JPS60207803A - Boiler device - Google Patents

Boiler device

Info

Publication number
JPS60207803A
JPS60207803A JP6215684A JP6215684A JPS60207803A JP S60207803 A JPS60207803 A JP S60207803A JP 6215684 A JP6215684 A JP 6215684A JP 6215684 A JP6215684 A JP 6215684A JP S60207803 A JPS60207803 A JP S60207803A
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler
ammonia
gas recirculation
recirculation duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215684A
Other languages
Japanese (ja)
Inventor
敏夫 村上
石川 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6215684A priority Critical patent/JPS60207803A/en
Publication of JPS60207803A publication Critical patent/JPS60207803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は脱硝装置を備えたボイラ装置に係シ、%に乾式
脱硝装置をポ・fうの後流に配置して排ガス中の窒素酸
化物を除去するボイラ装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a boiler device equipped with a denitrification device, and the present invention relates to a boiler device equipped with a denitrification device. This invention relates to a boiler device that removes .

〔発明の背景〕[Background of the invention]

近年、発電需要が増大するにつれて、化石燃料を主燃料
とするボイラも大型化し、発電用ボイラが大気汚染に与
える影響度も増加しつつある。
In recent years, as the demand for power generation has increased, boilers that use fossil fuels as their main fuel have become larger, and the influence of power generation boilers on air pollution is also increasing.

この大気汚染を拡大する公害物質のうち、多大な比率を
しめるNOxの排出規制は年々きびしくなる傾向にある
Emission regulations for NOx, which accounts for a large proportion of the pollutants that increase air pollution, are becoming stricter year by year.

一方、ボイラが大型化する一方で発電コストを低下する
目的で発電需要に応じて頻繁な負荷変動を行なうために
一日単位でボイラの起動、停止、部分負荷運転などの運
転が繰返されている。
On the other hand, as boilers become larger, boiler operations such as starting, stopping, and partial load operation are repeated on a daily basis in order to frequently change load according to power generation demand in order to reduce power generation costs. .

それは最近の電力需要の特徴として、原子力発電の伸び
と共に、負荷の最大、最小差も増大し、火力発電用ボイ
ラをベースロード用から負荷調整用へとその運転範囲を
移行する傾向にあり、このために火力発電用ボイラを負
荷に応じて圧力を変化させて変圧運転する、いわゆる全
負荷時には超臨界圧域、部分負荷時には亜臨界圧域で運
転する変圧運転ボイラとすることによって、部分負荷で
の発電効率を数チ向上させることができるからである。
As a feature of recent electricity demand, with the growth of nuclear power generation, the difference between maximum and minimum loads has also increased, and there is a tendency for boilers for thermal power generation to shift their operating range from base load to load adjustment. To achieve this, thermal power generation boilers are operated at variable pressure by changing the pressure according to the load, so-called variable pressure boilers that operate in a supercritical pressure region at full load and in a subcritical pressure region at partial load. This is because the power generation efficiency can be improved by several orders of magnitude.

ところが、この様に一日単位で頻繁に起動、停止、負荷
変動を行うことはボイラ側Kqいては好都合であるが、
脱硝装置例では好ましくない。
However, although it is convenient for the boiler to frequently start, stop, and change the load on a daily basis,
This is not preferred in the case of a denitrification device.

それは脱硝装置の脱硝媒体は辿常300°C以上で高活
性を示し、一般にはボイラの節炭器と空気予熱器の間に
脱硝装置が設置され、350°C前後の温度で反応を行
わせるが、前後のボイラ負荷の変動によって、全負荷時
には節炭器出口の排ガス温度が3500C前後であるの
に対し、1/2負荷運転時には350°C前後、1/4
負荷運転時には270’C位tで低下して脱硝性能が低
下するからである。
The reason is that the denitrification medium in the denitrification equipment usually shows high activity at temperatures above 300°C, and the denitrification equipment is generally installed between the boiler's economizer and the air preheater, and the reaction takes place at a temperature of around 350°C. However, due to fluctuations in the boiler load before and after the boiler, the exhaust gas temperature at the exit of the economizer is around 3500C during full load operation, while it is around 350°C during 1/2 load operation, and 1/4
This is because during load operation, the temperature decreases at about 270'C and the denitrification performance deteriorates.

