JPS60207110A - Image forming optical system with variable aberration - Google Patents

Image forming optical system with variable aberration

Info

Publication number
JPS60207110A
JPS60207110A JP6498184A JP6498184A JPS60207110A JP S60207110 A JPS60207110 A JP S60207110A JP 6498184 A JP6498184 A JP 6498184A JP 6498184 A JP6498184 A JP 6498184A JP S60207110 A JPS60207110 A JP S60207110A
Authority
JP
Japan
Prior art keywords
optical system
imaging optical
medium
aberration
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6498184A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Takeshi Baba
健 馬場
Yukio Nishimura
征生 西村
Atsushi Someya
染谷 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6498184A priority Critical patent/JPS60207110A/en
Publication of JPS60207110A publication Critical patent/JPS60207110A/en
Priority to US07/290,806 priority patent/US4865426A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control an image forming state by arranging a heat generating resistor which heats a medium so that an isolated position of the medium is heated independently. CONSTITUTION:One side of the heat generating resistor 4 is connected to a voltage impressing means 11 through an electrode 5, and the other is grounded or held at a constant potential. When the heat generating resistor 4 is impressed with a voltage by a voltage impressing means shown in a figure, a current flow in the heat generating resistor 4 to form a refractive index in the heat-effect medium 2, and the impressed voltage or the pulse impression time of a periodic pulse voltage is varied in this case to vary the heating value. Thus, the heating value varies and then the refractive index distribution in the heat-effect medium 2 also varies.

Description

【発明の詳細な説明】 本発明は、収差の状態を変化させることが可゛能な結像
光学系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging optical system capable of changing the state of aberration.

従来よシ結像光学系に於いては、収差を改良する為に、
又はソフトフォーカスの如く所定の収差を発生させる為
に収差を制御することが行なわれている。
Conventionally, in imaging optical systems, in order to improve aberrations,
Alternatively, aberrations are controlled to generate predetermined aberrations, such as in soft focus.

一般に、球面レンズ群により構成される光学系において
、収差を補正するために一部面形状に非球面レンズが用
いられている。しかしながら非球面レンズの加工は、高
度の技術を必要とし、従って非當に高価なものになると
いう欠点がある。
Generally, in an optical system composed of a spherical lens group, an aspherical lens is used as a part of the surface to correct aberrations. However, the processing of aspherical lenses has the disadvantage that it requires advanced technology and is therefore prohibitively expensive.

更に、写真レンズ等において、入射瞳を特殊な形状に形
成することによりソフトフォーカス機能を有するものが
ある。しかしながら、このような方法においては、開口
絞り径を変化すると、ソフトフォーカスは、該絞り径の
変化に対応して機能するため、ソフトフォーカス機能に
自由度を要求する撮影者に不都合である。
Furthermore, some photographic lenses have a soft focus function by forming an entrance pupil in a special shape. However, in such a method, when the diameter of the aperture diaphragm is changed, the soft focus functions in response to the change in the diameter of the aperture, which is inconvenient for photographers who require flexibility in the soft focus function.

本発明の目的は、収差状態、換言すれば結像状態を制御
する事が可能な結像光学系を提供することにある。
An object of the present invention is to provide an imaging optical system that can control the aberration state, in other words, the imaging state.

本発明の更なる目的は、結像面上での任意の部分の結像
特性を変化させることが可能な結像光学系を提供するこ
とにある。
A further object of the present invention is to provide an imaging optical system that can change the imaging characteristics of any part on the imaging surface.

本発明に係る結像光学系に於いては、熱によシ充分にそ
の屈折率が変化する媒体中に111(折率分布を形成出
来る光学素子を結像光学系内に配し、該光学素子の屈折
率分亜で入射光束の方向を変化させる現象を結像光学系
内で利用することにより上記目的を達成せんとするもの
である。
In the imaging optical system according to the present invention, an optical element capable of forming a refractive index distribution (111) is arranged in the imaging optical system in a medium whose refractive index is sufficiently changed by heat. The objective is to be achieved by utilizing within an imaging optical system the phenomenon of changing the direction of an incident light beam depending on the refractive index of the element.

