JPS6020697B2 - Measuring method of thermophysical properties by arbitrary heating - Google Patents

Measuring method of thermophysical properties by arbitrary heating

Info

Publication number
JPS6020697B2
JPS6020697B2 JP4155979A JP4155979A JPS6020697B2 JP S6020697 B2 JPS6020697 B2 JP S6020697B2 JP 4155979 A JP4155979 A JP 4155979A JP 4155979 A JP4155979 A JP 4155979A JP S6020697 B2 JPS6020697 B2 JP S6020697B2
Authority
JP
Japan
Prior art keywords
equation
sample
temperature
laplace
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4155979A
Other languages
Japanese (ja)
Other versions
JPS55134346A (en
Inventor
嘉宏 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4155979A priority Critical patent/JPS6020697B2/en
Publication of JPS55134346A publication Critical patent/JPS55134346A/en
Publication of JPS6020697B2 publication Critical patent/JPS6020697B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、任意な境界条件下によって任意な加熱入力
下、また初期温度分布はある限定された条件内で任意な
初期条件下で熱伝導率、温度伝導率、熱容量などの熱物
性値を測定する方法に関する。 熱物性値は、ェヌルギー対策をせまられている工業分野
を初めとして、ほとんどあらゆる生産産業や自然科学の
学術面に重要なものである。 従釆行われている熱物性値の測定法、定常法と熱伝導基
礎式の解析解に基づく非定常法に大別される。定常法は
広く使用されている方法であるが、温度を必要な定常場
に保つことに実務上の困難さがあり、測定には長い時間
と高温の表熟練を必要とした。一方、解析解に基づく非
定常法は最近非常に発展してきているが、解析解を得る
ために使用した理想的な境界条件を実験的に実現させる
点に細0の注意が必要であり、一般に装置が複雑で高価
になる。 以上の諸法の共通的特徴は試料の境界条件を定常値や、
ステップ状などの理想的なものに確定する必要であり、
このことが熱物性値の測定を非常に困難なものにしてい
た要因である。そこで、昨今の熱物性値データの要望に
添うためには境界条件確定の必要性をゆるめる方法の提
案が必要である。 その一方法として数値計算に基づく方法がある。しかし
、この方法は任意性が限られるだけでなく計算が可成り
複雑で一般的な方法になるとは今の所考えられない。ま
た、従来提案されている本願発明の原理と似た方法とし
ては半無限固体に対してしか方法が示されていないだけ
でなく、同時測定のためには、測定時に突然高温物体を
接触させ、その物体の平均温度変化から熱流量を求める
と云うもので、境界条件が完全に任意とは言い難く、更
に測定適用範囲が限られると共に熱損失他など誤差が大
きくなる欠点がある。そこで、従来の方法に対して境界
条件が完全に任意によって加熱条件が完全に任意の体系
下で、通常行なわれている程度の手順で熱物性値が得ら
れれば、装置上、方法上また精度上で著しく改善が期待
される。 この発明は、このような方法に関するものであって、適
用条件範囲が広く、装置が簡単、且つ方法も容易で、さ
らに精度の高さを保証するものである。 この発明の原理を第1図に示した平板状試料によって熱
物性値同時測定の基本的原理を説明すれば、次の通りで
ある。 第1図によれば、厚さLの標準試料〔1〕(熱伝導率^
1、温度伝導率al、熱容量plcl既知)と厚さその
供試試料〔ロ〕(^0,ao,po,co未知)とが接
触しており、熱流は面に対して直交とし、座標を図のよ
うにする。 熱伝導基礎式は、温度をT、時間をtとして6Tじ・リ
=a6事窯,t) ‐‐…‐‐‐‐‘118t初期温
度分布をT(x,o)とし、式{2}のような温度差を
考えれば、式{1}は式{3}となる。 8(x,t)=T(x,t)−T(x,o).・・.・
・・・・{2)68ふり=a62夢著,t)十a62守
笠の ………‘3}6t式湖においてL=T(o,o)
=一定としてT(X,。 )ニmは十九 ………{4)すなわち、初
期温度分布が一様(m=o)または直線的とすれば、6
篭事,t)=a62髪笠リ ‐‐‐‐‐‐‐‐‐■式
t別こラプラス変換をほどこし、8(x,o)=0を代
入し、且つ常微分方程式に直すと、d28一≦す=o
………{6}dX2 aここで、
sはラプラスパラメータ、のま式(7)で定義されるラ
プラス積分である。 8ニノ皮e対8(x,t)dt ………{7)式(
6}の一般解は式■で与えられる。 8=AeゾS′aY&〜ゾ了でもA×+B×−1・・・
・・・・・・(8}ただし、X三eゾSノaX
………{9)なお、第1図の位置i(i=
−1,0,1,2)における温度応答ai(t)のラプ
ラス積分8iは式{10}で計算される。 8 iニ′併eNa i(t)dt …,...,
.{i0)一方、熱流東q(x,t)はフーリエの式q
くX,t)=−^6芸事,t)………(..)式(11
)をラブラス変換すると、q=−^柴 ・・.