また、排ガス温度が低下しすぎると、排ガス中とNHs
が反応して酸性硫安(NH4I S 04 ) 、硫安
((NH4)2 SO4) 、亜硫安C(NH42S 
Oa ) j等を生成し、これらが触媒表面に付着して
脱硝性能を低下させることになる。
In addition, if the exhaust gas temperature drops too much, NHs in the exhaust gas
reacts to form acidic ammonium sulfate (NH4I S 04 ), ammonium sulfate ((NH4)2 SO4), ammonium sulfite C (NH42S
Oa ) j, etc. are produced, and these adhere to the catalyst surface and reduce the denitrification performance.

第1図は従来のボイラにおける概略系統図であるO 第1図において、1はボイラの火炉、2はボイラの対流
伝熱部、3,4.5はボイラの対流伝熱部2に配置され
た過熱器、再熱器および節炭器、6は入口煙道、7f′
i、出口煙道、8は脱硝装置、9は火炉1の底部、10
は排ガス再循環ダク)、11は排ガス再循環ファン、1
2は給水ポンプ、13は給水加熱器、14は給水管、1
5f′iアンモニア注入管である。
Figure 1 is a schematic system diagram of a conventional boiler. superheater, reheater and economizer, 6 is inlet flue, 7f'
i, outlet flue, 8, denitrification device, 9, bottom of furnace 1, 10
is an exhaust gas recirculation duct), 11 is an exhaust gas recirculation fan, 1
2 is a water supply pump, 13 is a water supply heater, 14 is a water supply pipe, 1
5f'i ammonia injection pipe.

この様な構造において、ボイラの火炉Iで発生した排ガ
スは、対流伝熱部2へ流れ過熱器3、再熱器4、節炭器
5へ流れる。
In such a structure, exhaust gas generated in the furnace I of the boiler flows to the convection heat transfer section 2, and then to the superheater 3, reheater 4, and energy saver 5.

この過熱器3と節炭器5の間にはアンモニア注入管工5
が配置されており、アンモニア注入管15からのアンモ
ニアと排ガスは節炭器5の管群間を通過する間に管群自
体、あるいは管群の後流側に発生するカルマン渦などに
よって均一に混合され、入口煙道6を経て脱硝装置8に
至り、触媒の働き1 によシ脱硝反応が起シ、無害化さ
れた後に出口煙道71:経て、図示していない空気予熱
器で熱回収され大気へ放出される。
Ammonia injection pipe work 5 is installed between the superheater 3 and the economizer 5.
is arranged, and while the ammonia and exhaust gas from the ammonia injection pipe 15 pass between the tube groups of the economizer 5, they are uniformly mixed by the tube group itself or the Karman vortex generated on the downstream side of the tube group. The denitrification reaction occurs through the inlet flue 6 to the denitrification device 8, where a denitrification reaction occurs due to the action of the catalyst 1, and after the denitrification reaction is rendered harmless, the heat is recovered through the outlet flue 71 by an air preheater (not shown). Released into the atmosphere.

一方、この種の発電用ボイラにおいては、その負荷ので
きるだけ広い範囲にわたって、過熱器3、再熱器4出口
の蒸気温度を一定に保っことが発電プラント効率を維持
するために必要であシ、このために火炉4での熱吸収量
をおさえ、対流伝熱部2の熱吸収ガトを上げるために排
ガス再循環が行なわれている。
On the other hand, in this type of power generation boiler, it is necessary to maintain the steam temperature at the outlet of the superheater 3 and reheater 4 constant over the widest possible load range in order to maintain the efficiency of the power generation plant. For this reason, exhaust gas recirculation is performed to suppress the amount of heat absorbed in the furnace 4 and to increase the amount of heat absorption in the convection heat transfer section 2.