本発明に係る結像光学系内に配される前記光学素子の媒
体に熱を与える手段は、媒体の複数の位置に独立して熱
を与える手が可能な手段で構成されている。従って結像
光学系を伝達する光束に対し、光学系内の任意の位置で
、伝達光束の断面内に於ける任意の部分の光束に対して
偏向作用を与える事が可能である。前記熱を与える手段
で最も一般的なものは、発熱抵抗体と該抵抗体に電圧を
印加する手段との組合わせであシ、この際、熱効果媒体
に対して設けられる発熱抵抗体のパターンは、目的に沿
って所望のパターン形状を取る事が可能である。
The means for applying heat to the medium of the optical element disposed in the imaging optical system according to the present invention is constituted by a means capable of applying heat independently to a plurality of positions on the medium. Therefore, it is possible to apply a deflection effect to the light beam transmitted through the imaging optical system at any position within the optical system and at any arbitrary portion within the cross section of the transmitted light beam. The most common means for applying heat is a combination of a heating resistor and a means for applying voltage to the resistor, and in this case, the pattern of the heating resistor provided to the heat effect medium is It is possible to take a desired pattern shape according to the purpose.

本発明に係る結像光学系としては、透過型。The imaging optical system according to the present invention is a transmission type.

反射型、透過反射型がすべて含−まれることはdうまで
もないが、前記光学素子も透過型及び反射型のいずれも
使用可能である。
It goes without saying that both reflective and transmissive types are included, but both transmissive and reflective optical elements can be used.

本発明に係る結像光学系に用いられる光学素子の熱効果
媒体としては、負の屈折率の温度係数を持つものとして
は、液体ではエチルアルコール、ベンゼン、エチルエー
テル、ヨウ化メチレン、水、四塩化炭素etc固体では
ポリスチレン、ポリシクロへギシルメタクリレート、ポ
リメチルメタアクリレート、螢石(caF2)、岩塩。
As the thermal effect medium of the optical element used in the imaging optical system according to the present invention, examples of liquids having a temperature coefficient of negative refractive index include ethyl alcohol, benzene, ethyl ether, methylene iodide, water, and Carbon chloride etc. Solids include polystyrene, polycyclohegyl methacrylate, polymethyl methacrylate, fluorite (caF2), and rock salt.

水晶、石英ガラス、F’に5 (商品名:小原光学社製
)、又正の屈折率の温度係数を持つものとしては、ニオ
ブ酸リチウム(LiNbO5)、方解石、BK7 、 
BF6 (共に商品名:小原光学社製)等が利用可能で
ある。
Crystal, quartz glass, F'5 (product name: manufactured by Ohara Optical Co., Ltd.), and those with a positive temperature coefficient of refractive index include lithium niobate (LiNbO5), calcite, BK7,
BF6 (both product names: manufactured by Ohara Optical Co., Ltd.) etc. can be used.

第1図〜第3図は本発明の結像光学系に用いる光熱偏向
光学素子を説明する図である。
1 to 3 are diagrams illustrating a photothermal deflection optical element used in the imaging optical system of the present invention.

この素子の献本的な原理は例えば日経エレンを士ミ=第
1図(A) 、 (B)において素子は透明保護板1、
熱によって屈折率分布を形成する熱効果媒体2、絶縁層
3、発熱抵抗体4、電極5、透明偶板6より構成される
。発熱抵抗体4に電圧が印加されると発生した熱によっ
て熱効果媒体2内に等屈折率の部所を結んだ図に示す如
き形状の屈折率分布1oが形成される。この部分に光束
7を入射すると波面が変向され1点8がら発散するかの
ように光束9が出射する。前記熱効果媒体の境界面から
上記発散原点(あるいは収束点)8までの距離をfとし
、これを焦点距離と定義する。
The basic principle of this element is, for example, as shown in Nikkei Ellen's Figures 1 (A) and (B), in which the element is a transparent protective plate 1,
It is composed of a thermal effect medium 2 that forms a refractive index distribution by heat, an insulating layer 3, a heating resistor 4, an electrode 5, and a transparent plate 6. When a voltage is applied to the heat generating resistor 4, the heat generated forms a refractive index distribution 1o in the heat effect medium 2 in the shape shown in the figure, which connects portions of equal refractive index. When a beam of light 7 is incident on this portion, the wavefront is changed and a beam of light 9 is emitted as if it were diverging from a single point 8. The distance from the boundary surface of the thermal effect medium to the divergence origin (or convergence point) 8 is defined as f, and this is defined as the focal length.

