JPH06331932A - Projection optical device - Google Patents

Projection optical device

Info

Publication number
JPH06331932A
JPH06331932A JP5117046A JP11704693A JPH06331932A JP H06331932 A JPH06331932 A JP H06331932A JP 5117046 A JP5117046 A JP 5117046A JP 11704693 A JP11704693 A JP 11704693A JP H06331932 A JPH06331932 A JP H06331932A
Authority
JP
Japan
Prior art keywords
optical system
magnification
projection
projection optical
cylinder lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5117046A
Other languages
Japanese (ja)
Inventor
Takuji Sato
卓司 佐藤
Toshiki Okumura
敏樹 奥村
Toshikazu Yoshino
寿和 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP5117046A priority Critical patent/JPH06331932A/en
Publication of JPH06331932A publication Critical patent/JPH06331932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct the projection power with simple constitution through easy operation by arranging an afocal power correction optical system consisting of plural lenses between a projection optical system and a negative and between the projection optical system and a substrate, and relatively changing the positions of the lenses and varying the projection power. CONSTITUTION:The power correction optical system 24 consists of the concave cylinder lens 40 and convex cylinder lens 42. The power is adjusted by moving the concave cylinder lens 40' toward the mask negative 10. Here, luminous flux is made incident at height h42' higher than the height h42 of the convex cylinder lens 42 and then travels closer to an optical axis 16 than the power of the convex cylinder lens 42 to reach a position of height h26' higher than height h26 on the substrate 26. Consequently, the power is corrected within a range wherein image forming power is increased on the substrate 26. The same effect is obtained even when the convex cylinder lens 42 is moved. Further, when the concave cylinder lens 40 and convex cylinder lens 42 are replaced with each other, the power is corrected within a range wherein the image formation power is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、等倍付近の投影倍率を
有し、投影倍率の微小な調節が可能な投影光学装置及び
投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection optical apparatus and a projection exposure apparatus which have a projection magnification in the vicinity of unity magnification and which can finely adjust the projection magnification.

【0002】[0002]

【従来技術】近年、液晶等を使用した平板型の表示装置
が普及してきた。この平板型の表示装置の基板材料は通
常ガラスである。このガラス製基板材料は、成形時の内
部応力により、熱処理中に発生した熱膨張が元の温度環
境に戻して元の寸法に正確には戻らない。アクティブマ
トリックス型の液晶基板やカラーフィルターの製造で
は、一つの基板材料に対し露光を数回繰り返すが、同じ
倍率で露光を繰り返すと、露光されたパターンが設計ど
おりに重ならない問題が発生する。また、原板であるマ
スクも、パターンを構成するクロームが紫外線を吸収す
るために熱膨張する。
2. Description of the Related Art In recent years, flat panel type display devices using liquid crystal have become popular. The substrate material of this flat panel display device is usually glass. Due to internal stress at the time of molding, the thermal expansion of the glass substrate material returns to the original temperature environment and does not return to the original dimensions accurately. In the manufacture of an active matrix type liquid crystal substrate or color filter, one substrate material is exposed several times, but if the exposure is repeated at the same magnification, the exposed patterns will not overlap as designed. Further, the mask, which is the original plate, is also thermally expanded because the chrome forming the pattern absorbs ultraviolet rays.

【0003】これらの熱膨張を補正するために、露光光
学系の物像間距離を調節して投影倍率を変化させること
が考えられるが、構造上露光光学系の物像間距離は調節
し難い。さらに、多くの露光光学系は、物体側も像側も
テレセントリックなので、物像間距離の調節では、倍率
補正ができない。他の従来技術として、露光装置の投影
光学系に透明平板を湾曲させて挿入し、湾曲の程度を変
化させて倍率を変更することがしられている。これは、
使用光学部品が簡易であるが、露光装置のように微小量
の倍率調整をする場合には、平板の湾曲量の微小調節が
必要である。この微小調節には、特殊な技術が必要であ
り製造工程で実施するには好ましくない。
In order to correct these thermal expansions, it is conceivable to change the object-image distance of the exposure optical system to change the projection magnification, but it is difficult to adjust the object-image distance of the exposure optical system due to the structure. . Further, since many exposure optical systems are telecentric on both the object side and the image side, magnification correction cannot be performed by adjusting the object-image distance. As another conventional technique, a transparent flat plate is curvedly inserted into a projection optical system of an exposure apparatus, and the degree of bending is changed to change the magnification. this is,
Although the optical components used are simple, when the magnification is adjusted by a small amount as in an exposure apparatus, it is necessary to finely adjust the amount of curvature of the flat plate. This fine adjustment requires a special technique and is not preferable for implementation in the manufacturing process.

【0004】[0004]

【発明の目的】本発明は、従来の露光装置では困難が伴
う微小な倍率補正を、簡易な構成と容易な操作によって
実施可能な投影光学装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a projection optical apparatus capable of performing minute magnification correction, which is difficult with a conventional exposure apparatus, with a simple structure and easy operation.