つまり、低負荷運転に入ると入口煙道6がら火炉4の底
部9へ排ガス再循環ダク)10.排ガス再循環ファン1
1によシ排ガスの一部を火炉l内に投入するととKよっ
て、ボイラの火炉1内での熱吸収量を減少させるととも
に、対流伝熱部2内を流れる排ガス温度を高め、これK
よって実賀的に過熱器3、再熱器4での熱吸収量を増加
させて蒸気温度を一定に保っためである。
That is, when entering low load operation, the exhaust gas recirculation duct from the inlet flue 6 to the bottom 9 of the furnace 4)10. Exhaust gas recirculation fan 1
1, when a part of the exhaust gas is introduced into the furnace 1, the amount of heat absorbed in the furnace 1 of the boiler is reduced, and the temperature of the exhaust gas flowing in the convection heat transfer section 2 is increased, which increases the temperature of the exhaust gas flowing through the convection heat transfer section 2.
Therefore, this is because the amount of heat absorbed by the superheater 3 and reheater 4 is increased to keep the steam temperature constant.

他方、ボイラへの給水は給水ポンプ12によシ給水加熱
器13、給水管14を経て節炭器5、火炉1へと供給さ
れる。
On the other hand, the water supplied to the boiler is supplied to the energy saver 5 and the furnace 1 via a water supply pump 12, a water supply heater 13, and a water supply pipe 14.

以上はボイラの排ガス、給水等の一般的な流動状態の説
明であるが、前述したように一日単位で起動、停止、負
荷変動を行なうボイラ装置においては以下の様な欠点が
ある。
The above is an explanation of the general flow state of boiler exhaust gas, water supply, etc. However, as mentioned above, boiler systems that start, stop, and change the load on a daily basis have the following drawbacks.

すなわち、節炭器5の入口にアンモニア注入管15を配
置してアンモニアを注入しているために、アンモニアの
一部は排ガス再循環ダクト10ヲ経て循環排ガスと共に
火炉1へ渡れ、この火炉1で一部のアンモニアは窒素と
水に分解されるが、他の一部は酸化されて窒素酸化物(
NOx)になって消費されてしまうことである。
That is, since the ammonia injection pipe 15 is arranged at the inlet of the economizer 5 to inject ammonia, a part of the ammonia passes through the exhaust gas recirculation duct 10 to the furnace 1 together with the circulating exhaust gas, and is recycled in the furnace 1. Some ammonia is decomposed into nitrogen and water, but some is oxidized to form nitrogen oxides (
NOx) and are consumed.

つまシ、火炉1へ供給される炉料蚤が一定であれば、循
環411ガス量を変えても入口煙道6より脱硝装置8へ
至る排ガス量は一定であるにも拘わらず、アンモニアの
みが循環排ガスと共に火炉1へ流れて消費されてし、甘
うために、再循環排ガス弾の増減に伴ってアンモニア注
入管15からのアンモニア注入上−を変化させる必要が
あり制御上問題視されている。
However, if the amount of furnace feed fleas supplied to the furnace 1 is constant, even if the amount of circulating 411 gas is changed, only ammonia will be circulated even though the amount of exhaust gas from the inlet flue 6 to the denitrification device 8 is constant. Since the ammonia flows into the furnace 1 together with the exhaust gas and is consumed, it is necessary to change the amount of ammonia injected from the ammonia injection pipe 15 as the number of recirculated exhaust gas bombs increases or decreases, which poses a control problem.