該素子の媒体内に形成される屈折率分布の形状は、前記
媒体の熱量に対する屈折率の変化の状態、即ち、該媒体
を昇温させた場合に、その屈折率の値が、より大きくな
るか、又は、よシ小さくなるかで決まる。媒体が昇温に
よシ屈折率の値が小さくなる場合は、屈折率分布の形状
は、媒体に熱を与える位置を中心として、第1図(A)
に示す如く山型(凸型)の形状となる。
The shape of the refractive index distribution formed in the medium of the element is a state in which the refractive index changes with respect to the amount of heat of the medium, that is, when the temperature of the medium is raised, the value of the refractive index becomes larger. It depends on whether it becomes smaller or smaller. If the value of the refractive index decreases as the temperature of the medium increases, the shape of the refractive index distribution will change as shown in Figure 1 (A) with the center at the position where heat is applied to the medium.
As shown in the figure, it has a mountain-shaped (convex) shape.

これに対して、媒体が昇温により屈折率の値が大きくな
る場合、屈折率分布の形状は、媒体に熱を与える位置を
中心として、谷型(凹型)となる。従って斯様な山型形
状の屈折率分布に入射する光束は、屈折率分布から射出
した後は発散光束となり、斯様な山型形状の屈折率分布
は凹レンズの作用をする。又、谷型形状の屈折率分布に
入射する光束は、屈折率分布から射出した後は収斂光束
となり、斯様な谷型形状の屈折率分布は凸レンズの作用
をする。
On the other hand, when the refractive index value of the medium increases as the temperature rises, the shape of the refractive index distribution becomes a valley shape (concave shape) centered on the position where heat is applied to the medium. Therefore, the light beam incident on such a chevron-shaped refractive index distribution becomes a diverging light beam after exiting from the refractive index distribution, and such a chevron-shaped refractive index distribution acts as a concave lens. Further, the light beam incident on the valley-shaped refractive index distribution becomes a convergent light beam after exiting from the refractive index distribution, and such a valley-shaped refractive index distribution acts as a convex lens.

第2図は第1図で説明した光熱偏向光学素子に対する入
力電圧の印加手段を説明する図で、発熱抵抗体4は電極
5を介して一方は電圧印加手段11と接続され、他方は
接地あるいは一定電位に保持される。第2図に示したよ
うな電圧印加手段により発熱抵抗体4に電圧が印加され
ると発熱抵抗体4内に電流が流れ、前記のように熱効果
媒体内に屈折率分布が形成されるが、この場合印加する
電圧あるいは周期パルス電圧のパルス印加時間を変化さ
せることにより発熱量が変化する。発熱量が変化した結
果熱効果媒体内において屈折率分布も変化する。
FIG. 2 is a diagram illustrating means for applying an input voltage to the photothermal deflection optical element explained in FIG. It is held at a constant potential. When a voltage is applied to the heating resistor 4 by the voltage applying means shown in FIG. 2, a current flows in the heating resistor 4, and a refractive index distribution is formed in the thermal effect medium as described above. In this case, the amount of heat generated changes by changing the applied voltage or the pulse application time of the periodic pulse voltage. As a result of the change in the amount of heat generated, the refractive index distribution within the thermal effect medium also changes.

第3図は、第1図(A) (B)及び第2図で示す透過
タイプの光熱偏向光学素子に対して反射型の素子を示し
ており、第1図(A) (B)の査号と同一の沓号を付
した部材は同一の部材を示すものである。第3図に於い
て、13はアルミニウムの光反射層である。この素子に
平行光束14を入射させると、屈折率分布10によって
波面が変換され、光反射層13で反射した後、更に屈折
率分布10によって波面が変換され、発散原点14から
発散したかの様に、光束16が素面、上記素子では発熱
抵抗体勢を加熱する例を示したが、他の加熱手段として
は、熱効果媒1体に付着させた吸熱部材を光、レーザ等
を用いて照射したり、又、熱効果媒体を直接に光、レー
ザ等を用いて照射しても良い。
Figure 3 shows a reflection type element in contrast to the transmission type photothermal deflection optical element shown in Figures 1(A) and 2. Components with the same shoe number as the reference number indicate the same member. In FIG. 3, 13 is an aluminum light reflecting layer. When a parallel light beam 14 is incident on this element, the wavefront is converted by the refractive index distribution 10, and after being reflected by the light reflection layer 13, the wavefront is further converted by the refractive index distribution 10, so that it appears as if it diverged from the divergence origin 14. In the above, an example was shown in which the light flux 16 heats the heat generating resistor structure in the element described above, but as another heating means, a heat absorbing member attached to a heat effect medium is irradiated with light, laser, etc. Alternatively, the heat effect medium may be directly irradiated with light, laser, or the like.