【0005】[0005]

【発明の構成】本発明は、原板の像を基板上に形成する
投影光学系を有する投影光学装置において、上記投影光
学系と原板の間、及び上記投影光学系と基板との間の少
なくとも一方に2つのレンズを包含して成るアフォーカ
ルな倍率補正光学系を配置し、上記レンズの位置を相対
的に変化させることにより投影倍率を変更可能に構成し
たことを特徴とする投影光学装置である。
The present invention is a projection optical apparatus having a projection optical system for forming an image of an original plate on a substrate, and at least one of the projection optical system and the original plate and the projection optical system and the substrate. The projection optical device is characterized in that an afocal magnification correction optical system including two lenses is arranged and the projection magnification can be changed by relatively changing the position of the lens.

【0006】本発明はまた、原板の像を基板上に形成す
る投影光学系を有する投影光学装置において、上記投影
光学系と原板の間、及び上記投影光学系と基板との間の
少なくとも一方に2つのレンズを包含して成るアフォー
カル条件から僅かにずらした倍率補正光学系を配置し、
上記レンズ位置を変化させることにより該倍率補正光学
系の投影倍率を縮小、等倍、拡大を含む範囲で変更可能
に構成したことを特徴とする投影光学装置である。
The present invention also provides a projection optical apparatus having a projection optical system for forming an image of an original plate on a substrate, at least one of which is provided between the projection optical system and the original plate and between the projection optical system and the substrate. Arranged a magnification correction optical system slightly shifted from the afocal condition consisting of two lenses,
The projection optical apparatus is characterized in that the projection magnification of the magnification correction optical system can be changed within a range including reduction, equal magnification, and enlargement by changing the lens position.

【0007】本発明はさらに、上記投影光学装置を利用
して、回転対称光学系の輪帯上の円周上の良像域を使用
して、円弧状の露光を行い、原板と基板を移動すること
で広い面積の露光を行う露光装置の移動方向と垂直な方
向の倍率変更を行うように構成したことを特徴とする投
影露光装置である。
Further, according to the present invention, the above projection optical device is used to perform arcuate exposure using a good image area on the circumference of the ring of the rotationally symmetric optical system to move the original plate and the substrate. By doing so, the projection exposure apparatus is characterized in that the magnification is changed in the direction perpendicular to the moving direction of the exposure apparatus which performs exposure over a wide area.

【0008】[0008]

【作用】本発明によれば、例えば露光装置と基板の間
に、凸レンズとほぼその作用を打ち消すような凹レンズ
を配置する。簡単なために、同一の材料からなる平凸レ
ンズと平凹レンズが球面を向かい合わせて距離が0の位
置で合わさっているとする。通常、露光装置は基板側で
はテレセントリックなので倍率を決める主光線は倍率補
正用光学系では偏向されない。つまり、倍率は補正用光
学系がない場合と同一である。
According to the present invention, for example, between the exposure device and the substrate, a convex lens and a concave lens that almost cancels its action are arranged. For simplicity, it is assumed that a plano-convex lens and a plano-concave lens made of the same material face each other with their spheres facing each other at a distance of 0. Normally, the exposure apparatus is telecentric on the substrate side, so the chief ray that determines the magnification is not deflected by the magnification correction optical system. That is, the magnification is the same as when there is no correction optical system.

【0009】しかし、凸レンズと凹レンズの間隔をはな
すと、たとえば、凸レンズが露光装置側にあるとする
と、凸レンズに入射した主光線は、収束光線として、凹
レンズに入射する。間隔が離れた事で、主光線は光軸よ
りな位置で凹レンズに入射する。レンズの光線に対する
偏角作用はほぼ、光軸からの高さ比例するので、倍率補
正光学系からの射出角は微小に収束光になる。この光線
は高さの変化と傾きの変化により、基板上での主光線の
高さが変化する。これは倍率が変化することと同一であ
る。射出光線の傾きが変化してテレセントリックな状態
から外れるのは、露光装置として望ましくないが、通常
の液晶露光装置の倍率補正量は0.01%以下と微小な
ので、実用上この光線の傾きは無視できる量に納まる。
However, if the convex lens and the concave lens are spaced from each other, for example, if the convex lens is on the exposure device side, the principal ray incident on the convex lens is incident on the concave lens as a convergent ray. Due to the distance, the chief ray is incident on the concave lens at a position more than the optical axis. Since the declination effect of the lens on the light beam is almost proportional to the height from the optical axis, the exit angle from the magnification correction optical system becomes a convergent light minutely. The height of the chief ray on the substrate changes due to the change in height and the change in inclination of this ray. This is the same as changing the magnification. It is not desirable for the exposure apparatus to change the inclination of the emitted light beam and deviate from the telecentric state, but since the amount of magnification correction of an ordinary liquid crystal exposure apparatus is as small as 0.01% or less, this inclination of the light beam is practically ignored. Fit in as much as you can.