また、再循環排ガス月は前述した如く淋気温度コントロ
ールを目的として行なうものであり、この循環排ガス量
が最大の場合でもアンモニア注入量が不足しないように
常時最大循環排ガス量を想定してアンモニア注入量全制
御する場合もあシ、いずれにしても余分なアンモニアを
注入しなければならない欠点がある。
In addition, as mentioned above, recirculating exhaust gas is carried out for the purpose of controlling the temperature of the air, and in order to avoid insufficient ammonia injection even when the amount of recycled exhaust gas is at its maximum, ammonia is always injected assuming the maximum amount of circulating exhaust gas. Although it is possible to completely control the amount of ammonia, there is a drawback that excess ammonia must be injected in any case.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来の欠点全解消しようとするもので、
その目的とするところ・け、起動、停止、部分負荷運転
f:hThシ返すボイラ装置であってもアンモニアの消
費力1−が少なくてすみ、しかも熱回収効率の優れたボ
イラ装置を得ようとするものである0 〔発明の概要〕 本発明は前述の目的f:達成するために、アンモニア注
入管の上流から火炉の底部へ排ガス再循環ダクトを設け
、この排ガス再循環ダクトに結水、穿気等の被加熱媒体
と排ガスが熱交換する熱交換器を配置したのである。
The present invention aims to eliminate all such conventional drawbacks,
The purpose of this is to obtain a boiler device that consumes less ammonia and has excellent heat recovery efficiency even in a boiler device that returns start, stop, and partial load operation f: hTh. [Summary of the Invention] In order to achieve the above-mentioned objective f, the present invention provides an exhaust gas recirculation duct from upstream of the ammonia injection pipe to the bottom of the furnace, and prevents water condensation and perforation in the exhaust gas recirculation duct. A heat exchanger was installed to exchange heat between the heated medium such as air and the exhaust gas.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を用いて駅間する。 Examples of the present invention will be explained below using drawings.

第2図、第3図は本発明の実′Mu例に係るボイラ装置
の概略系統図である。
FIGS. 2 and 3 are schematic system diagrams of a boiler apparatus according to a practical example of the present invention.

第2図において、符号1〜15までは従来のものと同一
のものを示し、16は排ガス再循環ダクト10の途中に
設けた熱交換器で、第2図の熱交換器16は給水と再循
環ガスが熱交換する副節炭器でもある0 この様な構造において、第1図に示した従来のボイラ装
置と異る点は、排ガス再循環ダクト10はアンモニア注
入管15の上流側から循環排ガス全敗り出し、この排ガ
ス再循環ダクト10に副節炭器16を配置した点である
In FIG. 2, numerals 1 to 15 indicate the same parts as the conventional ones, and 16 is a heat exchanger installed in the middle of the exhaust gas recirculation duct 10. The heat exchanger 16 in FIG. It is also an auxiliary economizer in which the circulating gas exchanges heat. In this structure, the difference from the conventional boiler device shown in FIG. The point is that all the exhaust gas is exhausted and a sub economizer 16 is disposed in this exhaust gas recirculation duct 10.

従って、排ガス再循環ダクト10内へはアンモニア注入
管15の上流側から再循環排ガスが分流されるために再
循環ガス供給時であってもこの排ガス再循環ダクト10
内へアンモニアが流入しないのでそれだけアンモニアの
消費量も少なくなる。
Therefore, since the recirculated exhaust gas is diverted into the exhaust gas recirculation duct 10 from the upstream side of the ammonia injection pipe 15, even when recirculation gas is being supplied, the exhaust gas recirculation duct 10
Since ammonia does not flow into the tank, the amount of ammonia consumed decreases accordingly.

゛また、給水ポンプ12からの給水は給水加熱器13、
副節炭器16、給水管14ヲ経て節炭器5へ流れるが、
この副節炭器16では排ガス再循環ダクトlo内の再循
環排ガスの排熱を熱回収するために再循環排ガス温度を
低くし、しかも節炭器5での熱吸収量が低下するために
入口煙道6の排ガス温度を高め、脱硝装置8での脱硝性
能の向上が計れると共K、副節炭器16での熱回収効率
を上昇させることができる。
゛Also, the water supplied from the water supply pump 12 is supplied to a water supply heater 13,
The water flows through the sub economizer 16 and the water supply pipe 14 to the economizer 5,
This auxiliary economizer 16 lowers the temperature of the recirculated exhaust gas in order to recover the exhaust heat of the recirculated exhaust gas in the exhaust gas recirculation duct lo. By increasing the temperature of the exhaust gas in the flue 6, the denitrification performance of the denitrification device 8 can be improved, and the heat recovery efficiency of the auxiliary economizer 16 can be increased.