第4図(A) 、(B)は、本発明の結像光学系に使用
する光熱偏向光学素子の一実施例を示す概略正面図であ
る。第4図に示す図は、熱効果媒体2に対して、発熱抵
抗体4がどの様なパターンで配されているかを示す図で
、媒体2の大きさは適用する光学系の径と合致する大き
さで形成されている。第4図(A)に示される素子は、
発熱抵抗体4がマトリックス伏に配されており、各々の
発熱抵抗体は不図示の電極を介して電圧印加手段に接続
されている。第4図(B)に示される素子は発熱抵抗体
4が同心円状に配されている。
FIGS. 4(A) and 4(B) are schematic front views showing one embodiment of the photothermal deflection optical element used in the imaging optical system of the present invention. The diagram shown in FIG. 4 shows the pattern in which the heating resistors 4 are arranged with respect to the thermal effect medium 2, and the size of the medium 2 matches the diameter of the optical system to which it is applied. It is formed by size. The element shown in FIG. 4(A) is
Heat generating resistors 4 are arranged in a matrix, and each heat generating resistor is connected to a voltage applying means via an electrode (not shown). In the element shown in FIG. 4(B), heating resistors 4 are arranged concentrically.

第5図は、本発明に係る結像光学系の一実施例を示すレ
ンズ断面図で、特に球面収差の制御を行なう為の構成で
ある。このレンズ構成はいわゆるガウス型のレンズで絞
り20を挾んで両側に対称な形状のレンズ群が配されて
おり、絞シの片側に配されるレンズ群は、絞りから最も
遠くに、絞り側に凹面を向けた正のメニスカスレンズ(
21,26)と、絞りの近くに両凸レンズ(22,25
)と両凹レンズ(23,24)の貼シ合わせより成る絞
り側に凹面を向けたメニスカスレンズより成る。27は
、第4図(A)(B)に示す様な光熱偏向光学素子で絞
りの近傍に配されている。この素子27を絞り20の近
傍に配したのは球面収差を制御する場合には絞りの近傍
で光束に作用を与えることが球面収差に大きな影響を与
えやすいからである。
FIG. 5 is a cross-sectional view of a lens showing an embodiment of the imaging optical system according to the present invention, which is particularly designed to control spherical aberration. This lens configuration is a so-called Gaussian lens with symmetrical lens groups arranged on both sides of the aperture 20, with the lens group placed on one side of the aperture being farthest from the aperture, Positive meniscus lens with concave side (
21, 26) and a biconvex lens (22, 25) near the aperture.
) and biconcave lenses (23, 24), and the concave surface faces the aperture side. 27 is a photothermal deflection optical element as shown in FIGS. 4(A) and 4(B), which is arranged near the aperture. The reason why this element 27 is arranged near the aperture 20 is that when controlling spherical aberration, acting on the light beam near the aperture tends to have a large effect on the spherical aberration.

裔鯰蟲士ミでの球面収差に影響を与える様に素子27を
作動させれば良い。又、レンズ系(21〜26)の球面
収差が良好に補正されている場合、レンズ系にフレアー
を発生させてソフトフに素子27を作動させれば良、い
。この為に素子□27の内、光束に作用を及ぼす部分は
素子27の周辺部だけで良く、従って、第4図(A)に
示す素子を用いる場合はマトリックス伏に配された発熱
抵抗体4の内、外周部に配された発熱抵抗体のみを発熱
させれば良い。又、第′4図(B)に示す素子を用いる
場合は同心内法に配された外周部の発熱抵抗体4のみを
発熱させれば良い。
It is sufficient to operate the element 27 so as to affect the spherical aberration in the mirror. Further, if the spherical aberration of the lens system (21 to 26) has been well corrected, it is sufficient to generate flare in the lens system and operate the element 27 in a soft manner. For this reason, the part of the element □27 that acts on the luminous flux is only the peripheral part of the element 27. Therefore, when using the element shown in FIG. 4(A), the heating resistor 4 arranged in the matrix Of these, it is only necessary to generate heat from the heating resistor arranged on the outer periphery. Further, when using the element shown in FIG. 4(B), it is sufficient to generate heat only from the heating resistor 4 on the outer periphery arranged concentrically.