・・…・(12)式(12)に式棚を代入するとq=入
ノs/a(一Aefア斗技‐ぐアう.・・.・・・・・
(13) 以上が方法の基礎的関係である。 まず標準試料〔1〕内について考えるとし、位置i:1
,0での各oiを式00で求めて式■に代入すれば、積
分定数AI,BIが定まるので、それを式(13)に代
入し、位置i=0すなわち境界面における(qo)1を
求めると、(q。 )1:入1倍{80(X−・十1/X‐・)‐28−・
} ,..,..X−′1/X−.ここ
で・×「=e‐rF2X‐1である。 さらに〔ロ〕についてもi=0と1(または2でも良い
)について上と同様にして(qo)0を求めると(q。 )0=川侍希{岬・十過)−凶} X.−1/X. .・・.・・・・・(15) ここで、×,=eトアoX,である。 明らかに(qo)1=(qo)0である故、式(14)
と(15)を等瞳して整理すると、鍔=胴ぱ羊史,)雌
泰三洗浄券子 .・・.・・・・・(16) つぎにaD‘こついては標準試料の存否に関係なく、供
試試料内3位置での温度応答から求まる。 すなわち、この場合8o,8,,a2をそれぞれx=0
,x,,海に対応させて式(8)に代入し、整理すれば
、式(17)を容易に得る。す。 (農−受)十す.(X2−宅)十す2く1− X.)
=○・・・・・・・・・(17)XI式(
16)、(17)において未知の量は入日,ao,sで
ある。しかし、ラフ。ラス変換の性質からsは式のが収
束する限り、任意の有限な正値をとり得るし、実際上は
後述のように定められるので、入ロ,aoが決定される
。また、熱容量pD,coは式(18)より求まる。 p口C口=入口/a口 .........
(18)以上は無限平板状試料について原理を説明した
が、他の一次元的体系、すなわち半簸限体状試料、無限
円柱状または無限円管状試料、球状試料に対して同様の
方法が適用できる。 ただし、直角座標系での指数関数に対して円柱座標系で
はべッセル関数、球座標系ではルジヤンドル関数を使用
する。たとえば、円柱状あるいは中空円柱状試料の熱物
性値測定の基本的原理は第2図のような体系については
以上の平板状試料の場合と同様にすると、〔ロ〕を供謙
試料、〔1〕を標準試料とした場合の温度伝導率aロを
求める式は第(19)式より、8,1。 (ノs/aDr2)−821。(ゾてス両ロr,)=0
・ ・・・・・・・・・(19)また、熱伝導率
入ロを求める式は第(20)式より、豊=畔静鷲鼎滝 {AIl,(ノs/air2)−BIK,(ノs/a1
r2)}.・・’.・・・・(20) となることが導びかれる。 ここで、loは第1種の0次変形べッセル関数、1,,
K,は第1種の一次変形べツセル関数である。AI,B
Iは別に定まる積分定数である。以上の原理説明で明ら
かなように所要個所の温度応答のラプラス積分さえ得ら
れれば、任意の加熱条件によって境界条件が如何に変化
しても原理的に正確な熱物性値の測定が可能である。 以上で、第{10)式でのラプラス積分はtののまでの
積分が必要である。 しかし、同式中のe‐SLはtが大きくなると0に収束
する関数である。また8i(t)すなわち測定に必要な
温度応答の大きさは、その温度の熱物性値と云う意味を
失わない程度のある有限値以内におさめる必要性がある
。したがってe‐St8i(t)を必然的にtが大きく
なると、0に収束する関数である。よって熱物性値測定
上、近似的に第(21)式が成立する測定時間皿axが
存在する。ノがe−Sto:(t)dtニノがaXe心
8i(t)dt1・1.・‘・・・(21)いま理想的
な例としてt>0で、8i(t)=0ooなるステップ
状温度応答を考えると明らかに′がXe−St0i(t
)dtノノ〆e−St8i(t)dt=1一e−Stm
aX ……・・・(22)となり、
第(21)式の近似の程度はs肌axの大きさに依存す
ることが示される。 そこで、Stm舷×値を決定するためと、方法を検証す
るために多くの数値実験を行ったが、ここには本方法の
内容を平易に述べるため、その一例を説明する。いま、
第1図においてx=〆面で定温、すなわち6夕(t);
0とし、a‐L(t)にステップ状温度応答8‐L,o
を与えた場合を考えよう。 標準試料〔1〕、供試試料
This invention measures thermophysical property values such as thermal conductivity, temperature conductivity, and heat capacity under arbitrary heating input under arbitrary boundary conditions, and under arbitrary initial conditions with the initial temperature distribution within certain limited conditions. Regarding how to. Thermophysical property values are important in almost every production industry and in the academic field of natural science, including the industrial field where energy countermeasures are urgently needed. The methods used to measure thermophysical properties are roughly divided into steady methods and unsteady methods based on analytical solutions of basic heat conduction equations. Although the steady state method is widely used, there are practical difficulties in maintaining the temperature at the required steady field, and measurement requires a long time and skill at high temperatures. On the other hand, unsteady methods based on analytical solutions have been greatly developed recently, but care must be taken to experimentally realize the ideal boundary conditions used to obtain the analytical solutions, and in general, Equipment becomes complex and expensive. The common feature of the above methods is that the boundary conditions of the sample are set to steady values,
It is necessary to determine the ideal shape such as step shape,
This is a factor that makes it extremely difficult to measure thermophysical properties. Therefore, in order to meet the recent demands for thermophysical property data, it is necessary to propose a method that eases the need to determine boundary conditions. One such method is a method based on numerical calculations. However, this method not only has limited arbitrariness, but also requires quite complex calculations, so it is currently difficult to imagine that this method will become a general method. Furthermore, methods similar to the principle of the present invention that have been proposed in the past have only been shown for semi-infinite solids. Since the heat flow rate is determined from the average temperature change of the object, the boundary conditions cannot be said to be completely arbitrary, and furthermore, the measurement range is limited and there are drawbacks such as large errors such as heat loss. Therefore, in contrast to conventional methods, if thermophysical property values can be obtained in a system where the boundary conditions are completely arbitrary and the heating conditions are completely arbitrary, using the procedures normally performed, it is possible to improve the accuracy of the equipment and method. A significant improvement is expected. The present invention relates to such a method, which has a wide range of applicable conditions, a simple device, and an easy method, and also guarantees high accuracy. The basic principle of simultaneous measurement of thermophysical properties using the flat sample shown in FIG. 1 will be explained as follows. According to Figure 1, standard sample [1] with thickness L (thermal conductivity ^
1. The temperature conductivity al, heat capacity plcl known) and the thickness of the test sample [b] (^0, ao, po, co unknown) are in contact, the heat flow is perpendicular to the plane, and the coordinates are Do as shown. The basic equation for heat conduction is, where the temperature is T and the time is t, 6Tji・ri=a6thing kiln, t) --...----'118tThe initial temperature distribution is T(x, o), and the formula {2} Considering the temperature difference, equation {1} becomes equation {3}. 8(x,t)=T(x,t)−T(x,o).・・・.・
...{2) 68 Furi = a62 Yume, t) 10a62 Morikasa's ......'3} 6T type lake L = T (o, o)
= constant, T(X,.) nim is 19......{4) In other words, if the initial temperature distribution is uniform (m=o) or linear, then 6
Kagoto, t) = a62 Hair Kasari - - - - - - - - ■ Applying the Laplace transformation by formula t, substituting 8 (x, o) = 0, and converting it into an ordinary differential equation, we get d28 1≦s=o
......{6}dX2 aHere,
s is a Laplace parameter and a Laplace integral defined by equation (7). 8 Nino skin e vs. 8 (x, t) dt ......{7) Formula (
6} is given by the formula ■. 8=AezoS'aY&~zoryo A×+B×-1...