第3図のものは他の実施例を示したボイラ装置の概略系
統図である。
FIG. 3 is a schematic system diagram of a boiler device showing another embodiment.

第3図において、符号1〜16は第2図のものと同一の
ものを示し、17.18は希釈用空気の入口管および出
口管、19はアンモニア供給管、20は混合器である。
In FIG. 3, numerals 1 to 16 are the same as those in FIG. 2, 17 and 18 are inlet and outlet pipes for dilution air, 19 is an ammonia supply pipe, and 20 is a mixer.

この様な構造において、第2図のものと異る点は、第2
図のものにおいては熱交換器16を副節炭器として用い
たのに対し、8r!3図のものにおいてはこの熱交換器
16をアンモニアの希釈用空気の昇温器に用いた点であ
る。
In this structure, the difference from the one in Figure 2 is that the second
In the one shown, the heat exchanger 16 was used as a sub-economy device, whereas the 8r! In the one shown in FIG. 3, this heat exchanger 16 is used as a temperature riser for air for diluting ammonia.

そして、給水の流れは第1図のものと同一であり、排ガ
ス再循環ダクト10内の再循環排ガスの流れは第2図の
ものと同一であるので説明は省略するが、希釈用空気は
入口管17、昇温器16によって加熱され、出口管18
よシ混合器20内でアンモニア供給管19からのアンモ
ニアと混合されてアンモニア注入管15から排ガス中へ
注入される。
The flow of water supply is the same as that in Figure 1, and the flow of recirculated exhaust gas in the exhaust gas recirculation duct 10 is the same as that in Figure 2, so explanations will be omitted. The tube 17 is heated by the temperature riser 16, and the outlet tube 18
It is mixed with ammonia from the ammonia supply pipe 19 in the mixer 20 and injected into the exhaust gas from the ammonia injection pipe 15.

つまり、アンモニア注入管15からのアンモニアガスは
アンモニアガスの安全性(爆発下限界15.6チ)の面
と排ガス中への拡散性の面からアンモニアガスを約5チ
以下の濃度に希釈用空気で希釈して使用されているが、
本発明においてはこの希釈用空気は昇温器16による再
循環排ガスからの熱回収によって得ることができ、希釈
用空気のためにわざわざ高温に加熱した燃焼用空気を減
温して用いる必要はなく、熱回収効率も優れる。
In other words, the ammonia gas from the ammonia injection pipe 15 is used to dilute the ammonia gas to a concentration of about 5 cm or less in terms of safety (lower explosive limit of 15.6 cm) and diffusion into the exhaust gas. It is used diluted with
In the present invention, this dilution air can be obtained by recovering heat from the recirculated exhaust gas using the temperature riser 16, and there is no need to take the trouble to lower the temperature of combustion air that has been heated to a high temperature for dilution air. , heat recovery efficiency is also excellent.