上述した如く、レンズ系の球面収差を補正する時、レン
ズ系の球面収差がオーバーに発生し、従って素子27で
アンダーな球面収差を発生させて球面収差を補正する場
合には前記素子27の熱効果媒体2としては、屈折率の
温度係数な媒体を使用すれば良い。これとは逆にレンズ
系の球面収差がアンダーに発生し、従って素子27でオ
ーバーな球面収差を発生させて球面収又、上述した如く
、レンズ系でフレアーを発生させてレンズ系にソフトフ
ォーカスjrlt iif:を持たせる場合には、発生
させる球面収差はオーバーな球面収差でもアンダーな球
面収差でも良く、従って熱効果媒体としては、正、負い
ずれの屈折率の呂度係数を持つ媒体が使用可能である。
As mentioned above, when correcting the spherical aberration of the lens system, if the spherical aberration of the lens system is excessively generated, and therefore the element 27 generates an under-spherical aberration to correct the spherical aberration, the heat of the element 27 is As the effect medium 2, a medium with a temperature coefficient of refractive index may be used. On the contrary, the spherical aberration of the lens system is under-generated, and therefore the element 27 generates an over-spherical aberration, causing spherical aberration, and as mentioned above, flare is generated in the lens system, causing the lens system to have a soft focus. iif:, the spherical aberration to be generated may be either over or under spherical aberration, and therefore a medium with a positive or negative refractive index coefficient can be used as the thermal effect medium. It is.

第6図は、本発明の結像光学系に用いる光学素子の一実
施例で、第1図(A)に示す光学素子と比較して異なる
点は、光学素子の透明裁板としてレンズ自身を用いてい
ることである。即ち、第1図(A)に示す光学素子は素
子の故板として透明裁板6を用いているが、第6図に示
す素子はレンズ28が光学素子の故板として利用されて
いる。逆に」うならば、第1図(A)に示されている光
学素子の透明裁板6に形吠を施こし、この活版6をレン
ズとして利用しているものである。この様な光学素子の
形吠を取ることにより光学系の小型化を計ることが可能
である。
FIG. 6 shows an example of an optical element used in the imaging optical system of the present invention.The difference from the optical element shown in FIG. 1(A) is that the lens itself is used as a transparent cutting plate of the optical element. This is what we are using. That is, the optical element shown in FIG. 1(A) uses the transparent cut plate 6 as the end plate of the element, whereas the element shown in FIG. 6 uses the lens 28 as the end plate of the optical element. On the other hand, if the transparent plate 6 of the optical element shown in FIG. 1(A) is shaped, the letterpress 6 is used as a lens. By adopting such a shape of the optical element, it is possible to downsize the optical system.

上記実施例では、光学素子’+14造は透過型、結像光
学系もレンズより成る透過型を示したが光学素子として
は史に第3図に示す反射型の光学素子、更にはレンズ以
外にも反射鏡を用いて種々の構成の結像光学系を組み立
てられることは自明である。
In the above embodiment, the optical element '+14 structure is a transmission type, and the imaging optical system is also a transmission type consisting of a lens. It is obvious that imaging optical systems of various configurations can be assembled using reflecting mirrors.

第7図は本発明の結像光学系の他の実施例を示す図で、
結像光学系の歪曲収差の補正を説明する図である。第7
図に示す結像光学系は、凹レンズ32を挾んで両側に配
された二枚の凸レンズより成っている。絞り30は凸レ
ンズ31と凹レンズ320間に設けられている。34は
より離れた位置に設けられている。この様に、歪曲収差
を補正する場合には、絞シ30よシ離れた位置で光束に
作用を及ぼす方が歪曲収差を効率よく制御することが出
来る。歪曲収差を補正する場合、内角の大きい光束に対
して光学素子34が作用することが望ましいので光学素
子34に配された発熱抵抗体の内、光軸から離れた位置
の発熱抵抗体のみを発熱させれば良い。
FIG. 7 is a diagram showing another embodiment of the imaging optical system of the present invention.
FIG. 3 is a diagram illustrating correction of distortion aberration of an imaging optical system. 7th
The image forming optical system shown in the figure consists of two convex lenses placed on both sides of a concave lens 32. A diaphragm 30 is provided between a convex lens 31 and a concave lens 320. 34 is provided at a more distant position. In this manner, when correcting distortion aberration, it is possible to control the distortion more efficiently by acting on the light beam at a position further away from the diaphragm 30. When correcting distortion aberration, it is desirable that the optical element 34 act on a light beam with a large internal angle, so of the heating resistors arranged in the optical element 34, only the heating resistors located away from the optical axis generate heat. Just let it happen.

