JPS60206903A - Turbine power blade - Google Patents
Turbine power bladeInfo
- Publication number
- JPS60206903A JPS60206903A JP60034268A JP3426885A JPS60206903A JP S60206903 A JPS60206903 A JP S60206903A JP 60034268 A JP60034268 A JP 60034268A JP 3426885 A JP3426885 A JP 3426885A JP S60206903 A JPS60206903 A JP S60206903A
- Authority
- JP
- Japan
- Prior art keywords
- wall
- airfoil
- turbine rotor
- rotor blade
- shroud
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/20—Specially-shaped blade tips to seal space between tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はタービン機械の動翼特にガスタービンエンジン
に用いるタービン動翼における翼端みぞに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blade tip groove in a rotor blade of a turbine machine, particularly a turbine rotor blade used in a gas turbine engine.
ガスタービンエンジンのローター各段の効率はローター
段に伝達されるエネルギの量に左右され。The efficiency of each rotor stage in a gas turbine engine depends on the amount of energy transferred to the rotor stage.
特にシュラウドなしの動翼においてはローター翼端を超
えて流れる作動流体すなわち空気またはカスの洩れ流に
より制限される。動典々端を超える空気またはガスの洩
れ流を制御することにより各ローター段の効率を増すこ
とが可能である。Particularly in unshrouded rotor blades, leakage flow of working fluid, ie, air or debris, flowing beyond the rotor blade tip is limited. It is possible to increase the efficiency of each rotor stage by controlling the leakage flow of air or gas over the oscillating edges.
本発明はシュラウドなしの動翼々端を超身る空気または
カスの洩れ流を減するタービン動翼を与えることを目的
とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a turbine rotor blade that reduces the leakage flow of air or debris over the tips of unshrouded rotor blades.
本発明は、翼形部分を含むシュラウドなしのタービン動
翼であって、翼形部分の半径方向外方端が周囲壁により
画成されるみぞを有し、該みそを横断し又延在し平均翼
弦線と交差する少なくとも1個の壁が少なくとも2つの
室を形成し、該みそを横断して延在する壁と、該室と、
協働する静止シュラウドとが翼形の半径方向外方端とシ
ュラウドの間の高温ガスの洩れ流を制御するラビリンス
シールな形成しているタービン動翼を提供する。The present invention is an unshrouded turbine rotor blade that includes an airfoil portion, the radially outer end of the airfoil portion having a groove defined by a surrounding wall, and extending across and extending across the groove. at least one wall intersecting the mean chord line forming at least two chambers, a wall extending across the bottom;
A cooperating stationary shroud provides a turbine rotor blade forming a labyrinth seal that controls leakage flow of hot gas between the radially outer end of the airfoil and the shroud.
みそを横断して延在し平均翼弦線と交差する少なくとも
1個の壁は翼形の半径方向外方端とシーラウドの間の高
温ガスの洩れ流の方向に実質的に垂直である。At least one wall extending across the tail and intersecting the mean chord line is substantially perpendicular to the direction of leakage flow of hot gas between the radially outer end of the airfoil and the sealoud.
韓形はその半径方向外方端にあるみぞを横断して延在す
る2個または3個の壁を有することもできる。The Korean shape may also have two or three walls extending across the groove at its radially outer end.
萼形は冷却空気流の通路の内部配置を有することもでき
る。The calyx may also have an internal arrangement of cooling airflow passages.
輯形は中空であり、翼形の形状を画成する外壁と中空翼
形ケ内室および外室に分割する内壁とを有し、内壁は外
壁から延びる複数の張出しにより外壁から隔置され、内
壁は内室の中の冷却空気な外室へ流して外壁の内面に衝
突させるための複数の窓を有することもできる。the airfoil is hollow and has an outer wall defining the shape of the airfoil and an inner wall dividing the hollow airfoil into an inner chamber and an outer chamber, the inner wall being spaced from the outer wall by a plurality of overhangs extending from the outer wall; The inner wall can also have a plurality of windows for allowing cooling air within the inner chamber to flow into the outer chamber and impinge on the inner surface of the outer wall.