〔発明の効果〕〔Effect of the invention〕

本発明はアンモニア注入管の上流から火炉の底部へ排ガ
ス再循環ダクトを設け、この排ガス再循環ダクトに被加
熱媒体を加熱する熱交抄器を配置したので、起動、停止
、部分負荷運転を繰り返すボイラ装置であってもアンモ
ニアの消費量が少なくなり、熱回収効率の優れたボイラ
装置を得ることができる。
In the present invention, an exhaust gas recirculation duct is provided from upstream of the ammonia injection pipe to the bottom of the furnace, and a heat exchanger for heating the medium to be heated is placed in this exhaust gas recirculation duct, so that startup, shutdown, and partial load operation are repeated. Even in a boiler device, the amount of ammonia consumed is reduced, and a boiler device with excellent heat recovery efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のボイラ装置の概略系統図、第2図および
第3図は本発明の実施例に係るボイラ装5′の概、略系
統図である。 1・・・・・・ボイラ火炉、2・・・・・・対流伝熱部
、5・・・・・・節炭器、6・・・・・・入口ダクト、
8・・・・・・脱硝装置、9・・・・・・底部、10・
・・・・・排ガス再循環ダクト、15・・・・・・アン
モニア注入管、16・・・・・・熱交換器。 第1図 第2図 第3図
FIG. 1 is a schematic system diagram of a conventional boiler system, and FIGS. 2 and 3 are schematic system diagrams of a boiler system 5' according to an embodiment of the present invention. 1...Boiler furnace, 2...Convection heat transfer section, 5...Coal economizer, 6...Inlet duct,
8...Denitrification device, 9...Bottom, 10.
... Exhaust gas recirculation duct, 15 ... Ammonia injection pipe, 16 ... Heat exchanger. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ボイラの対流伝熱部にアンモニア注入管と節炭器を配置
し、との節炭器出口からボイラ火炉の底部へ排ガスを再
循環する排ガス再循環ダクトと、節炭器出口から脱硝装
置へ排ガスを導く入口煙道を設け、排ガス中の窒素酸化
物を脱硝するものにおいて、前記アンモニア注入管の上
流から火炉の底部へ排ガス再循環ダクトを設け、この排
ガス再循環ダクトに被加熱媒体を加熱する熱交換器を配
置したことを性徴とするボイラ装置。
An ammonia injection pipe and an economizer are arranged in the convection heat transfer section of the boiler, and an exhaust gas recirculation duct recirculates the exhaust gas from the economizer outlet to the bottom of the boiler furnace, and an exhaust gas recirculation duct recirculates the exhaust gas from the economizer outlet to the denitration equipment. In a device that denitrates nitrogen oxides in the exhaust gas, an exhaust gas recirculation duct is provided from upstream of the ammonia injection pipe to the bottom of the furnace, and the medium to be heated is heated in the exhaust gas recirculation duct. A boiler device characterized by the placement of a heat exchanger.
JP6215684A 1984-03-31 1984-03-31 Boiler device Pending JPS60207803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215684A JPS60207803A (en) 1984-03-31 1984-03-31 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215684A JPS60207803A (en) 1984-03-31 1984-03-31 Boiler device

Publications (1)

Publication Number Publication Date
JPS60207803A true JPS60207803A (en) 1985-10-19

Family

ID=13191965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215684A Pending JPS60207803A (en) 1984-03-31 1984-03-31 Boiler device

Country Status (1)

Country Link
JP (1) JPS60207803A (en)

Similar Documents

Publication Publication Date Title
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
RU2543096C1 (en) METHOD AND DEVICE FOR SELECTIVE CATALYTIC REDUCTION OF NOx IN POWER BOILER
US5423272A (en) Method for optimizing the operating efficiency of a fossil fuel-fired power generation system
CN104028104B (en) Be provided with denitrification apparatus and the generating set of economizer recirculating system
JP2554101B2 (en) Exhaust gas boiler
KR0143441B1 (en) Exhaust gas boiler
JPS6017967B2 (en) Exhaust heat recovery boiler equipment
JPH0429923B2 (en)
CN105318313B (en) A kind of smoke waste heat utilization system based on SCR denitration device
US5555849A (en) Gas temperature control system for catalytic reduction of nitrogen oxide emissions
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
CN105091008A (en) Temperature-controllable selective catalytic reduction (SCR) denitration reaction catalytic device of thermal power plant
EP0189917B1 (en) Apparatus for treating flue gas
CN106556022B (en) A kind of high temperature cigarette cooler-steam air heater system suitable for SCR denitration system
CN210473607U (en) Full-load SCR denitration system of coal-fired boiler
CN216790156U (en) Be applied to hot water circulating system of subcritical power plant boiler full load denitration
JPS60207803A (en) Boiler device
CN114017766A (en) Hot water circulating system and method applied to full-load denitration of subcritical power station boiler
JP7494340B1 (en) Boiler system and method for operating the boiler system
JPH01281322A (en) Composite plant and its operation
JPS62202902A (en) Exhaust-heat recovery boiler device
JPH086883B2 (en) Exhaust heat recovery boiler
JPS58124107A (en) Operation of denitrating device for combined plant
JPH0440057B2 (en)