【0010】以下に、本発明の実施例を図に基づいて説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】[0011]

【第1実施例】第1実施例の投影露光装置は、弓形投影
像を走査させる弓形スキャナーであって、拡大または縮
小の一方のみの投影倍率変化によって倍率補正を行うも
のである。投影露光装置1は、図1に示すように、光源
2、光源2からの光束を集光するためのコンデンサーレ
ンズ4、弓形絞り6、弓形絞り6像をマスク原板10上
に形成するためのリレーレンズ8、上記マスク原板1
0、そして第1反射鏡12を第1光軸14上に配置して
なる。反射鏡12の反射光軸である第2光軸16上に
は、一度通過した光束が第2反射鏡20によって反射さ
れて再び通過する投影レンズ22が配置されている。さ
らに、第3反射鏡23の反射光軸である第3光軸17上
に、第1倍率補正光学系24、及び感光性を有する基板
26が配置されている。マスク原板10及び基板26
は、同時に第1光軸14及び第3光軸17に対し直交す
る方向であって、後述する第1倍率補正光学系24を形
成する凹シリンダレンズ40及び凸シリンダレンズ42
のシリンダ軸の方向に一致した矢印方向30、32に移
動可能である。
[First Embodiment] The projection exposure apparatus of the first embodiment is a bow-shaped scanner for scanning a bow-shaped projected image, and performs magnification correction by changing the projection magnification only by one of enlargement and reduction. As shown in FIG. 1, the projection exposure apparatus 1 includes a light source 2, a condenser lens 4 for condensing a light beam from the light source 2, a bow diaphragm 6, and a relay for forming an image of the bow diaphragm 6 on a mask original plate 10. Lens 8, the mask original plate 1
0, and the first reflecting mirror 12 is arranged on the first optical axis 14. On the second optical axis 16 which is the reflection optical axis of the reflecting mirror 12, there is arranged a projection lens 22 through which the light flux that has once passed is reflected by the second reflecting mirror 20 and passes again. Further, the first magnification correction optical system 24 and the photosensitive substrate 26 are arranged on the third optical axis 17 which is the reflection optical axis of the third reflecting mirror 23. Mask original plate 10 and substrate 26
Is a direction that is at the same time orthogonal to the first optical axis 14 and the third optical axis 17, and is a concave cylinder lens 40 and a convex cylinder lens 42 that form a first magnification correction optical system 24 described later.
It is movable in arrow directions 30 and 32 that coincide with the direction of the cylinder axis.

【0012】第1倍率補正光学系24は、図2に示すよ
うに、凹シリンダレンズ40、及び凸シリンダレンズ4
2からなり、その光学データは、 f40=−5000mm f41=+5000mm d1 =0〜数10mm d2 = +200mm 第1倍率補正光学系24においてテレセントリック光学
系となって基板26に入射する主光線Rは、図3におい
て、最初実線で示すように、凹シリンダレンズ40に第
3光軸17と平行に入射する。なお、図においては、レ
ンズの構成を明瞭に示すために、d1が数mmであるよ
うに記載してある。この入射高さをh40とすると、主光
線Rは、凹シリンダレンズ40の負のパワーにより第3
光軸17から離れる方向に進み、凸シリンダレンズ42
の高さh42の位置に入射し、次ぎに凸シリンダレンズ4
2により第3光軸17に近づく方向に進み、基板26上
の高さh26の位置に到達する。ここで、主光束Rが基板
26に垂直に入射してテレセントリック光学系が成立す
るように、凹シリンダレンズ42の焦点距離を選択する
ことも可能である。
The first magnification correction optical system 24 includes a concave cylinder lens 40 and a convex cylinder lens 4 as shown in FIG.
The optical data is as follows: f40 = −5000 mm f41 = + 5000 mm d1 = 0 to several tens of mm d2 = + 200 mm In the first magnification correction optical system 24, the chief ray R incident on the substrate 26 becomes a telecentric optical system. 3, the light enters the concave cylinder lens 40 in parallel with the third optical axis 17 as shown by the solid line. It should be noted that, in the drawing, in order to clearly show the configuration of the lens, it is described that d1 is several mm. Assuming that this incident height is h 40 , the chief ray R is the third power due to the negative power of the concave cylinder lens 40.
Moving in a direction away from the optical axis 17, the convex cylinder lens 42
Incident on the position of height h 42 of the convex cylinder lens 4
As a result of the step 2, the laser beam advances toward the third optical axis 17 and reaches the position of height h 26 on the substrate 26. Here, it is also possible to select the focal length of the concave cylinder lens 42 so that the main light flux R is vertically incident on the substrate 26 and a telecentric optical system is established.

【0013】倍率調整は、凹シリンダレンズ40’を、
図3において点線で示すように、左方向すなわちマスク
原板10に近づく方向に移動させる。こうすることによ
って、凸シリンダレンズ42の高さh42よりも高い
42’に入射し、次ぎに凸シリンダレンズ42のパワー
より光軸16に近づく方向に進み、基板26上の高さh
26よりも高い高さh26’の位置に到達する。結果的に基
板26上の結像倍率が拡大された範囲での倍率補正がな
れたことになる。凸シリンダレンズ42を移動させても
同様である。この実施例で、仮に、凹シリンダレンズと
凸シリンダレンズとを入れ換えた場合には、結像倍率が
縮小される範囲での倍率補正がなされることになる。
To adjust the magnification, the concave cylinder lens 40 'is
As shown by the dotted line in FIG. 3, the mask is moved to the left, that is, in the direction toward the mask original plate 10. By doing so, the light enters the h 42 ′ higher than the height h 42 of the convex cylinder lens 42, then advances toward the optical axis 16 due to the power of the convex cylinder lens 42, and the height h on the substrate 26 increases.
A height h 26 'higher than 26 is reached. As a result, the magnification is corrected in the range where the imaging magnification on the substrate 26 is enlarged. The same applies when the convex cylinder lens 42 is moved. In this embodiment, if the concave cylinder lens and the convex cylinder lens are interchanged, magnification correction will be performed within a range in which the imaging magnification is reduced.