歪曲収差を補正する場合、結像光学系(31゜32.3
3)のみで生じる歪曲収差が正の場合、即ち糸巻型の歪
曲収差である場合には前記光学素子34に用いる熱効果
媒体は負の屈折率の温度係数を有するもの、これとは逆
に結像光学系のみで生じる歪曲収差が負の場合、即ち継
型の歪曲収差である場合には、光学素子34に用いる熱
効果媒体は正の屈折率の温度係数を有するものが用いら
れる。
When correcting distortion aberration, the imaging optical system (31° 32.3
If the distortion generated only in 3) is positive, that is, if it is pincushion distortion, the thermal effect medium used in the optical element 34 has a temperature coefficient of negative refractive index; When the distortion aberration generated only in the image optical system is negative, that is, when it is a joint type distortion aberration, the thermal effect medium used in the optical element 34 has a temperature coefficient of a positive refractive index.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) 、 (B) +第2図及び第3図は各々
本発明の結像光学系に用いる光熱偏向素子の構成及び作
動原理を説明する為の図、第4図(A)。 (B)は、本発明の結像光学系に用いる光熱偏向素子の
正面概略図、第5図は本発明に係る結像光学系の一実施
例を示す図、第6図は本発明の結像光学系に用いる光熱
偏向素子の他の実施例を示す図、第7図は本発明に係る
結像光学系の他の実施例を示す図。 1・・・透明保護板、2・・・熱効果媒体、3・・・絶
縁層、4・・・発熱抵抗体、5・・・電極、6・・・透
明基板、出願人 キャノン株式会社 第10(A)
Figures 1 (A) and (B) + Figures 2 and 3 are diagrams for explaining the configuration and operating principle of the photothermal deflection element used in the imaging optical system of the present invention, and Figure 4 (A) . (B) is a schematic front view of a photothermal deflection element used in the imaging optical system of the present invention, FIG. 5 is a diagram showing an embodiment of the imaging optical system according to the present invention, and FIG. FIG. 7 is a diagram showing another embodiment of the photothermal deflection element used in the imaging optical system, and FIG. 7 is a diagram showing another embodiment of the imaging optical system according to the present invention. DESCRIPTION OF SYMBOLS 1...Transparent protective plate, 2...Thermal effect medium, 3...Insulating layer, 4...Heating resistor, 5...Electrode, 6...Transparent substrate, Applicant: Canon Corporation No. 10(A)

Claims (1)

