temperature increase rate per unit time with a stepwise increase.

以上の場合においてセル内の差圧を検知し、これに基づ
いて流動化開始時期を補促的に検知し、ごれを補正値と
して制御をより精密に行うよう構成するとよい。第3図
において、12は屑入口部と出口部との差圧を検知する
差圧検知器であり、この差圧も信号として制御箱8に人
力される。第5図はこの差圧△Pと層内に供給する空気
の流速との関係を示す。層内に供給する流動化空気の流
速を高めることにより差圧△Pは上昇し差圧PIにおい
て流動化を開始し、流動化開始と共に差圧はやや低下し
てP、となり以後流速を高めても差圧はほぼ一定)゛る
ことか知られている。この差圧P1の際の流動化開始速
度(UmfρからUm、4に低下する状態を検知するこ
とにより流動化開始時期を推定することができる。なお
、差圧Pの時点においては、以後の差圧変動の状態が不
明であるため流動化開始を検知することは困難である。
In the above case, it is preferable to detect the differential pressure within the cell, supplementarily detect the fluidization start time based on this, and use the dirt as a correction value to perform more precise control. In FIG. 3, numeral 12 is a differential pressure detector that detects the differential pressure between the waste inlet and outlet, and this differential pressure is also manually input to the control box 8 as a signal. FIG. 5 shows the relationship between this differential pressure ΔP and the flow rate of air supplied into the layer. By increasing the flow rate of the fluidizing air supplied into the bed, the differential pressure △P increases and fluidization starts at the differential pressure PI, and as fluidization begins, the differential pressure slightly decreases to P, and the flow rate is increased thereafter. It is also known that the differential pressure is almost constant. The fluidization start time can be estimated by detecting the state in which the fluidization start speed (Umfρ decreases from Um, 4) at this differential pressure P1. Since the state of pressure fluctuation is unknown, it is difficult to detect the start of fluidization.

以上により検知した結果を前述の層温度の変化に基づく
流動化開始推定の補正値として入力する。但し、ΔPと
空気ト速との関係は媒体粒子の性状等により大きく変動
し、かつPlからP、への変化も不明瞭な場合が今るの
でp、−p、の差圧変動のみでは流動化開始の推定はあ
まり正確に1′i行えない。なお第5図中UTは一個の
媒体粒子の自由落下終端速度であり、流速をこれ以上増
加させると媒体は全て空塔部に飛散してしまい流動層t
it消失する。従って流動層は空気流速をU m f、
からUTの間とすることにより保持される。第3図の符
号13は流動化気体の流量を検知する流量検知器であり
、流量を検知することにより制御箱8は空気流速を算出
する。なお、以上の場合運転停止中のセルに対しては燃
焼排ガスを1jじめとする不活性ガスを供給しておき「
おき」燃焼による灰分の溶融、固化を防止するようにし
てもよい。図中符号14はこのための、排ガス供給用管
路である。
The results detected as described above are input as correction values for the fluidization start estimation based on the change in layer temperature described above. However, the relationship between ΔP and the air velocity varies greatly depending on the properties of the media particles, and there are cases where the change from Pl to P is unclear, so it is important to note that only changes in the differential pressure between p and -p are enough to determine the flow. The estimation of the start of 1'i cannot be performed very accurately. Note that UT in Fig. 5 is the terminal velocity of free fall of one medium particle, and if the flow velocity is increased beyond this, all the medium will be scattered to the empty column, resulting in a fluidized bed t.
It disappears. Therefore, the fluidized bed has an air flow rate of U m f,
to UT. Reference numeral 13 in FIG. 3 is a flow rate detector that detects the flow rate of the fluidizing gas, and by detecting the flow rate, the control box 8 calculates the air flow velocity. In the above case, an inert gas containing 1J of combustion exhaust gas should be supplied to the cell whose operation is stopped.
It may also be possible to prevent the ash from melting and solidifying due to burning. Reference numeral 14 in the figure represents an exhaust gas supply conduit for this purpose.

この発明を実施することにより各セルの流動化開始時期
が正確に検知でき、蒸気条件に変動を与えることなくセ
ルの運転、停止が自由に行える。また流動化していない
層の上面又は層中に予め若干の燃料を供給しておくとき
はその層の燃焼開始即ち起動を容易のものにできる。
By carrying out this invention, the fluidization start timing of each cell can be accurately detected, and the cells can be operated and stopped freely without changing the steam conditions. Furthermore, when a small amount of fuel is previously supplied to the top of or into the non-fluidized bed, it is possible to facilitate the initiation of combustion in that bed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はセル毎の運転状態を示す流動層ボイ
ラの断面図、第3図1はこの発明に係る方法を実施する
ための流動層ボイラの断面及び制御系統を示す図、第4
図は層温度、流動化空気量と時間との関係を示す線図、
第5図は差圧△Pと空気流速との関係を示す線図である
。 1・・・・・・流動層ボイラ本体 7a、7b・・・・・・セル 8・・・・・・制御箱 11・・・・・・湿度検知器 12・・・・・・差圧検知器 13・・・・・・流量検知器
1 and 2 are cross-sectional views of a fluidized bed boiler showing the operating status of each cell, FIG. 4
The figure is a diagram showing the relationship between bed temperature, fluidized air amount, and time.
FIG. 5 is a diagram showing the relationship between differential pressure ΔP and air flow velocity. 1... Fluidized bed boiler main body 7a, 7b... Cell 8... Control box 11... Humidity detector 12... Differential pressure detection Device 13...Flow rate detector