【0014】凹シリンダレンズ40の焦点距離と、凹シ
リンダレンズ40が0.5mm移動した時の倍率補正量と
の関係を、図4のグラフに示す。また、凹シリンダレン
ズ40の移動量と、倍率補正量との関係を、図5のグラ
フに示す。
The relationship between the focal length of the concave cylinder lens 40 and the magnification correction amount when the concave cylinder lens 40 moves by 0.5 mm is shown in the graph of FIG. The relationship between the amount of movement of the concave cylinder lens 40 and the amount of magnification correction is shown in the graph of FIG.

【0015】[0015]

【第2実施例】第2実施例の投影露光装置は、図6に示
されるが、第1実施例の投影露光装置と共通の構成につ
いては、同一の符号を付することによってその説明を省
略する。第2実施例の投影露光装置は、光軸14上の原
板10の後方(下方)に縮小用の第2倍率補正光学系1
00が配置され、光軸16上の基板26の前方(上方)
に拡大用の第3倍率補正光学系130が配置されてい
る。
[Second Embodiment] A projection exposure apparatus according to the second embodiment is shown in FIG. 6, but the same components as those of the projection exposure apparatus according to the first embodiment are designated by the same reference numerals and their description is omitted. To do. In the projection exposure apparatus of the second embodiment, the second magnification correction optical system 1 for reduction is provided behind (below) the original plate 10 on the optical axis 14.
00 is arranged in front of (above) the substrate 26 on the optical axis 16.
A third magnification correction optical system 130 for enlargement is arranged in.

【0016】第2倍率補正光学系100は、第1実施例
の第1倍率補正光学系24と同一の構成要素を有し、そ
の配列は第1倍率補正光学系24と逆向きである。第3
倍率補正光学系130は、第1実施例の第1倍率補正光
学系24と同一の構成である。第2倍率補正光学系10
0は、凹シリンダレンズ103を基板26の方向に移動
させることによって、結果的に基板26上の結像倍率が
縮小されて倍率補正がなれたことになる。第3倍率補正
光学系130は、第1実施例と同じように、凹シリンダ
レンズ104をマスク原板10の方向に移動させること
によって、結果的に基板26上の結像倍率が拡大されて
倍率補正がなされる。
The second magnification correction optical system 100 has the same components as the first magnification correction optical system 24 of the first embodiment, and the arrangement thereof is opposite to that of the first magnification correction optical system 24. Third
The magnification correction optical system 130 has the same configuration as the first magnification correction optical system 24 of the first embodiment. Second magnification correction optical system 10
0 means that the concave cylinder lens 103 is moved in the direction of the substrate 26, and as a result, the imaging magnification on the substrate 26 is reduced and the magnification is corrected. Similarly to the first embodiment, the third magnification correction optical system 130 moves the concave cylinder lens 104 in the direction of the mask original plate 10, so that the image formation magnification on the substrate 26 is enlarged and the magnification correction is performed. Is done.

【0017】[0017]

【第3実施例】第3実施例の投影露光装置は、第1実施
例の第1倍率補正光学系24を、図7に示すように、2
枚の凸シリンドリカルレンズ200、202と、2枚の
凹シリンドリカルレンズ204、206からなる第4倍
率補正光学系210に替えたものである。
[Third Embodiment] A projection exposure apparatus according to the third embodiment includes a first magnification correction optical system 24 of the first embodiment as shown in FIG.
This is replaced with a fourth magnification correction optical system 210 composed of one convex cylindrical lens 200, 202 and two concave cylindrical lenses 204, 206.

【0018】第3実施例の投影露光装置においては、2
枚の凹シリンドリカルレンズ204、206を矢印23
0、232の方向に移動させることによって、基板26
上での結像倍率の拡大又は縮小の倍率補正がなれる。
In the projection exposure apparatus of the third embodiment, 2
Set the concave cylindrical lenses 204 and 206 to the arrow 23.
By moving in the direction 0, 232, the substrate 26
It is possible to perform magnification correction by enlarging or reducing the imaging magnification above.

【0019】[0019]

【第4実施例】第4実施例の投影露光装置は、図8に示
すように、第3実施例の第4倍率補正光学系210を、
2枚の凸シリンドリカルレンズ300、302と、それ
らの間に配置された凹シリンドリカルレンズ304とか
らなる第5倍率補正光学系306に替えてなる。凹シリ
ンドリカルレンズ304は、屈折率1.5として、曲率
半径2500mmである。
[Fourth Embodiment] As shown in FIG. 8, the projection exposure apparatus of the fourth embodiment includes a fourth magnification correction optical system 210 of the third embodiment.
It is replaced with a fifth magnification correction optical system 306 including two convex cylindrical lenses 300 and 302 and a concave cylindrical lens 304 arranged between them. The concave cylindrical lens 304 has a refractive index of 1.5 and a radius of curvature of 2500 mm.

【0020】第4実施例の投影露光装置においては、凹
シリンドリカルレンズ304を矢印330の方向に移動
させることによって、基板26上の結像倍率が縮小され
て倍率補正がなれる。第1実施例は、投影倍率の拡大ま
たは縮小の一方のみの倍率変化で倍率補正するものであ
ったのに対し、第4実施例は、凹シリンドリカルレンズ
が調整範囲の中央でアフォーカル条件を充足している。
In the projection exposure apparatus of the fourth embodiment, the concave cylindrical lens 304 is moved in the direction of the arrow 330 to reduce the image forming magnification on the substrate 26 and correct the magnification. In the first embodiment, the magnification is corrected by only changing the magnification by either increasing or reducing the projection magnification, whereas in the fourth embodiment, the concave cylindrical lens satisfies the afocal condition at the center of the adjustment range. is doing.

【0021】第4実施例の第4倍率補正光学系の光学デ
ータは、 f11=−5000mm(移動レンズ) f12=+5010mm d1 =+10mm±δ(調整範囲) d2 =+200mm である。
The optical data of the fourth magnification correction optical system of the fourth embodiment are f11 = -5000 mm (moving lens) f12 = + 5010 mm d1 = + 10 mm ± δ (adjustment range) d2 = + 200 mm.

【0022】[0022]

【第5実施例】第5実施例の投影光学装置は、拡大及び
縮小の倍率補正が可能となる光学系であって、すなわち
拡大・縮小の倍率補正が移動レンズの移動のみで可能で
なる。倍率補正光学系の光学データは以下の通りであ
る。 f11=−5000mm(移動レンズ) f12=+4771.4mm d1 =+10mm±δ(調整範囲) d2 =+200mm 第5実施例の凹シリンドリカルレンズの移動量と倍率変
化の関係を図10に示す。第1実施例のおいては、テレ
セントリック光学系となるようにf12を選択したが、
図3において倍率補正の調整範囲の略中央の基準間隔の
時にh40=h26になるようにf12を決めれば、拡
大及び縮小は一組の倍率補正光学系の調節によって可能
になる。
[Fifth Embodiment] The projection optical apparatus of the fifth embodiment is an optical system capable of enlarging / reducing magnification correction, that is, enlarging / reducing magnification correction is possible only by moving a moving lens. The optical data of the magnification correction optical system are as follows. f11 = −5000 mm (moving lens) f12 = + 4771.4 mm d1 = + 10 mm ± δ (adjustment range) d2 = + 200 mm The relationship between the moving amount and the magnification change of the concave cylindrical lens of the fifth embodiment is shown in FIG. In the first embodiment, f12 is selected so as to be a telecentric optical system,
In FIG. 3, if f12 is determined so that h40 = h26 at the reference interval approximately in the center of the magnification correction adjustment range, enlargement and reduction can be performed by adjusting a set of magnification correction optical systems.

【0023】[0023]

【第6実施例】第6実施例の投影光学装置は、テレセン
トリック(3枚組)な倍率補正系である。第6実施例の
倍率補正系の光学データは以下の通りである。 f21=+5000mm(移動レンズ) f22=−2495mm f23=+5000mm d21=10mm d22=10mm d23=200mm 第6実施例の倍率補正系の光線図を図11に示す。凸シ
リンダレンズ50で光軸方向に曲げられた光束は、凹シ
リンダレンズ52によって光軸から離れる方向に曲げら
れて凸シリンダレンズ54に入射する。この時、凹シリ
ンダレンズ52から射出する光束があたかも凸シリンダ
レンズ54の前側焦点から射出した光束となるように調
節されれば、凸シリンダレンズ54から射出される光束
は光軸と平行となり、基板26に対して直角でかつ光軸
からの高さがh24(=h23)の位置を照射することにな
る。
[Sixth Embodiment] The projection optical apparatus according to the sixth embodiment is a telecentric (three-piece) magnification correction system. The optical data of the magnification correction system of the sixth embodiment are as follows. f21 = + 5000 mm (moving lens) f22 = −2495 mm f23 = + 5000 mm d21 = 10 mm d22 = 10 mm d23 = 200 mm A ray diagram of the magnification correction system of the sixth embodiment is shown in FIG. The light beam bent in the optical axis direction by the convex cylinder lens 50 is bent in a direction away from the optical axis by the concave cylinder lens 52 and enters the convex cylinder lens 54. At this time, if the luminous flux emitted from the concave cylinder lens 52 is adjusted to be the luminous flux emitted from the front focus of the convex cylinder lens 54, the luminous flux emitted from the convex cylinder lens 54 becomes parallel to the optical axis, and the substrate Irradiation is performed at a position which is at a right angle to 26 and whose height from the optical axis is h 24 (= h 23 ).

【0024】倍率調整は、凸シリンダレンズ54に入射
する光束があたかも凸シリンダレンズ54の前側焦点か
ら射出した光束となる条件を満たしつつ、凸シリンダレ
ンズ54に入射する高さ位置h24が変化するように凸シ
リンダレンズ50、54及び凹シリンダレンズ52の相
互位置関係を調節することによって行う。第6実施例の
凹シリンドリカルレンズの移動量と倍率変化の関係を図
12に示す。
In the magnification adjustment, the height position h 24 of light incident on the convex cylinder lens 54 is changed while satisfying the condition that the light flux incident on the convex cylinder lens 54 is a light beam emitted from the front focal point of the convex cylinder lens 54. As described above, the mutual positional relationship between the convex cylinder lenses 50 and 54 and the concave cylinder lens 52 is adjusted. FIG. 12 shows the relationship between the amount of movement and the change in magnification of the concave cylindrical lens of the sixth embodiment.

【0025】[0025]

【第7実施例】第7実施例の投影光学装置の倍率補正光
学系は、図13に示すように、メニスカスレンズを包含
するものである。第6実施例の倍率補正系の光学データ
は以下の通りである。 r21=∞ r22=−2500mm r23=−1247.5mm r24=−2500mm d21=任意 d22=10mm±δ(調整範囲) d23=15mm 第7実施例の倍率補正光学系においては、メニスカスレ
ンズを利用することによって、2枚のレンズのみで光線
の高さを入射側と射出側で変えることが可能で、等倍位
置でテレセントリックな光学系とすることができる。
Seventh Embodiment The magnification correction optical system of the projection optical apparatus of the seventh embodiment includes a meniscus lens as shown in FIG. The optical data of the magnification correction system of the sixth embodiment are as follows. r21 = ∞ r22 = −2500 mm r23 = −1247.5 mm r24 = −2500 mm d21 = arbitrary d22 = 10 mm ± δ (adjustment range) d23 = 15 mm Use of a meniscus lens in the magnification correction optical system of the seventh embodiment. Thus, the height of the light beam can be changed between the incident side and the exit side with only two lenses, and a telecentric optical system can be provided at the same magnification position.

【0026】[0026]

【第8実施例】第8実施例の投影光学装置は、図14に
示すように、倍率補正光学系の合成厚が変更していない
光学系を有している。 r31=+3575.546mm r32=+1496.228mm 第1レンズが移
動する。
Eighth Embodiment The projection optical apparatus of the eighth embodiment has an optical system in which the combined thickness of the magnification correction optical system is not changed, as shown in FIG. r31 = + 3575.546 mm r32 = + 1496.228 mm The first lens moves.

【0027】r33=+1496.228mm r34=+3575.545mm d31=10mm d32=10mm±δ(調整範囲) d33=10mm d34=+200mm 第8実施例の凸シリンドリカルレンズの移動量と倍率変
化の関係を図15に示す。
R33 = + 1496.228 mm r34 = + 3575.545 mm d31 = 10 mm d32 = 10 mm ± δ (adjustment range) d33 = 10 mm d34 = + 200 mm The relationship between the moving amount and the magnification change of the convex cylindrical lens of the eighth embodiment is shown in FIG. Shown in.

【0028】[0028]

【第9実施例】第1実施例ないし第8実施例は弓形投影
像を走査させる弓形スキャナーである投影露光装置に関
するものであったが、第9実施例は縮小投影式の投影露
光装置に関する。第9実施例の縮小投影式の投影露光装
置の構成は、図16に示されるが、図1に示す第1実施
例の投影露光装置と共通の構成については、共通の符号
を付してその説明を省略する。第1実施例の第1倍率補
正光学系23において凸シリンダレンズ及び凹シリンダ
レンズによって構成していたが、第1倍率補正光学系1
23は凸球面レンズ及び凹球面レンズによって構成し、
基板26上に2次元像を形成するため走査を行う必要は
ない。
[Ninth Embodiment] The first to eighth embodiments relate to a projection exposure apparatus which is an arcuate scanner for scanning an arcuate projection image. The ninth embodiment relates to a reduction projection type projection exposure apparatus. The configuration of the reduction projection type projection exposure apparatus of the ninth embodiment is shown in FIG. 16, but the same components as those of the projection exposure apparatus of the first embodiment shown in FIG. The description is omitted. Although the first magnification correction optical system 23 of the first embodiment is composed of the convex cylinder lens and the concave cylinder lens, the first magnification correction optical system 1
23 is composed of a convex spherical lens and a concave spherical lens,
No scanning is required to form a two-dimensional image on the substrate 26.

【0029】なお、第2実施例ないし第8実施例におい
ても倍率補正光学系を凸シリンダレンズ及び凹シリンダ
レンズによって構成していたが、これらの倍率補正光学
系を凸球面レンズ及び凹球面レンズによって構成するこ
ともできる。
In the second to eighth embodiments, the magnification correction optical system is composed of the convex cylinder lens and the concave cylinder lens, but these magnification correction optical systems are composed of the convex spherical lens and the concave spherical lens. It can also be configured.

【0030】[0030]

【発明の効果】投影光学装置の微小な倍率補正を、簡易
な構成と容易な操作によって実施可能である効果を有す
る。
According to the present invention, it is possible to perform minute magnification correction of the projection optical apparatus with a simple structure and easy operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の投影露光装置の光学図で
ある。
FIG. 1 is an optical diagram of a projection exposure apparatus according to a first embodiment of the present invention.

【図2】図1の投影露光装置の第1倍率補正光学系の光
学図である。
FIG. 2 is an optical diagram of a first magnification correction optical system of the projection exposure apparatus of FIG.

【図3】図1の投影露光装置の第1倍率補正光学系の光
束図である。
3 is a luminous flux diagram of a first magnification correction optical system of the projection exposure apparatus of FIG.

【図4】図1の投影露光装置の凹シリンダレンズの焦点
距離と倍率補正量の関係を示すグラフ図である。
4 is a graph showing a relationship between a focal length of a concave cylinder lens of the projection exposure apparatus of FIG. 1 and a magnification correction amount.

【図5】図1の投影露光装置の凹シリンダレンズの移動
量と倍率補正量の関係を示すグラフ図である。
5 is a graph showing a relationship between a moving amount of a concave cylinder lens and a magnification correction amount of the projection exposure apparatus of FIG.

【図6】本発明の第2実施例の投影露光装置の光学図で
ある。
FIG. 6 is an optical diagram of a projection exposure apparatus according to the second embodiment of the present invention.

【図7】本発明の第3実施例の投影露光装置の第4倍率
補正光学系の光学図である。
FIG. 7 is an optical diagram of a fourth magnification correction optical system of the projection exposure apparatus of the third embodiment of the present invention.

【図8】本発明の第4実施例の投影露光装置の第5倍率
補正光学系の光学図である。
FIG. 8 is an optical diagram of a fifth magnification correction optical system of the projection exposure apparatus of the fourth embodiment of the present invention.

【図9】本発明の第4実施例の投影露光装置の凹シリン
ダレンズの移動量と倍率補正量の関係を示すグラフ図で
ある。
FIG. 9 is a graph showing the relationship between the amount of movement of the concave cylinder lens and the amount of magnification correction of the projection exposure apparatus of the fourth embodiment of the present invention.

【図10】本発明の第5実施例の投影露光装置の凹シリ
ンダレンズの移動量と倍率補正量の関係を示すグラフ図
である。
FIG. 10 is a graph showing the relationship between the amount of movement of the concave cylinder lens and the amount of magnification correction of the projection exposure apparatus of the fifth embodiment of the present invention.

【図11】本発明の第6実施例の投影露光装置の倍率補
正光学系の光学原理図である。
FIG. 11 is an optical principle diagram of a magnification correction optical system of the projection exposure apparatus of the sixth embodiment of the present invention.

【図12】本発明の第6実施例の投影露光装置の凹シリ
ンダレンズの移動量と倍率補正量の関係を示すグラフ図
である。
FIG. 12 is a graph showing a relationship between a moving amount of a concave cylinder lens and a magnification correction amount of a projection exposure apparatus according to a sixth embodiment of the present invention.

【図13】本発明の第7実施例の投影露光装置の倍率補
正光学系の光学図である。
FIG. 13 is an optical diagram of a magnification correction optical system of a projection exposure apparatus according to the seventh embodiment of the present invention.

【図14】本発明の第8実施例の投影露光装置の倍率補
正光学系の光学図である。
FIG. 14 is an optical diagram of a magnification correction optical system of a projection exposure apparatus according to an eighth example of the present invention.

【図15】本発明の第8実施例の投影露光装置の凸シリ
ンダレンズの移動量と倍率補正量の関係を示すグラフ図
である。
FIG. 15 is a graph showing the relationship between the moving amount of the convex cylinder lens and the magnification correction amount of the projection exposure apparatus of the eighth embodiment of the present invention.

【図16】本発明の第9実施例の投影露光装置の光学図
である。
FIG. 16 is an optical diagram of a projection exposure apparatus according to the ninth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 投影露光装置 2 光源 4 コンデンサーレンズ 6 弓形絞り 10 マスク原板10 12 第1反射鏡 14 第1光軸 16 第2光軸 17 第3光軸 20 第2反射鏡 22 投影レンズ 24 第1倍率補正光学系 40 凹シリンダレンズ 42 凸シリンダレンズ 100 第2倍率補正光学系 130 第3倍率補正光学系 DESCRIPTION OF SYMBOLS 1 Projection exposure apparatus 2 Light source 4 Condenser lens 6 Bow stop 10 Mask original plate 10 12 1st reflecting mirror 14 1st optical axis 16 2nd optical axis 17 3rd optical axis 20 2nd reflecting mirror 22 Projection lens 24 1st magnification correction optics System 40 Concave cylinder lens 42 Convex cylinder lens 100 Second magnification correction optical system 130 Third magnification correction optical system

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原板の像を基板上に形成する投影光学系
を有する投影光学装置において、 上記投影光学系と原板の間、及び上記投影光学系と基板
との間の少なくとも一方に2つのレンズを包含して成る
アフォーカルな倍率補正光学系を配置し、上記レンズの
位置を相対的に変化させることにより投影倍率を変更可
能に構成したことを特徴とする投影光学装置。
1. A projection optical apparatus having a projection optical system for forming an image of an original plate on a substrate, wherein two lenses are provided at least between the projection optical system and the original plate and between the projection optical system and the substrate. A projection optical apparatus comprising: an afocal magnification correction optical system that is included therein, and a projection magnification that can be changed by relatively changing the position of the lens.
【請求項2】 原板の像を基板上に形成する投影光学系
を有する投影光学装置において、 上記投影光学系と原板の間、及び上記投影光学系と基板
との間の少なくとも一方に2つのレンズを包含して成る
アフォーカル条件から僅かにずらした倍率補正光学系を
配置し、上記レンズ位置を変化させることにより該倍率
補正光学系の投影倍率を縮小、等倍、拡大を含む範囲で
変更可能に構成したことを特徴とする投影光学装置。
2. A projection optical apparatus having a projection optical system for forming an image of an original plate on a substrate, wherein two lenses are provided at least between the projection optical system and the original plate and between the projection optical system and the substrate. A projection magnification of the magnification correction optical system can be reduced by changing the lens position by arranging a magnification correction optical system slightly shifted from the included afocal condition and changing the projection magnification of the magnification correction optical system within a range including equal magnification and enlargement. A projection optical device characterized by being configured.
【請求項3】 上記倍率補正光学系のアフォーカル条件
を僅かに崩すことにより、投影倍率を変更可能に構成し
たことを特徴とする請求項1記載の投影光学装置。
3. The projection optical apparatus according to claim 1, wherein the projection magnification can be changed by slightly breaking the afocal condition of the magnification correction optical system.
【請求項4】 上記倍率補正光学系がシリンダーレンズ
を包含していて、光軸を中心とする一直径方向にのみ結
像倍率を変更可能にしたことを特徴とする請求項1又は
請求項2記載の投影光学装置。
4. The magnification correction optical system includes a cylinder lens, and the imaging magnification can be changed only in one diameter direction around the optical axis. The projection optical device described.
【請求項5】 回転対称光学系の輪帯上の円周上の良像
域を使用して、円弧状の露光を行い、原板と基板を移動
することで広い面積の露光を行う投影光学装置の移動方
向と垂直な方向の倍率変更を行うように構成したことを
特徴とする請求項1または2記載の投影光学装置。
5. A projection optical apparatus for performing arc-shaped exposure using a good image area on the circumference of an annular zone of a rotationally symmetric optical system, and for exposing a large area by moving an original plate and a substrate. 3. The projection optical apparatus according to claim 1, wherein the projection optical apparatus is configured to change the magnification in a direction perpendicular to the moving direction of the.
JP5117046A 1993-05-19 1993-05-19 Projection optical device Pending JPH06331932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117046A JPH06331932A (en) 1993-05-19 1993-05-19 Projection optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5117046A JPH06331932A (en) 1993-05-19 1993-05-19 Projection optical device

Publications (1)

Publication Number Publication Date
JPH06331932A true JPH06331932A (en) 1994-12-02

Family

ID=14702092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117046A Pending JPH06331932A (en) 1993-05-19 1993-05-19 Projection optical device

Country Status (1)

Country Link
JP (1) JPH06331932A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US5835284A (en) * 1996-06-28 1998-11-10 Nikon Corporation Catadioptric optical system and adjusting method
US6157497A (en) * 1993-06-30 2000-12-05 Nikon Corporation Exposure apparatus
JP2010020017A (en) * 2008-07-09 2010-01-28 Canon Inc Projection optical system, exposure apparatus, and method for manufacturing device
JP2010039347A (en) * 2008-08-07 2010-02-18 Mejiro Precision:Kk Projection exposure apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US6157497A (en) * 1993-06-30 2000-12-05 Nikon Corporation Exposure apparatus
US6351305B1 (en) 1993-06-30 2002-02-26 Nikon Corporation Exposure apparatus and exposure method for transferring pattern onto a substrate
US6480262B1 (en) 1993-06-30 2002-11-12 Nikon Corporation Illumination optical apparatus for illuminating a mask, method of manufacturing and using same, and field stop used therein
US6509954B1 (en) 1993-06-30 2003-01-21 Nikon Corporation Aperture stop having central aperture region defined by a circular ARC and peripheral region with decreased width, and exposure apparatus and method
US6556278B1 (en) 1993-06-30 2003-04-29 Nikon Corporation Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
US6795169B2 (en) 1993-06-30 2004-09-21 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US5835284A (en) * 1996-06-28 1998-11-10 Nikon Corporation Catadioptric optical system and adjusting method
JP2010020017A (en) * 2008-07-09 2010-01-28 Canon Inc Projection optical system, exposure apparatus, and method for manufacturing device
JP2010039347A (en) * 2008-08-07 2010-02-18 Mejiro Precision:Kk Projection exposure apparatus

Similar Documents

Publication Publication Date Title
US6473243B1 (en) Catadioptric imaging system and a projection exposure apparatus provided with said imaging system
US5675401A (en) Illuminating arrangement including a zoom objective incorporating two axicons
JP5363732B2 (en) Projection system
JP2001185480A (en) Optical projection system and projection exposure device equipped with the system
JP2003177320A (en) Reflection type image formation optical system and projector
KR100384551B1 (en) Dimming system
US5891806A (en) Proximity-type microlithography apparatus and method
JP3686887B2 (en) Illumination optical system and enlarged projection display device
JPH0533368B2 (en)
CN101000409A (en) Variable multi-power projection optical system
JP2004022708A (en) Imaging optical system, illumination optical system, aligner and method for exposure
JP4655332B2 (en) Exposure apparatus, exposure apparatus adjustment method, and microdevice manufacturing method
US6600550B1 (en) Exposure apparatus, a photolithography method, and a device manufactured by the same
JP2005340605A (en) Aligner and its adjusting method
US7242457B2 (en) Exposure apparatus and exposure method, and device manufacturing method using the same
KR20020046932A (en) Condenser optical system, illumination optical apparatus comprising the optical system, and exposure apparatus
JPH06331932A (en) Projection optical device
JP2011108851A (en) Exposure apparatus and device fabrication method
JPH0684759A (en) Illuminator
JPH06118341A (en) Scanning type projecting device
JP3380083B2 (en) Projection apparatus and focus adjustment method for projection apparatus
JPH0922869A (en) Aligner
JP2000089227A (en) Projection type display device
JP4547714B2 (en) Projection optical system, exposure apparatus, and exposure method
JP6409839B2 (en) Projection optical system manufacturing method and image display device manufacturing method