・・・・・・(8}However, X3ezoSnoaX
………{9) Furthermore, position i (i=
-1, 0, 1, 2), the Laplace integral 8i of the temperature response ai(t) is calculated using equation {10}. 8 i ni′ togethereNa i(t)dt …,. .. .. ,
.. {i0) On the other hand, the heat flow east q(x, t) is the Fourier equation q
ku
) is Labrass transformed, q=-^Shiba...
...... (12) Substituting the formula shelf into equation (12), q = entry no s/a (1 Aef A do technique - Gua...)
(13) The above are the basic relationships of the method. First, let us consider the inside of the standard sample [1], and position i:1
, 0 using equation 00 and substituting it into equation (■), the constants of integration AI and BI are determined. Substituting them into equation (13), the position i=0, that is, (qo) 1 at the boundary surface, is determined. Find (q.) 1:1 times {80(X-・11/X-・)-28-・
} ,. .. 、. .. X-'1/X-. Here, ・×"=e-rF2X-1.Furthermore, for [B], find (qo)0 in the same way as above for i=0 and 1 (or 2), then (q.)0= River Samurai Nozomi {Misaki・Jikō} - Kyou} X.-1/X. . . . (15) Here, = (qo)0, so equation (14)
If we organize ``and'' (15) with the same eyes, we can see that tsuba=dōpāyōshi,)Metaizō sensō kenko.・・・. (16) Next, aD' is determined from the temperature response at three positions within the test sample, regardless of the presence or absence of a standard sample. That is, in this case, 8o, 8,, a2 are each x=0
, x, , by substituting it into Equation (8) in correspondence with the sea and rearranging it, Equation (17) can be easily obtained. vinegar. (Nursing - receiving) 10s. (X2-house) 10s 2ku1-X. )
=○・・・・・・・・・(17) Formula XI (
In 16) and (17), the unknown quantities are the arrival of the sun, ao, and s. But rough. Due to the nature of the lath transformation, s can take any finite positive value as long as the equation converges, and in practice it is determined as described below, so the inputs ao and ao are determined. Further, the heat capacity pD,co can be found from equation (18). P port C port = entrance/a port. .. .. .. .. .. .. .. ..
(18) Although the principle has been explained above for an infinite flat sample, the same method can be applied to other one-dimensional systems, such as semi-elutrionic solid samples, infinite cylindrical or tubular samples, and spherical samples. can. However, in contrast to the exponential function in a rectangular coordinate system, the Bessel function is used in a cylindrical coordinate system, and the Lujendre function is used in a spherical coordinate system. For example, the basic principle of measuring thermophysical properties of a cylindrical or hollow cylindrical sample is the same as for the flat sample described above for the system shown in Figure 2. ] is used as a standard sample, the formula for calculating the temperature conductivity a is 8,1 from formula (19). (nos/aDr2)-821. (Zotesu bothro r,) = 0
・ ・・・・・・・・・(19) Also, from equation (20), the formula for calculating the thermal conductivity input is as follows: (Nos/a1
r2)}.・・'. ...(20) It is derived that. Here, lo is the zero-order modified Bessel function of the first kind, 1, ,
K, is a linearly deformed Betzsell function of the first kind. AI,B
I is an integral constant determined separately. As is clear from the above explanation of the principle, as long as the Laplace integral of the temperature response at the required location is obtained, it is possible in principle to accurately measure thermophysical property values no matter how the boundary conditions change due to arbitrary heating conditions. . As described above, the Laplace integral in equation {10) requires integration up to t. However, e-SL in the equation is a function that converges to 0 as t becomes large. Further, 8i(t), that is, the magnitude of the temperature response necessary for measurement, needs to be kept within a certain finite value without losing the meaning of the thermophysical property value of the temperature. Therefore, e-St8i(t) is a function that inevitably converges to 0 as t becomes larger. Therefore, in measuring thermophysical properties, there is a measurement time interval ax in which equation (21) approximately holds true. Noga e-Sto: (t) dtNino is aXe heart 8i (t) dt1・1.・'...(21) As an ideal example, if we consider a step-like temperature response where t>0 and 8i(t)=0oo, it is clear that ′ is Xe−St0i(t
)dtnono〆e-St8i(t)dt=11e-Stm
aX ......(22),