【特許請求の範囲】 (1) 結像光学系、該結像光学系中に配され、結像光
学系の結像特性を制御することが可能な光学素子を備え
、該光学素子は熱によりその内部に屈折率分布を形成す
る媒体と、該媒体の所望の位置に熱を与える加熱手段と
より成り、前記加熱手段は、発熱抵抗体と該抵抗に電圧
を印加する手段で形成され、前記媒体を加熱する発熱抵
抗体は、媒体の隔離した位置を独立して加熱する事が出
来る様に配された事を特徴とする可変収差結像光学系。 (2)前記光学素子は前記結像光学系の絞りの近傍に配
され、光軸から離れた位置で前記光学素子により光束に
作用を与えることによシ球面収差を制御する特許請求の
範囲第1項記載の可変収差結像光学系。 (8)前記光学素子の媒体は、正の屈折率の温度係数を
有する媒体で、前記結像光学系によ多発生するアンダー
な球面収差を補正する特許請求の範囲第2項記載の可変
収差結像光学系。 (4)前記光学素子の媒体は、負の屈折率の温度係数を
有する媒体で、前記結像光学系によ多発生するオーバー
な球面収差を補正する特許請求の範囲第2項記載の可変
収差結像光学系。 に作用を与えることにより歪曲収差を制御する特許請求
の範囲第1項記載の可変収差結像光学系。 (6)前記光学素子は正の屈折率の温度係数を有する媒
体で、前記結像光学系によ−り発生する樽型の歪曲収差
を補正する特許請求の範囲第5項記載の可変収差結像光
学系。 (7)前記光学素子は負の屈折率の温度係数を有する媒
体で、前記結像光学系により発生する糸巻型の歪曲収差
を補正する特許請求の範囲第5項記載の可変収差結像光
学系。
[Scope of Claims] (1) An imaging optical system, comprising an optical element disposed in the imaging optical system and capable of controlling the imaging characteristics of the imaging optical system, the optical element being able to control the imaging characteristics of the imaging optical system. It consists of a medium that forms a refractive index distribution therein, and a heating means that applies heat to a desired position of the medium, and the heating means is formed of a heating resistor and means for applying a voltage to the resistor, and A variable aberration imaging optical system characterized in that a heating resistor for heating a medium is arranged so as to be able to independently heat isolated positions of the medium. (2) The optical element is disposed near the aperture of the imaging optical system, and the optical element acts on the light beam at a position away from the optical axis to control spherical aberration. The variable aberration imaging optical system according to item 1. (8) The medium of the optical element is a medium having a positive temperature coefficient of refractive index, and the variable aberration according to claim 2 corrects under spherical aberration that often occurs in the imaging optical system. Imaging optical system. (4) The medium of the optical element is a medium having a temperature coefficient of negative refractive index, and the variable aberration according to claim 2 corrects excessive spherical aberration that often occurs in the imaging optical system. Imaging optical system. 2. The variable aberration imaging optical system according to claim 1, which controls distortion aberration by acting on the aberration. (6) The variable aberration lens according to claim 5, wherein the optical element is a medium having a positive temperature coefficient of refractive index, and the variable aberration lens corrects barrel-shaped distortion generated by the imaging optical system. Image optical system. (7) The variable aberration imaging optical system according to claim 5, wherein the optical element is a medium having a temperature coefficient of negative refractive index, and the variable aberration imaging optical system corrects pincushion distortion generated by the imaging optical system. .
JP6498184A 1983-04-19 1984-03-30 Image forming optical system with variable aberration Pending JPS60207110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6498184A JPS60207110A (en) 1984-03-30 1984-03-30 Image forming optical system with variable aberration
US07/290,806 US4865426A (en) 1983-04-19 1988-12-23 Variable aberration imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6498184A JPS60207110A (en) 1984-03-30 1984-03-30 Image forming optical system with variable aberration

Publications (1)

Publication Number Publication Date
JPS60207110A true JPS60207110A (en) 1985-10-18

Family

ID=13273737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6498184A Pending JPS60207110A (en) 1983-04-19 1984-03-30 Image forming optical system with variable aberration

Country Status (1)

Country Link
JP (1) JPS60207110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085487A (en) * 2008-09-29 2010-04-15 Kyocera Corp Lens unit, image pickup apparatus and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085487A (en) * 2008-09-29 2010-04-15 Kyocera Corp Lens unit, image pickup apparatus and electronic device
JP4743553B2 (en) * 2008-09-29 2011-08-10 京セラ株式会社 Lens unit, imaging device, and electronic device

Similar Documents

Publication Publication Date Title
US4036552A (en) Retroreflective material made by recording a plurality of light interference fringe patterns
JP3203251B2 (en) Lens, optical device and optical system
US5796522A (en) Lenslet array system with a baffle structure and a shutter
US5731899A (en) Lenslet array system incorporating an integral field lens/reimager lenslet array
US5153778A (en) Powerless field-corrective lens
US6590708B2 (en) Lens system having diffracting surface and refracting surface and optical apparatus using the lens system
US20060158754A1 (en) Space optical modulator
JPS6230631B2 (en)
GB2119112A (en) Optical elements
US6271975B1 (en) Light collecting optical device forming a multiple focal distance lens
CA2114703A1 (en) Directional light filter and holographic projector system for its production
KR910008066B1 (en) Optical system for effecting increased irradiance in peripheral area of object
JPS60207110A (en) Image forming optical system with variable aberration
US4865426A (en) Variable aberration imaging optical system
US7042654B2 (en) Optical system having a transmission optical corrector with a selectively nonuniform passive transmission optical property
EP0135047A1 (en) A method of producing a hologram lens
US5734511A (en) Wide angle objective system
US4456343A (en) High speed catadioptric objective lens system
KR0149036B1 (en) Radiation source for a printer
JPH11125849A (en) Optical diaphragm
JPH0192718A (en) Display method for correcting chromatic aberration generated by diffraction grating optical element, and executing image display by diffraction grating optical element
JP3477760B2 (en) Hologram manufacturing method
JPH079502B2 (en) Grating lens optical system
JPH06331932A (en) Projection optical device
JPH0616142B2 (en) Lens forming device