翼形の外壁は外室の中の冷却空気を外壁の外面上へ流す
ための複数の窓を有する。The airfoil-shaped outer wall has a plurality of windows for channeling cooling air within the outer chamber onto the outer surface of the outer wall.
代りに翼形は実質的に中実であることもできる。Alternatively, the airfoil can be substantially solid.
以下に添付図面を参照しつつ1本発明の詳細な説明する
。The present invention will now be described in detail with reference to the accompanying drawings.
第1図に示すガスタービンエンジン10 &’!、流れ
の順にファン12.圧縮eo4.燃焼系16.タービン
部18およびノズル加を有する。タービン部18は11
?のローター22および静翼26を有し、各ローター2
2は半径方向に延びる複数のタービン動翼24を有する
。Gas turbine engine 10 shown in FIG. 1 &'! , fan 12 in order of flow. compression eo4. Combustion system 16. It has a turbine section 18 and a nozzle. The turbine section 18 is 11
? rotor 22 and stationary blades 26, each rotor 2
2 has a plurality of turbine rotor blades 24 extending in the radial direction.
第2図はローター22の−っ、それに取付けられたター
ビン動翼24の一つ、および隣接する静翼26を示す。FIG. 2 shows the rotor 22, one of the turbine rotor blades 24 attached thereto, and an adjacent stator blade 26.
タービン動翼24は翼根28.プラットホーム30およ
び翼形32を含み、翼根28と翼形32はプラットホー
ム30の反対側に取付けられる。The turbine rotor blade 24 has a blade root 28. It includes a platform 30 and an airfoil 32, with the airfoil root 28 and airfoil 32 mounted on opposite sides of the platform 30.
翼形32はプラットホーム30から遠い方の端に翼端3
4を有し、翼端34はみぞ36を有する。シュラウド3
8は円周方向に延在し、ローター22および半径方向に
延在するタービン動翼24からすき間40により隔置さ
れる。The airfoil 32 has a wing tip 3 at the end remote from the platform 30.
4, and the wing tip 34 has a groove 36. shroud 3
8 extends circumferentially and is spaced from rotor 22 and radially extending turbine rotor blades 24 by a gap 40 .
卯、3図および第4図は翼形32の翼端34にあるみぞ
36を示す。翼形32はそれぞれ前縁42および後縁4
4を有し翼形の半径方向外方端における周囲壁46はみ
ぞ36を画成する。みぞ36は、みぞ36を横断して延
在し翼形の平均翼弦線と交差する数個の壁56.58.
60によりそれぞれ数個の室48、50.52.54に
分割される。Figures 3 and 4 show a groove 36 in the tip 34 of the airfoil 32. The airfoils 32 have leading edges 42 and trailing edges 4, respectively.
4 and a peripheral wall 46 at the radially outer end of the airfoil defines a groove 36 . The groove 36 has several walls 56, 58, . . . extending across the groove 36 and intersecting the mean chord line of the airfoil.
60 into several chambers 48, 50, 52, 54 respectively.