Claims (1)

【特許請求の範囲】 1、 複数のセルを有する流動層燃焼装置の各セル毎の
運転、停止を制御する方法において、運転停止中のセル
を起動するに当り、同セルに対する流動化気体の供給量
を漸次増加するよう制御し、かつ単位時間におけるセル
内の温度変化を検知し、単位時間における温度が急増し
た時点の空気量を流動化開始空気量とみなすことを特徴
とする流動層燃焼装置の運転方法。 2、前記単位時間を約10秒とし、この単位時間におけ
る温度上昇が約5℃以上の時点を流動化開始時とみなす
ことを特徴とする特許請求の範囲第1項記載の流動層燃
焼装置の運転方法。 3、 運転停止中のセルに対して不活性ガスを供給する
ことを特徴とする特許請求の範囲第1項または第2項記
載の流動層燃焼装置の運転方法。 4・ 流動層の流動化気体入口部と出口部との差圧を検
知し、差圧の変動を前記制御の補正値として制御するこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
づれかに記載の流動層燃焼装置の運転方法。
[Claims] 1. In a method for controlling the operation and stop of each cell of a fluidized bed combustion apparatus having a plurality of cells, when starting a cell that is not in operation, supplying fluidizing gas to the cell A fluidized bed combustion device characterized in that the amount of air is controlled to increase gradually, the temperature change in the cell is detected in a unit time, and the amount of air at the time when the temperature in the unit time sharply increases is regarded as the amount of air at which fluidization starts. How to drive. 2. The fluidized bed combustion apparatus according to claim 1, wherein the unit time is about 10 seconds, and the time point when the temperature rise in this unit time is about 5° C. or more is regarded as the fluidization start time. how to drive. 3. A method for operating a fluidized bed combustion apparatus according to claim 1 or 2, characterized in that an inert gas is supplied to the cells that are not in operation. 4. Claims 1 to 3 are characterized in that the differential pressure between the fluidizing gas inlet and outlet of the fluidized bed is detected, and the variation in the differential pressure is controlled as a correction value for the control. A method of operating a fluidized bed combustion apparatus according to any one of the above.
JP6329284A 1984-04-02 1984-04-02 Method of operating fluidized-bed burner Granted JPS60207809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329284A JPS60207809A (en) 1984-04-02 1984-04-02 Method of operating fluidized-bed burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329284A JPS60207809A (en) 1984-04-02 1984-04-02 Method of operating fluidized-bed burner

Publications (2)

Publication Number Publication Date
JPS60207809A true JPS60207809A (en) 1985-10-19
JPH0359323B2 JPH0359323B2 (en) 1991-09-10

Family

ID=13225101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329284A Granted JPS60207809A (en) 1984-04-02 1984-04-02 Method of operating fluidized-bed burner

Country Status (1)

Country Link
JP (1) JPS60207809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165884A (en) * 1991-07-05 1992-11-24 Thermatrix, Inc. Method and apparatus for controlled reaction in a reaction matrix
WO1993001446A1 (en) * 1991-07-05 1993-01-21 In-Process Technology, Inc. Method and apparatus for controlled reaction in a reaction matrix

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165884A (en) * 1991-07-05 1992-11-24 Thermatrix, Inc. Method and apparatus for controlled reaction in a reaction matrix
WO1993001446A1 (en) * 1991-07-05 1993-01-21 In-Process Technology, Inc. Method and apparatus for controlled reaction in a reaction matrix

Also Published As

Publication number Publication date
JPH0359323B2 (en) 1991-09-10

Similar Documents

Publication Publication Date Title
EP2031301B1 (en) Control of CFB boiler utilizing accumulated char in bed inventory
JPH0472122B2 (en)
GB2397115A (en) Ash melting type u-firing combustion boiler and method of operating the boiler
JP2002286216A (en) Operation method for circulated fluidized bed
RU2059150C1 (en) Fluidized-bed boiler and its control method
JPS60207809A (en) Method of operating fluidized-bed burner
JPH0378521B2 (en)
JPH0368288B2 (en)
JPH10318517A (en) Method of controlling combustion of fluidized bed incinerator and combustion controlling device
JPS59225209A (en) Control method for height of fluidized bed and device thereof
JPH0122539B2 (en)
JPS61173011A (en) Fluidized bed combustion equipment
JP2795957B2 (en) Combustion control method for waste incinerator
JPH036407B2 (en)
JP2000179821A (en) Method and apparatus for controlling hearth temperature of fluidized bed incinerator
JP2686343B2 (en) Circulating fluidized bed combustor control method
JP2728733B2 (en) Combustion equipment
KR100559699B1 (en) Distributor system for optimum air supply in fluidized bed ash cooler
JPH04124506A (en) Controller of medium particle volume of circulating fluidized bed boiler
JPH09229312A (en) Fluidized bed boiler
JPH064172Y2 (en) Reactor pressure control device for fluidized bed combustor
JP2758167B2 (en) Fluidized bed boiler
JPH11148608A (en) Pressurized fluidized bed combined power generation system and its control method
JPS62297604A (en) Control method for bed temperature in multi-fuel combustion fluidized bed boiler
JP2000161601A (en) Fluidized bed combustion boiler and controller therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees