JPS60206612A - Runnerless injection molding and hot runner - Google Patents

Runnerless injection molding and hot runner

Info

Publication number
JPS60206612A
JPS60206612A JP6221384A JP6221384A JPS60206612A JP S60206612 A JPS60206612 A JP S60206612A JP 6221384 A JP6221384 A JP 6221384A JP 6221384 A JP6221384 A JP 6221384A JP S60206612 A JPS60206612 A JP S60206612A
Authority
JP
Japan
Prior art keywords
gate
hot runner
runner
resin
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6221384A
Other languages
Japanese (ja)
Other versions
JPH0316895B2 (en
Inventor
Shigeru Tsutsumi
堤 菁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6221384A priority Critical patent/JPS60206612A/en
Publication of JPS60206612A publication Critical patent/JPS60206612A/en
Publication of JPH0316895B2 publication Critical patent/JPH0316895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/30Flow control means disposed within the sprue channel, e.g. "torpedo" construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To open and shut a gate smoothly by heating or cooling the resin at the gate part by a hot runner provided with a cartridge heater that can take higher temperature to the point of the cartridge. CONSTITUTION:In a hot runner 12 that melts and plasticizes the resin at the runner part, heats or cools the resin at the gate part and opens or shuts the gate, the hot runner external cylinder body 13 is charged with the cartridge heater 14 with the lever projection 14a and the electric heater wire 15 whose winding density becomes higher to the point part of the cartridge, and cooled air supply pipe 19 is installed to charge the clearance part with air-permeable filler 16. The point part 12a also near the gate part can be heated sufficiently and the heater power source cut and the coolant introduced easily cool the point part 12a to enable smooth gate operation. Additionally, the gate heater which was indispensable before can be omitted.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、ランナー内に滞溜する熱可塑性樹脂材料の
常時溶融可塑化制御と、ゲート部に位置する前記樹脂の
冷却固化と加熱溶融との二段切替制御とを単一の熱制御
によって有効に行えるようにした新規なランナーレス射
出成形方法およびホットランナ−に関する。
[Detailed Description of the Invention] [Technical Field] The present invention provides two-stage control of constant melting and plasticization of a thermoplastic resin material accumulated in a runner, and cooling solidification and heating melting of the resin located at a gate portion. The present invention relates to a new runnerless injection molding method and a hot runner in which switching control can be effectively performed by a single thermal control.

〔従来技術〕[Prior art]

従来、ランナーレス射出成形方法および装置として本発
明者が開発したスピアシステムが広く知られている。こ
の方法および装置を第1図および第2図に示す基本的構
成にハづいて説明する。各図において1は一対の金型2
,3によって形成される成形物を得るための一以上のキ
ャピテイ、4はこのキャピテイ1に通ずる方の金型2に
沿って開口される溶融樹脂注入用のゲート、5は、この
ゲート4と一体的に形成されるランナ一部を示す。
Conventionally, the Spear System developed by the present inventor is widely known as a runnerless injection molding method and apparatus. This method and apparatus will be explained with reference to the basic configuration shown in FIGS. 1 and 2. In each figure, 1 is a pair of molds 2
, 3 for obtaining a molded product; 4 is a gate for injecting molten resin that is opened along the mold 2 leading to the cavity 1; 5 is integral with the gate 4; A portion of the runner is shown.

′ところで、第1図に示す構造は、所謂、ランナ一部5
の中心軸とに沿って配設される略々砲弾型のホットラン
ナ−6を有し、このホットランナ−6の先端に特公昭4
8−5093号に示される間欠加熱体7を一体的に設け
、この加熱体7およびホットランナ−6の外周を加熱す
るランナー加熱用のヒータ8のそれぞれを各別に温度制
御するためのコントローラ(図示せず)を必要としてい
た。
'By the way, the structure shown in FIG.
It has a roughly cannonball-shaped hot runner 6 arranged along the central axis of the
A controller (see Fig. (not shown) was required.

また、第2図に示す構造は、ランナ一部5が中心軸上に
形成できるような円筒状のホットランナ−9を備え、こ
のホットランナ−9の先端部を截頭形状に形成すると共
に狭少なゲート4を穿孔し、このゲート4の周縁でこの
ゲート4を囲繞するように間欠加熱線10が埋設してあ
り、さらにホットランナ−9の外周にはランナ一部5を
加熱するためのランナー加熱用ヒータ11が配設しであ
る。
Further, the structure shown in FIG. 2 includes a cylindrical hot runner 9 such that the runner part 5 can be formed on the central axis, and the tip of the hot runner 9 is formed into a truncated shape and narrow. A small gate 4 is bored, and an intermittent heating wire 10 is embedded in the periphery of the gate 4 so as to surround it, and a runner for heating a portion of the runner 5 is provided around the outer periphery of the hot runner 9. A heating heater 11 is provided.

そして間欠加熱線10およびランナー加熱用ヒータ11
のそれぞれを各別に温度制御するためのコントローラ(
図示せず)を、第1図の場合と同様に必要としていた。
And an intermittent heating wire 10 and a runner heating heater 11
controller to control the temperature of each separately (
(not shown) were required as in the case of FIG.