第5図はタービン動翼24の翼端34を横切る洩れ流の
方向を示す。シュラウドなしのタービン動翼を有するタ
ービンにおいて、゛タービンを通して流れる作動流体の
小部分が翼形の凹形正圧面から凸形負圧面へ、翼形先端
と静止シュラウドの間のすき間40を通っ粗移動しよう
とする。この洩れ流ハ興形の正圧面と負圧面の間に存在
する圧力差のために生じ、この洩れ流はまた翼形の高さ
の大きな部分にわたって乱流を生じ、これがタービンの
効率損失を増加させる。FIG. 5 shows the direction of leakage flow across the blade tips 34 of the turbine rotor blades 24. FIG. In a turbine with unshrouded turbine rotor blades, a small portion of the working fluid flowing through the turbine is coarsely transferred from the concave pressure side of the airfoil to the convex suction side through the gap 40 between the airfoil tip and the stationary shroud. try to. This leakage flow occurs due to the pressure difference that exists between the pressure and suction sides of the airfoil, and this leakage flow also creates turbulence over a large portion of the airfoil height, which increases efficiency losses in the turbine. let
第6図、第7図および第8図は翼端34のみぞ36を横
切って延びる壁の数が異っている翼端のみそを示し、ま
た輯形32の内部構造を示す。翼形はそれぞれ前縁62
および後縁64を有し、g形の半径方向外方端における
周囲壁66がみぞ36を画成する。みぞ36を横切って
延び翼形の平均翼弦線と交差する数個の壁74.76に
よりみぞ36はそれぞれ数個の室68.70.72に分
割される、翼形の内部構造が示され、この特定実施例は
内壁82により相互に分離される内室80および外室7
8ヲ有する。内壁82は内室80と外室78を接続する
数個の窓84を有し、内室80内の冷却空気が窓84を
通って流れて翼形外壁86の内面に衝突して冷却を助け
るようになっている。、、翼形の外壁にあって外壁の外
面にフィルム冷却を与える窓(88)の如き他の型式の
冷却も設けられることができろ。FIGS. 6, 7 and 8 show wing tip chisels with varying numbers of walls extending across the groove 36 of the wing tip 34, and also show the internal structure of the contour 32. Each airfoil has a leading edge of 62
and a trailing edge 64 , and a peripheral wall 66 at the radially outer end of the g-shape defines the groove 36 . The internal structure of the airfoil is shown in which the groove 36 is divided into several chambers 68, 70, 72 each by several walls 74, 76 extending across the groove 36 and intersecting the mean chord line of the airfoil. , this particular embodiment has an inner chamber 80 and an outer chamber 7 separated from each other by an inner wall 82.
I have 8. The inner wall 82 has several windows 84 connecting the inner chamber 80 and the outer chamber 78 such that cooling air within the inner chamber 80 flows through the windows 84 and impinges on the inner surface of the airfoil outer wall 86 to aid in cooling. It looks like this. Other types of cooling could also be provided, such as windows (88) in the outer wall of the airfoil that provide film cooling on the outer surface of the outer wall.
図示のタービン動翼24は一般に翼根、プラットホーム
および翼形外壁を鋳造し、外壁86の内面から延びる数
個の張出しに内壁82をろう付けして製作される。つぎ
にろう付けまたは他の冶金学的装置または機械的装置に
より翼端34が翼形の半径方向外方端に取付けられる。The illustrated turbine rotor blade 24 is generally fabricated by casting the blade root, platform, and outer airfoil wall, and brazing the inner wall 82 to several overhangs extending from the inner surface of the outer wall 86. A wing tip 34 is then attached to the radially outer end of the airfoil by brazing or other metallurgical or mechanical devices.
運転中、空気はガスタービンエンジン10に入り。During operation, air enters the gas turbine engine 10.
ファン12および圧縮機14を通つ℃圧縮される。燃焼
系16の中で燃料が圧縮された空気と共に燃焼され、燃
料と空気の燃焼により生じた高温ガスはタービン部18
およびノズル加を通つ1太気中へ流れる。℃ compressed through fan 12 and compressor 14. The fuel is combusted together with compressed air in the combustion system 16, and the high temperature gas produced by the combustion of the fuel and air is transferred to the turbine section 18.
and flows into the air through the nozzle.
高温カスはタービンを駆動し、タービンは次に軸を介し
てファン12および圧縮機14を駆動する。The hot scum drives a turbine which in turn drives a fan 12 and compressor 14 via a shaft.