It is shown that the degree of approximation of equation (21) depends on the size of s skin ax. Therefore, many numerical experiments were conducted to determine the Stm broadside x value and to verify the method, but an example will be described here in order to explain the content of the method in a simple manner. now,
In Figure 1, the temperature is constant at x=〆〆plane, that is, 6 days (t);
0, and a-L(t) has a step-like temperature response 8-L,o
Let's consider the case where we give Standard sample [1], test sample

〔0〕の各熱物性値およびx
‐,,x.,池,L,そをあらかじめ設定し、解析解か
ら8−,(t),8。(t),8,(t),a2(t)
を求めると、第3図の各実線のようになる。この各実線
が実験で求められたと仮定して本方法で熱物性値を求め
てみたものである。なお、第3図中には、e‐St、例
としてeMoo川、また斜線部の面積として8oを例示
した。第4図は、第3図の各8(t)からシンプソン法
による数値積分(サンプリング数N)より各8を得、策
(16)式および弟(17)式よりそれぞれ入0,aロ
を求めた結果をstmaxに対して示したものである。 図より、サンプリング数N=200で数値計算の精度が
良ければ、stmaxがある値以上(ここでは約7以上
)ならば、十分に設定値と一致する結果を得た。stm
axが小さい範囲で設定値と相違するのは第(21)式
の近似が成立しないためである。一方、あまりstma
xを大きくすると、e−Stがtの小さい範囲で0に収
束してしまい、短時間内のみの温度応答でデ−夕を評価
することになるので、上限を設けることが望ましい。以
上とほぼ同様な結果は直角座標系、円柱座標系を問わず
他の多くの数値実験および実測実験によって確かめられ
た。これらの結果stmaxは第(23)式のような範
囲に定めると、あらゆる場合に対して弟(21)式の近
似が成り立ち、測定上も都合良いことがわかった。8S
stmaxS12 ………(23)籍
(23)式の範囲なならば、sは任意に選んで良い。 stmaxはその間に非定常挙動が顕著で、各温度応答
が比較できるだけの変化があれば、任意で良い。なお、
第(23)式の範囲ならば汎ま図積分によっても比較的
良い精度で簡単に得られる。更に、温度応答をAD変換
し、マイクロコンピュータなどで自動的にラプラス積分
をさせ、また演算させることができる。また、stma
xを定める必要がある場合には式(24)を推薦する。 Stmax=8 ………(24
)以上のように、この発明によればラプラス積分を実際
上無限大の時間まで行う必要はなく、測定時間tmax
まで行えばよく、これによって任意の加熱によって境界
条件が如何に変化しても原理的に正確な測定が可能とな
る。 この発明によれば熱伝導率、温度伝導率、熱容量の熱物
性値を同時に測定できるのである。 また、温度伝導率aoは、平板試料では式(17)、円
柱状試料では式(19)の基本的関係式から決定するこ
とができるが、この場合は、標準試料が供試試料だけで
も所要位置の温度応答から求めることができる。 また、各種形状の試料において一つの境界条件が等温的
、断熱的、熱入力一定などのように確定している場合に
は、それぞれ側溢位置の数を減じられるなど、この発明
の方法をより容易に適用できる。 また、標準試料の代物こ境界面に熱流計を設置し、熱流
東のラプラス積分を式(15)と等暦して得られる式よ
り各物性値を得ることができる。さらに初期温度分布が
2次曲線の場合でも簡単な補正によって測定が可能であ
る。また態様が適当なものであれば、供試試料として団
体だけでなく液体や気体も可能となる。 尚、第1,2図の一般的体系に対して測定点を試料表面
にとったり、境界条件を選定したりすることによって可
能な種々のより容易な、また実用的な測定体系の例を示
す。第1表には平板状試料について基本的原理を応用し
た実用的測定体系の例を挙げたもので、各関係式も掲げ
る。 第1表 実用的測定体系の例また、円柱状や円管状試料
についても各種の応用的測定体系を考えることができる
。 例えば、第2図で試料〔1〕の外周を定温や断熱にした
り、また中心円柱部を標準試料にし、中空円柱部を供試
試料にしたり、中心部に円柱状加熱部を設け、周囲に共
に中空円柱状の供試試料と標準試料にすることも出来る
。更に、無限体状供試試料中に円柱状加熱部を設けるこ
となど多くの場合に適用できる。尚、それぞれの場合に
ついて側温体の数が必要に応じて変ってくる。次に、平
板状試料についてこの発明の実施例を図面に基いて説明
すると、第5図は試験部の概略図であり、第1表の最初
の欄に示した態様である。 供試試料1としてはそれぞれの厚さ約5肋、直径15仇
吻の2枚のアクリル樹脂円板およびソーダガラス円板を
それぞれ密着させたものを使用した。 標準試料2としては、3柳厚パィレックスガラスを使用
した。側温体3としては、0.1図アルメル・クロメル
熱電対の温接点を円板中央各所菱位置に設定した。試料
両側には均一に密着させるための1肋厚テフロン板4、
温度場を半径方向に一様にするための3脚厚銅板5、全
体を均一に圧着させるため、わずかに試料向きに凸の曲
率を付け、バネ作用をもたせた3側厚真ちゆう板6,6
を設け、更に試料の温度応答を所要の程度まで緩慢にす
る1比肋厚アクリル樹脂板7を設け、これらを締着具8
で均一に締め付けてセットする。 第6図は測定装置の系統図である。 上記の如く設定された試験部aは上下面にガラス窓9を
設けた恒樋箱10の中央にセットされる。垣温箱10内
の温度は、スラィダック111こよって所定温度に保た
れる。試験部a内の側糧体の指示値が一様であることを
確認後、スラィダツク12,13を作動して赤外線ラン
プ14,15からのエネルギーを試験部aに供給する。
額。温体熱電対からの熱起電力は切襖スイッチ16、電
圧補償器17を介して平衡式記録計18で記録する。な
お、デジタル電圧計19の指示値をプリンター20で記
録しても良い。第7図は、第5図において×印で記した
4つの洩り温位置から得られた各温度応答8,(t),
82(t),83(t),84(t)の記録例である。 各位層i(i=1,2,3,4)におけるラプラス積分
値8iは(21)式で算出されるが、この数値計算に当
っては第7図のアナログ記録量をデジタル量に変換し、
数値積分に広く使用されるシンブソン法を用いた。こう
して決定されたoi(i=1,2,3,4)を、対応す
る距離xと共に代入し、それぞれの試料について積分定
数A,Bを定めた。 (qo)町:(qo)1より得られた、熱伝導率入Dを
定める関係式に上記のそれぞれの試料についての積分定
数A,Bを代入した。 また、温度伝導率aoを定める関係式中にも積分定数を
代入した。 以上で「 2つの式が得られ、この中は未知数は^0,
a0, sの3つだが、ラプラス変換の性質に基づき
、sは任意の数にとることができるので熱伝導率入0と
温度伝導率aoを決定した。 第8図は、アクリル樹脂板に対して測定した結果を示す
ものであって、実験点はこの発明による実験の結果であ
り、斜線で示したものは「岡田らによる実験値〔機誌「
79(1976)247〕の範囲である。第9図は、ソ
ーダガラス板の測定結果であり、実線及び点線は片山ら
による実験値〔機論、34(1968)2012〕を示
す。 これよりいずれも他の実験値との一致も良好であり、ま
た再現性も良好である。 一方、円柱状および中空円柱状試料による測定例を示す
と、試料部の概略は第10図の如くであり、第11図は
測定装置の概略を示すものである。 側温体(・印)は供謙試料1の中心軸上、供説教料1と
標準試料2の界面、標準試料2の外周には真ちゆう管2
1を設け、真ちゆう管21の外周には加熱用ヒータ22
と試験時加熱用ヒータ23を巻装する。 真ちゆう管21と標準試料2の間には粉末アルミナ24
を充填して伝熱性を高めた。実験はまず温度伝導率のみ
を測定する場合の例として18−8ステンレス鋼を測定
した。第12図は、この場合の温度応答記録例である。
第13図.は、その結果を示すもので、実線で示した文
献値(TPRC)と非常に良く一致しており、精度も約
1%以内であった。また、熱伝導率、温度伝導率、熱容
量を同時測定の例としてアルミナ粉末の熱物性値の測定
結果を第14図に示した。 TPRCデータブックによる文献値との比較はデータの
ある熱伝導率だけしかできないが、これも比較的良く一
致している。第15図、アクリル樹脂板の温度伝導率を
、同村料の平板試料の温度伝導率と岡田らの実験値〔機
誌、79(1976)247〕の比較において示したも
のである。この結果、この実施例による実験結果は両者
と良く一致した。以上の説明で明らかなように、この発
明によれば任意の温昇条件、任意の加熱条件下において
各所要部の温度応答を測定するだけで熱物性値が測定で
き、また任意の条件のために従来の方法に較べ実験装置
が簡単になるだけでなく、熟練を要することがない。 また従釆法と較べて測定時間内の全データで結果を評価
しているために精度の高い値を保証することができる等
、従来の方法における問題点を一挙に取除き「熱物性値
測定を容易なものとする画期的な方法である。
Each thermophysical property value of [0] and x
-,,x. ,Ike,L,so is set in advance and from the analytical solution,8-,(t),8. (t), 8, (t), a2(t)
The results obtained are as shown by the solid lines in Figure 3. The thermophysical property values were obtained using this method assuming that each solid line was obtained experimentally. In addition, in FIG. 3, e-St, eMoo river is shown as an example, and 8o is shown as the area of the shaded area. In Figure 4, each 8 is obtained from each 8(t) in Figure 3 by numerical integration (sampling number N) using Simpson's method, and input 0 and aro are obtained from formula (16) and formula (17), respectively. The obtained results are shown relative to stmax. As shown in the figure, if the number of samplings N=200 and the accuracy of numerical calculation is good, if stmax is a certain value or more (here, about 7 or more), a result that sufficiently matches the set value is obtained. stm
The reason why ax differs from the set value in a small range is because the approximation of equation (21) does not hold. On the other hand, not much stma
If x is increased, e-St will converge to 0 in a small range of t, and data will be evaluated based on temperature response only within a short period of time, so it is desirable to set an upper limit. Similar results to the above were confirmed by many other numerical experiments and actual measurement experiments, regardless of whether the coordinate system was rectangular or cylindrical. As a result, it was found that if stmax is set within the range shown in Equation (23), the approximation of Equation (21) holds true in all cases, which is convenient for measurement. 8S
stmaxS12 (23) s may be arbitrarily selected as long as it is within the range of equation (23). stmax may be arbitrary as long as unsteady behavior is noticeable during that time and there is a change enough to compare each temperature response. In addition,
If it is within the range of Equation (23), it can be easily obtained with relatively good accuracy by panogram integration. Furthermore, the temperature response can be AD converted, and a microcomputer or the like can automatically perform Laplace integral and calculation. Also, stma
If it is necessary to determine x, equation (24) is recommended. Stmax=8 (24
) As described above, according to the present invention, it is not necessary to perform Laplace integral until an infinite time in practice, and the measurement time tmax
This makes it possible in principle to perform accurate measurements no matter how the boundary conditions change due to arbitrary heating. According to this invention, the thermophysical property values of thermal conductivity, temperature conductivity, and heat capacity can be measured simultaneously. In addition, the temperature conductivity ao can be determined from the basic relational expressions (17) for flat samples and (19) for cylindrical samples, but in this case, even if the standard sample is only the test sample, the required It can be determined from the temperature response of the position. In addition, if one boundary condition is fixed for samples of various shapes, such as isothermal, adiabatic, or constant heat input, the method of the present invention can be improved, such as by reducing the number of sideflow positions. Easy to apply. In addition, each physical property value can be obtained from the equation obtained by installing a heat flow meter on the boundary surface of the standard sample and isometrically calculating the Laplace integral of the heat flow east with equation (15). Furthermore, even if the initial temperature distribution is a quadratic curve, measurement is possible with simple correction. Furthermore, if the mode is appropriate, not only bodies but also liquids and gases can be used as test samples. In addition, examples of various easier and more practical measurement systems that are possible by setting measurement points on the sample surface and selecting boundary conditions in contrast to the general systems shown in FIGS. 1 and 2 will be shown. Table 1 lists examples of practical measurement systems that apply basic principles to flat samples, and also lists each relational expression. Table 1 Examples of Practical Measurement Systems Various applied measurement systems can also be considered for cylindrical and tubular samples. For example, in Figure 2, the outer periphery of sample [1] may be kept at a constant temperature or heat insulated, the central cylindrical portion may be used as a standard sample and the hollow cylindrical portion may be used as a test sample, or a cylindrical heating portion may be provided in the center and the surroundings may be Both can be made into hollow cylindrical test samples and standard samples. Furthermore, it can be applied to many cases such as providing a cylindrical heating section in an infinite body test sample. It should be noted that the number of side warming