タービン部18は交互に配置された静翼26および動翼
24を有し、各静翼26は高温ガスを動翼24の翼形3
2上に最適角度にて振向ける。各動翼24はファン12
および圧縮機14を駆動するためにタービン部を通過す
る高温ガスから運動エネルギを受取る。The turbine section 18 has stator vanes 26 and rotor blades 24 arranged alternately, each stator vane 26 directing hot gas to the airfoil 3 of the rotor blade 24.
2. Orient it at the optimal angle. Each rotor blade 24 is a fan 12
and receives kinetic energy from the hot gases passing through the turbine section to drive the compressor 14.
NIJ’N24が高温ガスから運動エネルギを受取る際
の効率はタービンの効率を決定し、これは幾分かbt、
H形32の禰端34と円周方向に延在するシュラウド
38の間の高温ガスの洩れ流に左右される。The efficiency with which NIJ'N24 receives kinetic energy from the hot gas determines the efficiency of the turbine, which is somewhat bt,
It depends on the leakage flow of hot gas between the end 34 of the H-shape 32 and the circumferentially extending shroud 38.
翼形32の翼端34と円周方向に延在するシーラウド3
8の間の洩れ流を制御することによりタービンの効率を
向上させることができる。A wing tip 34 of an airfoil 32 and a circumferentially extending searoud 3
By controlling the leakage flow between 8 and 8, the efficiency of the turbine can be improved.
翼端34を横切る洩れ流は輯端34にみぞ36を設ける
ことにより減少させることができ、このみぞ36はみぞ
36を横切って延びて翼形の平均翼弦線と交差する数個
の壁56.’58.60を有して第3図および第4図に
示すように数個の室48.50.52゜54を形成する
。壁56.58.60は洩れ流を最適に減少させるため
に洩れ流の方向にほぼ老IMに配置される。Leakage flow across the tip 34 can be reduced by providing a groove 36 in the tip 34, which includes several walls 56 extending across the groove 36 and intersecting the mean chord line of the airfoil. .. 58.60 to form several chambers 48.50.52.54 as shown in FIGS. The walls 56, 58, 60 are arranged approximately IM in the direction of the leakage flow in order to optimally reduce the leakage flow.
壁56.58.60および周囲壁46は円周方向に延在
するシュラウド38と共にラビリンスシールな形成する
。室48.50.52.54の各々に捕捉された渦流が
生じ、これらの捕捉渦流がタービン@翼Uの翼端34と
シュラウド380間の洩れ流を減すると信ぜられる。The walls 56, 58, 60 and the peripheral wall 46 form a labyrinth seal with the circumferentially extending shroud 38. It is believed that trapped vortices are created in each of the chambers 48, 50, 52, 54 and these trapped vortices reduce the leakage flow between the blade tips 34 of the turbine @ blade U and the shroud 380.
洩れ流は流路な直接に横切って延びる幾つかの壁56.
58.60を超えて流れなければならず、そのためにこ
れらの室48.50.52.54の各々に捕捉された関
連渦流によっ℃各室の中で洩れ流が減殺される。The leakage flow is caused by several walls 56 extending directly across the flow path.
58.60°C, so that the associated vortex flow trapped in each of these chambers 48.50.52.54 reduces the leakage flow within each chamber.
同様に第6図および第7図において壁74.76および
周囲壁66は円周方向に延びるシュラウド38と共にラ
ビリンスシールな形成し、室68.70゜72に生じた
捕捉渦流はタービン動翼24の翼端34とシュラウド3
8の間の洩れ流を減する。Similarly, in FIGS. 6 and 7, walls 74.76 and peripheral wall 66 form a labyrinth seal with circumferentially extending shroud 38, and the trapped vortices created in chamber 68.70. Wing tip 34 and shroud 3
Reduce leakage flow between 8.
翼端におけろみそに形成された室は各室に1個以上の渦
流を生じろ程充分に大きくなければならない。例えば多
数の室を有するハニカム型式の翼端が用いられる場合に
は、ハニカム材の室の中に渦流が生じないから、翼端と
シュラウドの間の洩れ流の減少は得られない。The chambers formed at the tip of the wing must be large enough to create one or more vortices in each chamber. For example, if a multi-chamber honeycomb type tip is used, no reduction in leakage flow between the tip and the shroud is obtained because no vortices are created within the honeycomb chambers.
翼端のみそと、みそを横切っ又延びる壁とは中実のター
ビン動翼または内部冷却通路の配置を有するタービン動
翼にも適用されることができる。The blade tip edge and the wall extending across and across the edge can also be applied to solid turbine blades or to turbine blades with an arrangement of internal cooling passages.
第1図はタービン部を示すために部分的に切断されたガ
スタービンエンジンの略図。
第2図は第1図に示すタービン部の拡大断面図。
第3図は第2図に示すタービン動翼の翼端の一実施例の
拡大図。
第4図は第3図のA−A線にそう断面図。
第5図は第2図のタービン動翼の貿端f!f横切る洩れ
流の方向を拡大して示す図。
第6図は第2図のタービン動歓の翼端の代替実施例の拡
大図。
第7図は第6図のB−B線にそう断面図。
第8図は第7図のC−C線にそう断面図。
32・・・翼形部分 34・・・翼端 36・・・みぞ
38・・・シュラウド 56.58.60・・・壁74
、76・・・壁 78・自外室 80・・・外室82・
・・内壁 84・・・窓 86・・・外壁88・・・窓
特許出願人 ロールス・ロイス・リミテッドhり・4・
す・8・
泳
〔
82FIG. 1 is a schematic diagram of a gas turbine engine partially cut away to show the turbine section. FIG. 2 is an enlarged sectional view of the turbine section shown in FIG. 1. FIG. 3 is an enlarged view of one embodiment of the blade tip of the turbine rotor blade shown in FIG. 2. FIG. 4 is a sectional view taken along line A-A in FIG. 3. Figure 5 shows the edge f! of the turbine rotor blade in Figure 2. Fig. 5 is an enlarged view showing the direction of the leakage flow across f. FIG. 6 is an enlarged view of an alternative embodiment of the turbine tip of FIG. 2; FIG. 7 is a sectional view taken along the line B-B in FIG. 6. FIG. 8 is a sectional view taken along the line C--C in FIG. 7. 32... Airfoil portion 34... Wing tip 36... Groove 38... Shroud 56.58.60... Wall 74
, 76...Wall 78・Outdoor room 80...Outside room 82・
...Inner wall 84...Window 86...Outer wall 88...Window Patent applicant Rolls-Royce Limited hri・4・su・8・swim [82
Claims (9)
あって、該翼形部分の半径方向外方端が周囲壁により画
成されるみぞを有し、少なくとも1個の壁が前記みぞを
超えて延在して少なくとも2つの室を形成し、前記周囲
壁と、前記少なくとも1個の前記みぞを横切つ℃延在す
る壁と、前記少なくとも2つの壁と、協働する静止シュ
ラウド、とが前記翼形部分の半径方向外方端と前記シュ
ラウドの間の高温ガスの洩れ流を制御するために、運転
中ラビリンスシールを形成しており、前記少なくとも1
個の壁(56,58,60)が前記みぞ(36)を横切
る方向に延在して前記翼形部分の平均翼弦線と交差する
ことを特徴とするシュラウドなしのタービン動翼。(1) An unshrouded turbine rotor blade including an airfoil portion, the radially outer end of the airfoil portion having a groove defined by a peripheral wall, and at least one wall defining the groove. a stationary shroud extending beyond to form at least two chambers and cooperating with the peripheral wall, a wall extending across the at least one groove; and forming a labyrinth seal during operation to control leakage flow of hot gas between the radially outer end of the airfoil portion and the shroud;
A shrouded turbine rotor blade characterized in that walls (56, 58, 60) extend transversely to said groove (36) to intersect the mean chord line of said airfoil section.
形の平均翼弦線と交差する前記少なくとも1個の壁(5
6,58,60)が前記翼形部分(32)の半径方向外
方端(34)と前記シュラウド(38)の間の高温ガス
の洩れ流の方向にほぼ垂直であることを特徴とする特許
請求の範囲第(1)項に記載のシーラウドなしのタービ
ン動翼。(2) said at least one wall (5) extending transversely to said groove (36) and intersecting the mean chord line of said airfoil;
6,58,60) is substantially perpendicular to the direction of leakage flow of hot gas between the radially outer end (34) of said airfoil portion (32) and said shroud (38) A turbine rotor blade without a sealoud according to claim (1).
4)にあるみぞ(36)を横切って延在する2個の壁(
74,76)を有することを特徴とする特許請求の範囲
第(11項または第(2)項に記載のシュラウドなしの
タービン動翼。(3) said airfoil portion (32) is connected to its radially outer end (3);
4) two walls (
74, 76), the shroud-less turbine rotor blade according to claim 11 or claim 2.
4)にあるみぞ(36)を横切って延在する3個の壁(
56,58,60)を有することを特徴とする特許請求
の範囲第(1)項または第(2)項に記載のシーラウド
なしのタービン@翼。(4) said airfoil portion (32) is connected to its radially outer end (3);
4) three walls (
56, 58, 60) A turbine @blade without a sealoud according to claim 1 or 2, characterized in that it has a blade.
の内部配置(78,80,84)を有することを特徴と
する特許請求の範囲第(11項から第(4)項までのい
づれか1項に記載のシュラウドなしのタービン動翼。(5) The airfoil section (32) has an internal arrangement (78, 80, 84) of passages for cooling air flow. A turbine rotor blade without a shroud according to any one of Item 1.
の形状を画成する外壁(86)と該中空翼形部分(32
)を内室(80)および外室(78)に分割する内壁(
82)とを有し、該内壁(82)は該外壁(86)から
延在する複数の張出しにより該外壁(86)から隔置さ
れ、運転中冷却空気を前記内室(80)から前記外室(
78)に流して前記外壁(86)の内面に衝突させるた
めの複数の窓(84)を前記内!(82)が有すること
を特徴とする特許請求の範囲第(5)項に記載のシュラ
ウドなしのタービン動翼。(6) said airfoil portion (32) is hollow and has an outer wall (86) defining the shape of said airfoil portion;
) into an inner chamber (80) and an outer chamber (78)
82), the inner wall (82) being spaced from the outer wall (86) by a plurality of overhangs extending from the outer wall (86) to direct cooling air from the inner chamber (80) to the outer wall during operation. Room (
78) to collide with the inner surface of the outer wall (86). (82) The turbine rotor blade without a shroud according to claim (5).
中前記外室(78)内の冷却空気を前記外壁(86)の
外面上に流すための複数の窓(88)を有することケ特
徴とする特許請求の範囲第(6)項に記載のシュラウド
なしのタービン動翼。(7) the outer wall (86) of the airfoil section (32) has a plurality of windows (88) for channeling cooling air within the outer chamber (78) over the outer surface of the outer wall (86) during operation; A turbine rotor blade without a shroud according to claim (6).
を特徴とする特許請求の範囲第(6)項に記載のシュラ
ウドなしのタービン動翼。(8) A shroudless turbine rotor blade as claimed in claim (6), characterized in that said airfoil portion (32) is substantially solid.
いずれか1項に記載の複数のシュラウドなしのタービン
動翼を有するタービンローター。 αO%許請求の範囲第(9)項に記載の少なくとも1個
のo−ターな有するガスタービンエンジン。(9) A turbine rotor having a plurality of shroudless turbine rotor blades according to any one of claims (1) to (8). α O % A gas turbine engine having at least one o-ter as claimed in claim (9).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08406324A GB2155558A (en) | 1984-03-10 | 1984-03-10 | Turbomachinery rotor blades |
GB8406324 | 1984-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60206903A true JPS60206903A (en) | 1985-10-18 |
Family
ID=10557888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60034268A Pending JPS60206903A (en) | 1984-03-10 | 1985-02-22 | Turbine power blade |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS60206903A (en) |
DE (1) | DE3507578A1 (en) |
FR (1) | FR2560929A1 (en) |
GB (1) | GB2155558A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051096A (en) * | 2006-08-21 | 2008-03-06 | General Electric Co <Ge> | Cascade tip baffle aerofoil |
JP2008051102A (en) * | 2006-08-21 | 2008-03-06 | General Electric Co <Ge> | Conformal tip baffle aerofoil |
JP2008051098A (en) * | 2006-08-21 | 2008-03-06 | General Electric Co <Ge> | Reverse tip baffle type blade profile part |
JP2008128247A (en) * | 2006-11-20 | 2008-06-05 | General Electric Co <Ge> | Triforial front end cavity airfoil |
US10107108B2 (en) | 2015-04-29 | 2018-10-23 | General Electric Company | Rotor blade having a flared tip |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9607578D0 (en) * | 1996-04-12 | 1996-06-12 | Rolls Royce Plc | Turbine rotor blades |
JP3453268B2 (en) * | 1997-03-04 | 2003-10-06 | 三菱重工業株式会社 | Gas turbine blades |
US6027306A (en) * | 1997-06-23 | 2000-02-22 | General Electric Company | Turbine blade tip flow discouragers |
US5997251A (en) * | 1997-11-17 | 1999-12-07 | General Electric Company | Ribbed turbine blade tip |
US6190129B1 (en) * | 1998-12-21 | 2001-02-20 | General Electric Company | Tapered tip-rib turbine blade |
US6179556B1 (en) | 1999-06-01 | 2001-01-30 | General Electric Company | Turbine blade tip with offset squealer |
US6135715A (en) * | 1999-07-29 | 2000-10-24 | General Electric Company | Tip insulated airfoil |
DE10301755A1 (en) | 2003-01-18 | 2004-07-29 | Rolls-Royce Deutschland Ltd & Co Kg | Fan blade for a gas turbine engine |
GB0513187D0 (en) | 2005-06-29 | 2005-08-03 | Rolls Royce Plc | A blade and a rotor arrangement |
FR2889243B1 (en) * | 2005-07-26 | 2007-11-02 | Snecma | TURBINE DAWN |
US8083484B2 (en) * | 2008-12-26 | 2011-12-27 | General Electric Company | Turbine rotor blade tips that discourage cross-flow |
US8313287B2 (en) * | 2009-06-17 | 2012-11-20 | Siemens Energy, Inc. | Turbine blade squealer tip rail with fence members |
US9194243B2 (en) * | 2009-07-17 | 2015-11-24 | Rolls-Royce Corporation | Substrate features for mitigating stress |
JP5767248B2 (en) | 2010-01-11 | 2015-08-19 | ロールス−ロイス コーポレイション | Features to reduce thermal or mechanical stress on environmental barrier coatings |
WO2014144152A1 (en) | 2013-03-15 | 2014-09-18 | Rolls-Royce Corporation | Improved coating interface |
US20160258302A1 (en) * | 2015-03-05 | 2016-09-08 | General Electric Company | Airfoil and method for managing pressure at tip of airfoil |
US10883373B2 (en) * | 2017-03-02 | 2021-01-05 | Rolls-Royce Corporation | Blade tip seal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2963268A (en) * | 1957-03-25 | 1960-12-06 | Gen Electric | Pressurized seal |
AT262333B (en) * | 1966-12-20 | 1968-06-10 | Elin Union Ag | Turbine blade formation |
DE1937395A1 (en) * | 1969-07-23 | 1971-02-11 | Dettmering Prof Dr Ing Wilhelm | Grid to avoid secondary flow |
GB1552536A (en) * | 1977-05-05 | 1979-09-12 | Rolls Royce | Rotor blade for a gas turbine engine |
MX155481A (en) * | 1981-09-02 | 1988-03-17 | Westinghouse Electric Corp | TURBINE ROTOR BLADE |
-
1984
- 1984-03-10 GB GB08406324A patent/GB2155558A/en not_active Withdrawn
-
1985
- 1985-02-22 JP JP60034268A patent/JPS60206903A/en active Pending
- 1985-02-28 FR FR8502930A patent/FR2560929A1/en active Pending
- 1985-03-04 DE DE19853507578 patent/DE3507578A1/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051096A (en) * | 2006-08-21 | 2008-03-06 | General Electric Co <Ge> | Cascade tip baffle aerofoil |
JP2008051102A (en) * | 2006-08-21 | 2008-03-06 | General Electric Co <Ge> | Conformal tip baffle aerofoil |
JP2008051098A (en) * | 2006-08-21 | 2008-03-06 | General Electric Co <Ge> | Reverse tip baffle type blade profile part |
JP2012163103A (en) * | 2006-08-21 | 2012-08-30 | General Electric Co <Ge> | Cascade tip baffle airfoil |
JP2008128247A (en) * | 2006-11-20 | 2008-06-05 | General Electric Co <Ge> | Triforial front end cavity airfoil |
US8425183B2 (en) | 2006-11-20 | 2013-04-23 | General Electric Company | Triforial tip cavity airfoil |
US10107108B2 (en) | 2015-04-29 | 2018-10-23 | General Electric Company | Rotor blade having a flared tip |
Also Published As
Publication number | Publication date |
---|---|
GB2155558A (en) | 1985-09-25 |
DE3507578A1 (en) | 1985-09-12 |
FR2560929A1 (en) | 1985-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60206903A (en) | Turbine power blade | |
EP0801209B1 (en) | Tip sealing for turbine rotor blade | |
US4604031A (en) | Hollow fluid cooled turbine blades | |
EP1541806B1 (en) | Improved tip sealing for turbine rotor blade | |
US5525038A (en) | Rotor airfoils to control tip leakage flows | |
US5927946A (en) | Turbine blade having recuperative trailing edge tip cooling | |
EP2825748B1 (en) | Cooling channel for a gas turbine engine and gas turbine engine | |
EP1001137B1 (en) | Gas turbine airfoil with axial serpentine cooling circuits | |
EP0716217B1 (en) | Trailing edge ejection slots for film cooled turbine blade | |
JP5289694B2 (en) | Turbine airfoil curved squealer tip with tip shelf | |
JP4152184B2 (en) | Turbine platform with descending stage | |
US6174135B1 (en) | Turbine blade trailing edge cooling openings and slots | |
US5156526A (en) | Rotation enhanced rotor blade cooling using a single row of coolant passageways | |
US4515526A (en) | Coolable airfoil for a rotary machine | |
US4863348A (en) | Blade, especially a rotor blade | |
US3528751A (en) | Cooled vane structure for high temperature turbine | |
GB1514613A (en) | Blade or vane for a gas turbine engine | |
JPH02115596A (en) | Radial flow rotor | |
GB742477A (en) | Improvements in or relating to bladed stator or rotor constructions for fluid machines such as axial-flow turbines or compressors | |
JPH10131706A (en) | Blade profile for combustion turbine | |
JP2017141825A (en) | Airfoil for gas turbine engine | |
GB2119027A (en) | Turbine assembly for a gas turbine engine | |
GB2110767A (en) | A shrouded rotor for a gas turbine engine | |
EP0278434B1 (en) | A blade, especially a rotor blade | |
US4477222A (en) | Mounting construction for turbine vane assembly |