bodies varies depending on the needs in each case. Next, an example of the present invention will be described with reference to the drawings regarding a flat sample. FIG. 5 is a schematic diagram of the test section, which is the embodiment shown in the first column of Table 1. As test sample 1, two acrylic resin disks and a soda glass disk, each having a thickness of approximately 5 ribs and a diameter of 15 ribs, were closely attached. As standard sample 2, 3-yanagi-thick Pyrex glass was used. As the side heating element 3, hot junctions of 0.1 figure alumel/chromel thermocouples were set at various diamond positions in the center of the disk. On both sides of the sample, there is a Teflon plate 4 with a thickness of 1 inch for uniform adhesion.
3-legged thick copper plate 5 to make the temperature field uniform in the radial direction; 3-sided thick brass plate 6 with a slightly convex curvature toward the sample and a spring action in order to uniformly press the entire body; 6
Furthermore, an acrylic resin plate 7 with a specific thickness of 1 is provided to slow down the temperature response of the sample to a required degree, and these are attached to a fastener 8.
Tighten it evenly and set it. FIG. 6 is a system diagram of the measuring device. The test section a set as described above is set in the center of a permanent gutter box 10 having glass windows 9 on the upper and lower surfaces. The temperature inside the fence warming box 10 is maintained at a predetermined temperature by the slider 111. After confirming that the indicated values of the side feed bodies in the test section a are uniform, the sliders 12 and 13 are operated to supply energy from the infrared lamps 14 and 15 to the test section a.
amount. The thermoelectromotive force from the hot body thermocouple is recorded by a balanced recorder 18 via a cut-off switch 16 and a voltage compensator 17. Note that the indicated value of the digital voltmeter 19 may be recorded by the printer 20. FIG. 7 shows each temperature response 8,(t), obtained from the four leakage temperature positions marked with an x in FIG.
These are recording examples of 82(t), 83(t), and 84(t). The Laplace integral value 8i at each layer i (i = 1, 2, 3, 4) is calculated using equation (21), but for this numerical calculation, the analog recording amount in Figure 7 is converted to a digital amount. ,
We used the Simpson method, which is widely used for numerical integration. The thus determined oi (i=1, 2, 3, 4) was substituted together with the corresponding distance x, and integration constants A and B were determined for each sample. (qo) Town: The above integral constants A and B for each sample were substituted into the relational expression for determining the thermal conductivity input D obtained from (qo)1. Furthermore, an integral constant was substituted into the relational expression that determines the temperature conductivity ao. With the above, two equations are obtained, in which the unknowns are ^0,
There are three, a0 and s, but based on the properties of Laplace transform, s can be any number, so we determined the thermal conductivity 0 and the thermal conductivity ao. FIG. 8 shows the results of measurements on acrylic resin plates, where the experimental points are the results of experiments according to the present invention, and the shaded areas are "experimental values by Okada et al."
79 (1976) 247]. FIG. 9 shows the measurement results for a soda glass plate, and the solid line and dotted line indicate experimental values by Katayama et al. [Kiron, 34 (1968) 2012]. These results show good agreement with other experimental values and good reproducibility. On the other hand, when showing measurement examples using cylindrical and hollow cylindrical samples, the sample portion is schematically shown in FIG. 10, and FIG. 11 is a schematic diagram of the measuring device. The side heating body (marked with *) is on the central axis of the sample 1, at the interface between the sample 1 and the standard sample 2, and on the outer periphery of the standard sample 2 is a brass tube 2.
1, and a heating heater 22 is provided on the outer periphery of the brass tube 21.
and a heater 23 for heating during testing. Powdered alumina 24 is placed between the brass tube 21 and the standard sample 2.
to improve heat conductivity. In the experiment, 18-8 stainless steel was first measured as an example of measuring only the thermal conductivity. FIG. 12 is an example of temperature response recording in this case.
Figure 13. shows the results, which were in very good agreement with the literature value (TPRC) shown by the solid line, and the accuracy was within about 1%. Further, as an example of simultaneous measurement of thermal conductivity, temperature conductivity, and heat capacity, the measurement results of the thermophysical properties of alumina powder are shown in FIG. 14. Comparisons with literature values from the TPRC data book can only be made on the thermal conductivity for which data is available, but this is also in relatively good agreement. FIG. 15 shows the temperature conductivity of an acrylic resin plate in comparison with the temperature conductivity of a flat plate sample of the same material and the experimental value of Okada et al. [Kiken, 79 (1976) 247]. As a result, the experimental results obtained in this example were in good agreement with both. As is clear from the above explanation, according to the present invention, thermophysical property values can be measured simply by measuring the temperature response of each required part under any heating conditions and any heating conditions. Compared to conventional methods, this method not only requires simpler experimental equipment, but also requires no skill. In addition, compared to the conventional method, the results are evaluated using all the data within the measurement time, so it is possible to guarantee highly accurate values. This is an innovative method that makes it easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無限体状試料の場合の熱物性値同時測定の原理
説明図、第2図は円柱状或は中空円柱状試料の熱物性値
同時測定の原理説明図、第3図は温度変化と諸量の関係
曲線を示す図、第4図はs・tmax値とサンプリング
数との関係を示す図「第5図は平板状試料の試験部の一
例を示す概略図、第6図は第5図試験部の測定装置の概
略図、第了図は測定点における温度(熱起電力)の経時
変化曲線を示す図、第8図はアクリル樹脂板の熱物性値
を示す図、第9図はソーダガラス板の熱物性値を示す図
、第10図は円柱状および中空円柱状試料の試験部の一
例を示す概略図、第11図は第10図に示す試験部の測
定装置の一例を示す概略図、第12図は18−8ステン
レス鋼の温度応答の記録例を示す図、第13図は同上の
温度伝導率測定結果を示す図、第14図はアルミナ粉末
を対象とした同時測定結果を示す図、第15図はアクリ
ル樹脂板の温度伝導率を、同材料の平板試料の温度伝導
率と他の研究者の実験値の比較において示した図。 第1図 第2図 第3図 第4図 第5図 第7図 第6図 第8図 第10図 第11図 第12図 第13図 第9図 第14図 第15図
Figure 1 is an explanatory diagram of the principle of simultaneous measurement of thermophysical properties in the case of an infinite body sample, Figure 2 is an explanatory diagram of the principle of simultaneous measurement of thermophysical properties of a cylindrical or hollow cylindrical sample, and Figure 3 is a diagram of temperature changes. Figure 4 is a diagram showing the relationship between s/tmax values and the number of samplings; Figure 5 is a schematic diagram showing an example of a test section for a flat sample; Figure 5 is a schematic diagram of the measuring device in the test section, Figure 8 is a diagram showing the temporal change curve of temperature (thermoelectromotive force) at the measurement point, Figure 8 is a diagram showing the thermophysical property values of the acrylic resin plate, Figure 9 10 is a schematic diagram showing an example of a test section for cylindrical and hollow cylindrical samples, and FIG. 11 is an example of a measuring device for the test section shown in FIG. 10. Figure 12 is a diagram showing an example of recording the temperature response of 18-8 stainless steel, Figure 13 is a diagram showing the temperature conductivity measurement results of the same as above, and Figure 14 is a simultaneous measurement of alumina powder. Figure 15 shows the results, comparing the thermal conductivity of an acrylic resin plate with the thermal conductivity of a flat plate sample of the same material and the experimental values of other researchers. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 6 Figure 8 Figure 10 Figure 11 Figure 12 Figure 13 Figure 9 Figure 14 Figure 15

Claims (1)

【特許請求の範囲】 1 (a) 標準試料〔I〕と供試試料〔II〕とを接触
させ、該接触面、標準試料(上記接触面と反対の表面を
含む)の少なくとも1点、供試試料内(上記接触面と反
対の表面を含む)の1点又は2点の温度応答θi(t)
を測定する、(b) 該温度応答θi(t)のラプラス
積分■■を■■≒∫^t^m^a^x_0θi(t)・
e^−^s^tdt……(1)の近似式よりシンプソン
法により算出する、(但し、s:ラプラスパラメータ、
tmax:測定時間で、8≦s・tmax≦12の関係
を満足する数値からs及びtmaxは選択される)(c
) 次に、距離x、時間tにおける温度分布T(x,t
)と初期温度分布T(x,o)との温度差θ(x,t)
を用いた熱伝導体基礎式をプラス変換した常微分方程式
から下記の一般解を求める、■■=AX+B/X……(
2) (但し、A,Bは定数、X=e√(s/(ax))(
d) 上記(b)で算出したラプラス積分■■を(2)
式に代入してそれぞれの試料について積分定数A,Bを
求める、(e) 一方熱流束を表わすフーリエの式をラ
プラス変換して求めた下記(3)式、q=−λ(dθ)
/(dx)……(3) (但し、λは熱伝導率) 該(3)式に上記(2)式を代入して下記(4)式を
求める、q=λ√(s/a)(AX+B/X)……(4
)(f) 次に、上記(d)で求めたそれぞれの試料の
積分定数A,Bを(4)式に代入して標準試料〔I〕と
供試試料〔II〕の接触面における(q_0)II及び(q
_0)Iを求める、(g) (q_0)II=(q_0)
I……(5) の関係より供試試料〔II〕の熱伝導率λ
IIを定める関係式を得る、(h) 更に上記(a),(
b)で測定した供試試料〔II〕内および接触面の2又は
3点での温度応答のラプラス積分値を上記(2)式に代
入し、整理して供試試料〔II〕の温度伝導率aIIを定め
る関係式を得る、(i) 上記(g),(h)で求めた
両関係式より熱伝導率λIIと温度伝導率aIIを決定し、
(j) pIIcII=(λII)/(aII)……(6) 上
記(i)で求めたλII,aIIを上記(6)式に代入して
供試試料〔II〕の熱容量pIIcIIを求める、 以上の手
順により熱伝導率、温度伝導率、熱容量などの熱物性値
を求めることを特徴とする任意加熱による熱物性値の測
定法。
[Scope of Claims] 1 (a) The standard sample [I] and the test sample [II] are brought into contact, and at least one point on the contact surface, the standard sample (including the surface opposite to the above-mentioned contact surface), Temperature response θi(t) at one or two points within the sample (including the surface opposite to the above contact surface)
(b) Determine the Laplace integral of the temperature response θi(t) as ≒∫^t^m^a^x_0θi(t)・
e^-^s^tdt...Calculated by the Simpson method from the approximate formula (1) (where s: Laplace parameter,
tmax: Measurement time, s and tmax are selected from values that satisfy the relationship 8≦s・tmax≦12) (c
) Next, the temperature distribution T(x, t
) and the initial temperature distribution T(x, o), the temperature difference θ(x, t)
Find the following general solution from the ordinary differential equation that is a positive conversion of the basic thermal conductor equation using , ■■=AX+B/X...
2) (However, A and B are constants, X=e√(s/(ax))(
d) The Laplace integral calculated in (b) above is expressed as (2)
Find the integral constants A and B for each sample by substituting into the equation, (e) On the other hand, the following equation (3) obtained by Laplace transform of the Fourier equation expressing the heat flux, q = -λ (dθ)
/(dx)...(3) (where λ is thermal conductivity) Substitute the above equation (2) into the equation (3) to obtain the following equation (4), q=λ√(s/a) (AX+B/X)...(4
) (f) Next, by substituting the integral constants A and B of each sample obtained in (d) above into equation (4), we can calculate (q_0 ) II and (q
_0) Find I, (g) (q_0) II = (q_0)
I... From the relationship (5), the thermal conductivity λ of the test sample [II]
Obtain the relational expression that defines II, (h) Furthermore, the above (a), (
Substitute the Laplace integral value of the temperature response at 2 or 3 points within the test sample [II] and the contact surface measured in b) into the above equation (2), rearrange it, and calculate the temperature conduction of the test sample [II]. Obtain the relational expression that determines the rate aII, (i) Determine the thermal conductivity λII and the temperature conductivity aII from both the relational expressions obtained in (g) and (h) above,
(j) pIIcII=(λII)/(aII)...(6) Substitute λII and aII obtained in (i) above into the above equation (6) to find the heat capacity pIIcII of the test sample [II]. A method for measuring thermophysical property values by arbitrary heating, which is characterized by determining thermophysical property values such as thermal conductivity, temperature conductivity, and heat capacity using the following procedure.
JP4155979A 1979-04-07 1979-04-07 Measuring method of thermophysical properties by arbitrary heating Expired JPS6020697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155979A JPS6020697B2 (en) 1979-04-07 1979-04-07 Measuring method of thermophysical properties by arbitrary heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155979A JPS6020697B2 (en) 1979-04-07 1979-04-07 Measuring method of thermophysical properties by arbitrary heating

Publications (2)

Publication Number Publication Date
JPS55134346A JPS55134346A (en) 1980-10-20
JPS6020697B2 true JPS6020697B2 (en) 1985-05-23

Family

ID=12611781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155979A Expired JPS6020697B2 (en) 1979-04-07 1979-04-07 Measuring method of thermophysical properties by arbitrary heating

Country Status (1)

Country Link
JP (1) JPS6020697B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118856B3 (en) * 2015-11-04 2016-08-18 Netzsch-Gerätebau GmbH Method and device for the photothermal examination of a sample
JP7037166B2 (en) * 2017-06-26 2022-03-16 京都電子工業株式会社 Needle-shaped probe for thermophysical property measuring device

Also Published As

Publication number Publication date
JPS55134346A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
Nagasaka et al. Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot‐wire method
Gravelle Heat-flow microcalorimetry and its application to heterogeneous catalysis
Perkins et al. A high-temperature transient hot-wire thermal conductivity apparatus for fluids
US5258929A (en) Method for measuring thermal conductivity
Vozár A computer-controlled apparatus for thermal conductivity measurement by the transient hot wire method
Gustavsson et al. Specific heat measurements with the hot disk thermal constants analyser
US5099441A (en) Method for determining thermal conductivity incorporating differential scanning calorimetry
US7234860B2 (en) Dynamic dew point analysis method and a device for determining the dew point temperature and relative humidity
JPS6020697B2 (en) Measuring method of thermophysical properties by arbitrary heating
US4623263A (en) Apparatus for the thermal measurement of the texture of a porous body
Minkina Theoretical and experimental identification of the temperature sensor unit step response non-linearity during air temperature measurement
Gebhart et al. Measurements of transient natural convection on flat vertical surfaces
Wade Measurements of total hemispherical emissivity of several stably oxidized metals and some refractory oxide coatings
Tang et al. Heat and momentum transfer between a spherical particle and air streams
EP0309461B1 (en) Method and device for determining the absolute temperature of a measuring body
Davis General Response of Resistance Thermometers and Thermocouples in Gases at Low Pressures
SU1741036A1 (en) Device for determination of thermal conductivity of materials
Fujii et al. A noncontact method for measuring thermal conductivity and thermal diffusivity of anisotropic materials
Pamenius et al. Determination of thermal properties of impression materials
SU949447A1 (en) Method and device for measuring thermal physical characteristics
JPS607222B2 (en) Simultaneous measurement of thermophysical properties by arbitrary heating
JPS6293639A (en) Method and apparatus for rapidly measuring heat conductivity
Buravoi et al. A unified series of instruments for thermophysical measurements
Kurepin et al. Comparative method for measuring thermal conductivity
Benton et al. Development of a Multi-Point Pyrometer System (MPPS) for measuring surface temperature and emissivity