ところで・従来の7ピアシ7テ″しま・斜上の構 1成
になるので、所望の熱可塑性樹脂を射出成形操作スる際
、ホットランナ−6,9の一方のヒータ8.11は、ラ
ンナ一部5の樹脂を所望の設定温度に保持させて可塑化
溶融させて置かなければならないが、間欠加熱体7およ
び間欠加熱線10はゲート部4の固化した少量の樹脂を
溶融する時にのみ、換言すれば図示されていない射出機
構の射出成形操作の都度事前にしかも瞬間的に加熱する
ことによシ固化樹脂を溶融させて所謂ゲート4を開いて
ランナ一部5内の溶融樹脂をキャビティ1内に注入でき
ると共に、この注入操作の終了後にゲート4の溶融樹脂
を固化させるために前記間欠加熱体7および間欠加熱線
10の温度を降下させて所謂ゲート4を閉じてキャビテ
ィ1内の注入樹脂を固化成形でき、ついで、金型2.3
を開いて成形品を取り出すことができるものである。
By the way, since the conventional 7-pierce, 7"-striped and diagonal configuration is used, when injection molding a desired thermoplastic resin, one of the heaters 8 and 11 of the hot runners 6 and 9 is connected to the runner. The resin in the part 5 must be kept at a desired set temperature to plasticize and melt, but the intermittent heating element 7 and the intermittent heating wire 10 are used only when melting a small amount of solidified resin in the gate part 4. In other words, each time an injection molding operation is performed by an injection mechanism (not shown), the solidified resin is melted by heating instantaneously and the so-called gate 4 is opened to pour the molten resin in the runner part 5 into the cavity 1. In order to solidify the molten resin in the gate 4 after the injection operation is completed, the temperatures of the intermittent heating element 7 and the intermittent heating wire 10 are lowered to close the so-called gate 4, and the injected resin in the cavity 1 is can be solidified and molded, and then the mold 2.3
The molded product can be removed by opening it.

この従来のスピアシステムは、換言すれば、射出成形操
作の都度、必らすゲート4のきわめて狭少な領域での少
量の樹脂を1間欠加熱体7および間欠加熱線10の温度
制御によって局部的に加熱状態と非加熱状態または高温
加熱状態と低温加熱状態に切替えて溶融と固化とを有効
に行わせて所謂ゲート4のi、1iil閉操作を行うよ
うにしているので精密成形性、量産性および低コスト生
産性など多くの利点を有しているが、ホットランナ−6
,9内に設けたランナー加熱用ヒータ8,11に対し、
ゲート4開閉用のヒータすなわち間欠加熱体7および間
欠加熱線10を別個に設ける必要があり。
In other words, this conventional spear system locally sprays a small amount of resin in an extremely narrow area of the gate 4 by controlling the temperature of the intermittent heating element 7 and the intermittent heating wire 10 each time an injection molding operation is performed. By switching between a heated state and a non-heated state or a high-temperature heated state and a low-temperature heated state to effectively perform melting and solidification, so-called gate 4 closing operations are performed, which improves precision moldability, mass productivity, and Although it has many advantages such as low cost productivity, hot runner-6
, 9 for heating the runners 8, 11,
It is necessary to separately provide a heater for opening and closing the gate 4, that is, an intermittent heating body 7 and an intermittent heating wire 10.

しかも各別の温度制御を必要とするためにコントローラ
の構成が複雑化かつ大型化ならざるを得ないという問題
点があった。
Moreover, since separate temperature control is required, the configuration of the controller has to be complicated and large.

ことに、キャピテイ1が二個以上多数設けられている場
合とか一つのキャピテイに対して二以上のゲートを必要
とする場合などにおいて多くの問題点があった。
In particular, there are many problems when two or more cavities 1 are provided or when two or more gates are required for one cavity.

〔発明の概要〕[Summary of the invention]

この発明は、斜上の点に着目して成されたもので、ラン
ナ一部内の溶融樹脂を可塑化状態に保温するための単一
の電気的熱源たとえばヒータのみを用い、このヒータの
熱エネルギーをゲート部まで有効に伝達させると共に、
このゲート部に作用する熱量の大小に基づくゲート部の
樹脂の同化。
This invention was made by focusing on the diagonal point, and uses only a single electric heat source, such as a heater, to keep the molten resin in a part of the runner warm to a plasticized state, and uses the thermal energy of this heater. In addition to effectively transmitting the information to the gate section,
Assimilation of the resin in the gate area is based on the amount of heat acting on the gate area.

溶融という開閉制御を、前記ヒータの温度制御によって
行わせ、従来必要不可欠としたゲート用のヒータを省略
した所謂、単一の温度制御のみを行うコントローラを用
いて従来と全く同様のスピアシステムを実施できるよう
にしたランナーレス射出成形方法およびホットランナ−
を提供するものである。
Opening/closing control of melting is performed by temperature control of the heater, and the spear system is completely similar to the conventional spear system using a so-called controller that performs only single temperature control, omitting the gate heater that was previously indispensable. Runnerless injection molding method and hot runner
It provides:

また、この発明は、単一のヒータによりゲート部に至る
まで有効な熱伝導が得られるようにヒータ自体を大型化
し大熱容量でかつ高温を発することができるように形成
すると共に、必要以上の熱エネルギーは強制的に排熱し
ランナ一部の可塑化溶融樹脂に悪影響を与えないように
したランナーレス射出成形方法およびホットランナ−を
提供するものである8 さらに、この発明はゲート部の熱冷却をヒータ自体の電
源オフのみならず、冷却流体の局部的な間欠供給によっ
て有効に冷却を行えるようにしたランナ一部・ス射出成
形方法およびホットランナ−を提供するものである。
Furthermore, in order to obtain effective heat conduction all the way to the gate part with a single heater, the heater itself is enlarged, has a large heat capacity, and is formed to be able to generate high temperature. The present invention provides a runnerless injection molding method and a hot runner in which energy is forcibly dissipated heat so as not to adversely affect the plasticized molten resin in a part of the runner. The present invention provides a method for injection molding a part of a runner and a hot runner in which cooling can be effectively performed not only by turning off the power to the heater itself but also by locally intermittent supply of cooling fluid.

〔実施例〕〔Example〕

以下に、この発明の実施例を図面と共に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

なお、従来例と同一または相当部分には同一符号′を付
しその説明の詳細を省く。
Note that the same or equivalent parts as in the conventional example are given the same reference numerals '' and detailed explanation thereof will be omitted.

まず第3図ないし第7図に示される三実施例について詳
説する。これ等の実施例は、所謂砲弾型の形状を備えて
ランナ一部5の中心軸北に配設され、このランナ一部5
内に滞溜する可塑化樹脂を中心部よシ外方に向けて加熱
することによシ溶融状態を保持できる構成を備えている
First, three embodiments shown in FIGS. 3 to 7 will be explained in detail. These embodiments have a so-called bullet-shaped shape and are arranged north of the central axis of the runner part 5.
It has a structure that can maintain a molten state by heating the plasticized resin accumulated inside from the center outward.

12はホットランナ−113はこのホットランナ−12
の外筒体、14は、この外筒体13内に収容される単一
加熱体としての電気的加熱源すなわちカートリッジヒー
タな示す。15はこのカートリッジヒータ14内に捲装
される電熱線で、ポットランナー12の先端に行くに従
って換装密度が大きくなり発熱温度がホットランナ−1
2の先端尖鋭部12aにおいて熱可塑性樹脂を加熱溶融
できるように設定しである。
12 is the hot runner-113 is this hot runner-12
The outer cylindrical body 14 represents an electric heating source, ie, a cartridge heater, as a single heating element housed within the outer cylindrical body 13. Reference numeral 15 denotes a heating wire wound inside the cartridge heater 14, and as it goes toward the tip of the pot runner 12, the replacement density increases and the heat generation temperature reaches the hot runner 1.
The setting is such that the thermoplastic resin can be heated and melted at the sharp end portion 12a of No. 2.

ところで、第3図に示す実施例にあっては、カートリッ
ジヒータ14の先端に細杆状突起14aを突設し、この
突起14aがホットランナ−12の尖鋭部12aに臨ま
れるように形成してあシ全体としてカートリッジヒータ
14と外筒体13とは通気性の充填物16を介して密着
させることなく一体的に結合させである。17は感温素
子18を有する温度センサー用配線、19は冷却空気送
気管で、その先端はホットランナ−12の尖鋭部12a
Kt目当するカートリッジヒータ14の細杆状突起14
aに臨ませて局部的な冷却ができるように構成しである
。20はカートリッジヒータ14の導線を示す。
By the way, in the embodiment shown in FIG. 3, a thin rod-like projection 14a is provided at the tip of the cartridge heater 14, and this projection 14a is formed so as to face the sharp portion 12a of the hot runner 12. As a whole, the cartridge heater 14 and the outer cylindrical body 13 are integrally joined without being brought into close contact with each other through the air-permeable filler 16. 17 is wiring for a temperature sensor having a temperature sensing element 18; 19 is a cooling air supply pipe, the tip of which is connected to the sharp part 12a of the hot runner 12;
Kt Thin rod-like projection 14 of the target cartridge heater 14
The structure is such that local cooling can be performed by facing the area a. Reference numeral 20 indicates a conducting wire of the cartridge heater 14.

斜上の構成になるので、第3図の実施例においてカート
リッジヒータ14の働きによりホットランナ−12が十
分加熱されると共にカートリッジヒータ14の捲線密度
はホットランナ−12の先端に行くに従って次第に大き
くなるので放熱量も大となシ細杆状突起14aへの熱伝
導も犬となりしたがってポットランナー12の先端尖鋭
部12aも十分加熱されてゲート部4での樹脂の熱溶融
を可能とするものである。
Since the configuration is diagonal, in the embodiment shown in FIG. 3, the hot runner 12 is sufficiently heated by the action of the cartridge heater 14, and the winding density of the cartridge heater 14 gradually increases toward the tip of the hot runner 12. Therefore, the heat conduction to the thin rod-shaped projection 14a, which has a large amount of heat dissipation, is also reduced, so that the sharp end portion 12a of the pot runner 12 is also sufficiently heated, making it possible to thermally melt the resin at the gate portion 4. .

なお、カートリッジヒータ14よす発熱されるランナ一
部5内の樹脂可塑化に必要な熱量以外は通気性の充填物
16を経てホットランナ−12外へ排熱されるのでラン
ナ一部5内の樹脂を必要以上の高温に加熱する虞れはな
い。この熱量排出手段には強制的な吸引手段、冷気供給
手段などを組み合わせて行うこともできる。
Incidentally, the heat generated by the cartridge heater 14 other than the amount of heat necessary for plasticizing the resin in the runner part 5 is exhausted to the outside of the hot runner 12 through the air permeable filler 16, so that the resin in the runner part 5 is exhausted. There is no risk of heating it to a higher temperature than necessary. This heat discharging means may be combined with forced suction means, cold air supply means, etc.

このようにして、カートリッジヒータ14の働きにより
ランナ一部5およびゲート4部の樹脂が溶融状態となっ
ていれば、所謂ゲート4が開いていることとなシ射出成
形操作を行うことができる。
In this way, if the resin in the runner part 5 and the gate 4 part is in a molten state due to the action of the cartridge heater 14, the injection molding operation can be performed with the so-called gate 4 open.

つぎにカートリッジヒータ14に対する通電を停止する
か、または通電量を低下させれば、カートリッジヒータ
14の温度は降下し、殊に、細杆状突起14aへの熱伝
導も温度降下を来たし、ホットランナ−12の先端尖鋭
部12aの発熱温度も降下するのでゲート4の樹脂加熱
も低下し、急速に冷却固化し、所謂ゲートを閉じること
ができる。
Next, if the current supply to the cartridge heater 14 is stopped or the amount of current supplied is reduced, the temperature of the cartridge heater 14 decreases, and in particular, the temperature of the heat conduction to the narrow rod-like projections 14a also decreases, and the hot runner Since the heat generation temperature of the sharp end portion 12a of -12 also decreases, the heating of the resin in the gate 4 also decreases, and the resin is rapidly cooled and solidified, so that the so-called gate can be closed.

なお、この際、冷却空気送気管19よりホットランナ−
12の先端尖鋭部12aへ強制的に冷却空気を送気すれ
ばより迅速なゲート閉塞を行わせることができる。
At this time, the hot runner is connected to the cooling air pipe 19.
By forcibly supplying cooling air to the sharp end portion 12a of the gate 12, the gate can be closed more quickly.

このようにゲート4部の溶融樹脂を局部的に冷却固化し
てゲートを閉じることができるが、ランナ一部5の溶融
樹脂は、ホットランナ−12内のカートリッジヒータ1
4が通電停止又は通電量の低下によって一時的に加熱作
用が停止または弱まることとなってもホットランナ−1
2内体の熱容量を大きく形成することにより溶融樹脂を
冷却固化させる程の温度降下を生ずる虞れはなく、つぎ
の射出成形操作、すなわらカートリッジヒータ14への
通電開始または通電Jjlの増加によって再びゲート4
部の同化樹脂を加熱して溶融し、所謂ゲートを開いて円
滑な次の射出成形操作を行わせることができるものであ
る。
In this way, the molten resin in the gate 4 part can be locally cooled and solidified to close the gate, but the molten resin in the runner part 5 is transferred to the cartridge heater 1 in the hot runner 12.
Even if the heating action of 4 is temporarily stopped or weakened due to the stoppage of energization or a decrease in the amount of energization, the hot runner-1
By forming the internal body 2 to have a large heat capacity, there is no risk of a temperature drop to the extent that the molten resin is cooled and solidified. Gate 4 again
By heating and melting the assimilated resin in the mold, a so-called gate can be opened to allow smooth subsequent injection molding operations.

以北、第3図に示す実施例がこの発明の最も簡単にして
基本的な構成を示すものである。
The embodiment shown in FIG. 3 shows the simplest and basic configuration of this invention.

つぎに第4図および第5図に示す実施例について説明す
る。
Next, the embodiment shown in FIGS. 4 and 5 will be described.

この実施例は、前記実施例におけるカートリッジヒータ
14を変形した単一加熱体としての電気的加熱源すなわ
ち加熱体21を砲弾型のホットランナ−12内に埋設固
定したもので中心軸上に中空筒部22を形成し、この筒
部22の外周に前記実施例と同一の手法で電熱線15を
縮装すると共にさらにこの筒部22の先端には円錐状の
絞り部23を介して細管部24を一体的に連通させ、こ
の細管部24をホット2ンナー12の先端尖鋭部12a
内に臨ませて構成しである。そしてさらにホットランナ
−12の内周面と加熱体21との間に過熱防止用の邪魔
板25を介装させこの邪魔板25の多数の小孔26を通
してホットランナ−12の外筒体13へ必要な熱量−の
みを伝導でき、必要以北に大きな熱量は邪魔板25で経
目止するか或いは邪魔板25の外周に設けられる放熱路
27を介してポットランナー12外へ排熱できるように
なっている。なお、この放熱路27には、冷却空 1気
送気管19が挿通され、この管19の先端が、前記加熱
体21の先端すなわち細管部24を局部的に冷却できる
ようにノズル状を形成して細管部24の近くに開口させ
である。また符号28はホットランナ−12内に加熱体
21を確実に収容固定させるためのキャップを示す。
In this embodiment, an electric heating source as a single heating element, that is, a heating element 21, which is a modification of the cartridge heater 14 in the previous embodiment, is embedded and fixed in a bullet-shaped hot runner 12, and a hollow cylinder is disposed on the central axis. The heating wire 15 is wrapped around the outer periphery of this cylindrical portion 22 in the same manner as in the embodiment described above, and a narrow tube portion 24 is further connected to the tip of this cylindrical portion 22 via a conical constriction portion 23. The thin tube portion 24 is connected to the sharp tip portion 12a of the hot 2-ner 12.
It is composed so that it faces inside. Furthermore, a baffle plate 25 for overheating prevention is interposed between the inner peripheral surface of the hot runner 12 and the heating body 21, and the baffle plate 25 is passed through the numerous small holes 26 of the baffle plate 25 to the outer cylindrical body 13 of the hot runner 12. Only the necessary amount of heat can be conducted, and a larger amount of heat than necessary can be stopped by the baffle plate 25 or can be exhausted to the outside of the pot runner 12 via a heat radiation path 27 provided on the outer periphery of the baffle plate 25. It has become. A cooling air supply pipe 19 is inserted into the heat radiation path 27, and the tip of the tube 19 is formed into a nozzle shape so that the tip of the heating element 21, that is, the narrow tube portion 24 can be locally cooled. The opening is made near the thin tube portion 24. Further, reference numeral 28 indicates a cap for reliably housing and fixing the heating element 21 within the hot runner 12.

叙との構成に基づいて作用を説明する。The action will be explained based on the structure of the text.

加熱体21の電熱勝15は、導線20に通電することに
より高熱を発し、ホットランナ−12を加熱すると同時
に中空筒部22を加熱し、内部の空気を有効に加熱する
。電熱線15より発せられる熱量が必要以上に高い場合
、邪魔板25によってポットランナー12の外筒体13
への熱伝導を1!1−1止し、小孔26を通って外方に
伝導される熱が主として外筒体13に作用し、さらにホ
ットランナ−12の外方へ必要な熱エネルギーを放出し
て樹脂を熱溶融できるものである。電熱線15はホット
ランナ−12の先端部分に局部的に捲回密度を太きくし
であるため先端尖鋭部12aへの熱エネルギーの伝達効
果が良いばかりでなく、中空筒部22内の空気の加熱効
果も極めて有効に働くため、膨張された加熱空気は絞り
部23を経て細管部24に達し、さらには第5図矢符の
とおシ加熱空気は細管部24の先端開口部より吐出され
てポットランナー12の先端尖鋭部12aを内側から有
効に加熱できるものである。
The electric heating element 15 of the heating body 21 generates high heat by energizing the conductive wire 20, heats the hot runner 12 and at the same time heats the hollow cylinder part 22, effectively heating the air inside. When the amount of heat emitted from the heating wire 15 is higher than necessary, the outer cylinder 13 of the pot runner 12 is blocked by the baffle plate 25.
1!1-1, the heat conducted outward through the small hole 26 mainly acts on the outer cylinder 13, and further transfers the necessary thermal energy outward of the hot runner 12. It can be released to heat-melt the resin. Since the heating wire 15 is a comb with a thick winding density locally at the tip of the hot runner 12, it not only has a good effect of transmitting thermal energy to the sharp tip portion 12a, but also heats the air inside the hollow cylindrical portion 22. Since the effect works extremely effectively, the expanded heated air passes through the constriction section 23 and reaches the thin tube section 24, and furthermore, the heated air is discharged from the tip opening of the thin tube section 24 as shown by the arrow in Fig. The sharp tip portion 12a of the runner 12 can be effectively heated from the inside.

したがって、先端尖鋭部12aが臨まれるゲート4部の
僅かな樹脂を局部的に加熱して溶融可塑化状態とするこ
とができる。この状態は所謂ゲート4が開いた状態であ
るので、前述したように射出成形操作を行うことができ
る。
Therefore, it is possible to locally heat a small amount of the resin in the portion of the gate 4 where the sharp tip portion 12a faces to melt it into a plasticized state. In this state, the so-called gate 4 is open, so that the injection molding operation can be performed as described above.

そして、この射出成形操作が完了した後、電熱線15へ
の通電を停止するが通電量を低下させれば中空筒部22
への加熱作用は停止または減少するので加熱空気が細管
部24への加熱効果も逓減すると共に、冷却空気送気′
i”4’ 19より冷却空気を送給することによって細
管部24は急速瞬時にして冷却され、ホットランナ〜1
2の先端尖鋭部12aも冷却されて結局のところゲート
4内の溶融樹脂は固化し所謂ゲートを閉じることができ
るものである。
After this injection molding operation is completed, the electricity to the heating wire 15 is stopped, but if the amount of electricity is reduced, the hollow cylindrical part 22
Since the heating effect on the thin tube section 24 is stopped or reduced, the heating effect of the heated air on the thin tube section 24 also gradually decreases, and the cooling air supply'
By supplying cooling air from i"4' 19, the thin tube section 24 is rapidly and instantaneously cooled, and the hot runner ~1
The sharp end portion 12a of the gate 4 is also cooled, and the molten resin within the gate 4 is solidified, so that the so-called gate can be closed.

つぎに、この冷却空気の送給を停止し、再び電熱線15
に対して通電および通電量を増加させれば前述と同様に
中空筒部22内の加熱空気の働きと電熱線15による熱
伝導によって細管部24には再加熱され、ゲート4の樹
脂を溶融させてゲートを開くことができる反覆した射出
成形操作を行わせることができるものである。
Next, the supply of this cooling air is stopped and the heating wire 15 is restarted.
When the current is applied and the amount of current is increased, the thin tube part 24 is reheated by the action of the heated air in the hollow cylinder part 22 and the heat conduction by the heating wire 15, as described above, and the resin of the gate 4 is melted. The injection molding operation can be repeated by opening the gate.

なお、電熱線15に対する通電制御操作によってホット
ランナ−12の外筒体13は、僅力・に温度変化を生ず
るが、その温度変化は僅少であってランナ一部5内の溶
融樹脂を冷却固化させる不都合はなく常に可塑化溶融状
態に保たせて置くことができる。
Note that the temperature of the outer cylindrical body 13 of the hot runner 12 slightly changes due to the energization control operation for the heating wire 15, but the temperature change is so small that the molten resin in the runner part 5 is cooled and solidified. There is no inconvenience caused by this process, and the plasticized molten state can be maintained at all times.

また電熱線15の温度制御は、感温素子18の検知する
温度によって図示しないコントローラの働きで安全に行
わせることができる。
Further, the temperature of the heating wire 15 can be safely controlled by a controller (not shown) based on the temperature detected by the temperature sensing element 18.

さらに、第6図および第7図の実施例について説明する
Furthermore, the embodiments shown in FIGS. 6 and 7 will be described.

この実施例は、前記第4図およびS5図に示しまた冷却
空気送気管19に相当する冷却空気送気管29を加熱体
30の中心軸上に挿通し、加熱体30の先端に一体的に
形成した針管31に向って冷却空気が吐出されるように
構成しである。
In this embodiment, a cooling air supply pipe 29 corresponding to the cooling air supply pipe 19 shown in FIGS. The structure is such that cooling air is discharged toward the needle tube 31.

そして加熱体30は前記実施例と同様の単一加熱源とし
ての電気的熱源であって換装した電熱線15を有し、さ
らにこの電熱線15には過熱防止用の邪魔板25が設け
られ、かつ前記送気管29を中心とした外周にはヒータ
芯32を設けると共にこの芯32と前記邪魔板25との
間には絶縁材または硬化防止剤のような充填材33を介
して電熱線15を埋設しである。なおキャップ34は冷
却空気送気管29を挿通できる透孔搗造を備えさせであ
る。31aはホットランナ−12内の加熱体30との間
で形成される間隙を示す。
The heating body 30 is an electric heat source as a single heating source similar to the above embodiment, and has a replaced heating wire 15, and the heating wire 15 is further provided with a baffle plate 25 for preventing overheating. A heater core 32 is provided on the outer periphery of the air pipe 29, and a heating wire 15 is inserted between the core 32 and the baffle plate 25 with a filler 33 such as an insulating material or an anti-hardening agent interposed therebetween. It is buried. The cap 34 is provided with a drilled through hole through which the cooling air pipe 29 can be inserted. 31a indicates a gap formed between the hot runner 12 and the heating body 30.

斜上のように構成されているので電熱線15に通電させ
れば、前述と同様にホットランナ−12の先端尖鋭部1
2aが加熱されてゲート4部の樹脂を加熱溶融してゲー
トを開き、反対に電熱線15への通電を停止したシ1通
電量を低下させれば、先端尖鋭部12aの加熱温度は低
下し、同時に冷却空気送気管29よりの空気の局部冷却
によって有効瞬時に先端尖鋭部12aの温度を降下させ
てゲート部の樹脂を固化させ、所詣ゲートを閉じること
ができるものである。しかも電熱線15への通電制御が
どのように変化しても、ホットランナ−12によるラン
ナ一部5内の樹脂へは必要最小限の熱エネルギーが供給
されるので冷却固化する虞れはなく、きわめて円滑に射
出成形操作を行わせることができる。
Since the heating wire 15 is configured to be tilted upward, when the heating wire 15 is energized, the sharp tip portion 1 of the hot runner 12 is heated as described above.
2a is heated and melts the resin in the gate 4 part to open the gate, and conversely, if the amount of current supplied to the heating wire 15 is reduced, the heating temperature of the sharp tip portion 12a will decrease. At the same time, by locally cooling the air from the cooling air supply pipe 29, the temperature of the sharp tip portion 12a is effectively instantaneously lowered to solidify the resin in the gate portion, thereby effectively closing the gate. Moreover, no matter how the energization control to the heating wire 15 changes, the minimum necessary thermal energy is supplied to the resin in the runner part 5 by the hot runner 12, so there is no risk of it cooling and solidifying. The injection molding operation can be carried out extremely smoothly.

以北、三つの実施例を説明したが、いずれのホットラン
ナ−12も、第8図に示すように従来の射出成形装置と
同様にマニホールド35より一対の金型2,3で形成さ
れるキャビティ1のゲート4およびランナ一部5に向っ
て配設されて使用に供せられる。
Hereinafter, three embodiments have been described, but each hot runner 12 has a cavity formed by a pair of molds 2 and 3 from a manifold 35, as shown in FIG. 1 and the runner part 5 for use.

第9図は、ランナ一部5がホットランナ−36の中心軸
上に形成される形態の一実施例を示すもので以下にその
構成を説明する。
FIG. 9 shows an embodiment in which the runner part 5 is formed on the central axis of the hot runner 36, and the structure will be explained below.

すなわち、円筒状の外筒体37の中心軸とに、ゲート4
およびランナ一部5が連設された円筒体38が配設され
、さらにその外周に環状小空間39を介して多数の小孔
26を穿った過熱防止用の邪魔板25を介装させ、さら
にその外周に電熱線15を換装すると共にこの換装は、
外筒体37の前部に至るに従い縮装密度が大きくなるよ
うに形成しである。また、この電熱線15の外周には外
筒体37との間に環状大空間40が形成されて第3図に
示すような冷却空気送気管19が縦裂されている。なお
、ゲート4を構成する内筒体38の先端部分38aは、
外筒体37の先端部分37aと同様にこれを細管構造と
して形成するものである。符号41は、電熱線15の外
周に配設される円筒状の加熱アダプターを示し、電熱線
15よりの熱エネルギーを有効にゲート4部に伝達でき
るようにこのアダプター41の先端41aを細管状に絞
ってゲート4を形成する内筒体38の先端部分38aと
接触させるものである。
That is, the gate 4 is connected to the central axis of the cylindrical outer body 37.
A cylindrical body 38 with a runner part 5 connected thereto is disposed, and a baffle plate 25 for overheating prevention, which has a number of small holes 26 bored through an annular small space 39, is interposed on its outer periphery. In addition to replacing the heating wire 15 on the outer periphery, this replacement
The outer cylindrical body 37 is formed so that the compression density increases as it reaches the front part. Further, a large annular space 40 is formed between the outer periphery of the heating wire 15 and the outer cylindrical body 37, and a cooling air supply pipe 19 as shown in FIG. 3 is vertically split. Note that the tip portion 38a of the inner cylindrical body 38 constituting the gate 4 is
Like the tip portion 37a of the outer cylinder 37, this is formed as a thin tube structure. Reference numeral 41 indicates a cylindrical heating adapter disposed around the outer periphery of the heating wire 15, and the tip 41a of the adapter 41 is shaped into a thin tube so that the thermal energy from the heating wire 15 can be effectively transmitted to the gate 4. It is brought into contact with the tip portion 38a of the inner cylindrical body 38 forming the gate 4 by squeezing.

なお、このホットランナ−36は、第10図に示すよう
にマニホールド35、一対の金型2,3のキャビティ1
に一致してゲート4が臨まれるように配設するものであ
る。
The hot runner 36 is connected to the manifold 35 and the cavities 1 of the pair of molds 2 and 3, as shown in FIG.
The gate 4 is arranged so that it faces the same direction as the gate 4.

叙との構成に成るので、電熱線15に通電させれば、前
述と同様にホットランナ−36の前部が他の部に比較し
て強力に加熱され、加熱アダプター41を介して先端4
1aを急速に加熱できる。
Therefore, when the heating wire 15 is energized, the front part of the hot runner 36 is heated more strongly than the other parts as described above, and the tip 4 is heated through the heating adapter 41.
1a can be heated rapidly.

勿論電熱線15はその縮装の全域で、必要以上の熱エネ
ルギーを発生しているので一部が邪魔板25によって遮
蔽されるが、環状小空間39を介して内筒体38を加熱
し、中心軸上に形成されるランナ一部5内の溶融樹脂を
加熱して可塑化状態を保持させることができる。必要以
上の電熱線15の熱エネルギーは、内外の小空間39.
大空間40によって放熱されしたがってランナ一部5に
対しては適正な加熱温度の下に加熱しており専らゲート
部4に対して加熱溶融可能な熱エネルギーが供給される
ものである。
Of course, the heating wire 15 generates more thermal energy than necessary in the entire area of its contraction, so a part of it is blocked by the baffle plate 25, but it heats the inner cylindrical body 38 through the annular small space 39, The molten resin within the runner portion 5 formed on the central axis can be heated to maintain a plasticized state. Thermal energy of the heating wire 15 that is more than necessary is stored inside and outside the small space 39.
Heat is radiated through the large space 40, so that the runner part 5 is heated to an appropriate heating temperature, and thermal energy that can be heated and melted is exclusively supplied to the gate part 4.

したがって、電熱線15に通電した状態ではゲート4部
の樹脂は加熱溶融し、所謂ゲートは開いた状態を呈して
いるものであるから、射出成形操作を行うことができる
ものである。
Therefore, when the heating wire 15 is energized, the resin in the gate 4 is heated and melted, and the so-called gate is in an open state, so that the injection molding operation can be performed.

つぎに、電熱線15に対する通電を停止したりまたは通
電量を低下させれば、ゲート4部の温度は降下し同時に
冷却空気送気管19よりの空気による局部冷却によって
溶融樹脂は冷却固化して所謂ゲートを閉じることができ
るものである。しかも、電熱線15への通電制御がどの
ように変化してもホットランナ−36によるランナ一部
5内の樹脂への必要最小限の熱エネルギーが供給される
ので、冷却固化することなくきわめて円滑に射出成形操
作を行なわせることができる。
Next, if the power supply to the heating wire 15 is stopped or the amount of current supplied is reduced, the temperature of the gate 4 portion decreases, and at the same time, the molten resin is cooled and solidified by local cooling by the air from the cooling air pipe 19. The gate can be closed. Moreover, no matter how the energization control to the heating wire 15 changes, the hot runner 36 supplies the minimum necessary thermal energy to the resin in the runner part 5, so the heating process is extremely smooth without cooling and solidifying. can perform injection molding operations.

以上、この発明について数多の実施例を説明したが、こ
とに電熱線15への通電、停止または通電、計の低下と
冷却空気送気管よりの冷却空気の送給とを同時に行うこ
となくそれぞれ一方の操作のみでゲート4部の樹脂の冷
却同化という作用を実施できることも勿論である。
A number of embodiments of the present invention have been described above, but in particular, the heating wire 15 is energized, stopped or energized, the meter is lowered, and the cooling air is supplied from the cooling air pipe without being carried out simultaneously. Of course, the effect of cooling and assimilating the resin in the gate 4 can be performed by only one operation.

この発明は叙とのようにホットランナ−を加熱するため
のヒータのような坩−構造の電気的熱源を俯え、この単
一構造の電気的熱源によってポットランナーの先端部を
十分加熱してゲート部を局部的に加熱したシ冷却したシ
することができるので、ゲート部の樹脂の加熱溶融と冷
却固化というゲートの開閉操作をきわめて円滑に行わせ
ることができると共に、必要以とに高い熱エネ/L、ギ
ーは可熱してランナ一部にはたえず適正な温度を与える
ことができ、しかも電熱線に相当する電気的熱源の制御
は、単一構造の熱源の制御で可能であるためコントロー
ラの小型化が可能となり、旬産性、廉価性を期待できる
効果がある。
As described above, this invention uses an electric heat source with a crucible structure like a heater for heating a hot runner, and sufficiently heats the tip of the pot runner with this single electric heat source. Since the gate part can be locally heated and cooled, the opening and closing operations of the gate, which involves heating and melting the resin in the gate part and cooling and solidifying them, can be performed extremely smoothly, and at the same time, the gate can be opened and closed without unnecessary heat. Energy/L, can be heated and can constantly give the appropriate temperature to a part of the runner, and control of an electric heat source equivalent to a heating wire is possible by controlling a heat source of a single structure, so a controller is used. This has the effect of making it possible to downsize, making it possible to produce products in season and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来例を示す説明断面図、第3図
はこの発明に係るランナーレス射出成形方法に用いるホ
ットランナ−の一実施例を示す説明断面図、第4図はこ
の発明に係る他の実施例を示すホットランナ−の一部切
欠断面図、N45図しま同一ヒA部の拡大断面図、第6
図は同じくこの発明の他の実施例を示す一部切欠断面図
、第7図は同LB部の拡大断面図、第8図は前記実施例
を射出成形装置に用いた場合の要部断面図、第9図はこ
の発明に係る他のホットランナ−を示す説明断面図第1
0図は同上ホットランナ−を用いたランナーレス射出成
形装置の一実施例を示す要部の説明断面図である。 4・・・・・・・・・ゲート 5・・・・・・・・・ランナ一部 6 、9 、12.・36・・ホットランナ−7・・−
・・・・・・加熱体 10・・・・・・間欠加熱線 14.21.30・・・・・・・・・・・・・・・・・
崖−加熱体としてのカートリッジヒータ(電気的 加熱源) 17・・・・・・感温素子18の温度センサー用配服 19.29・・・・・・冷却空気送気管25・・・・・
・邪魔板 28.34・・・・・・キャップ 31・・・・・・針管 35・・・・・−マニホールド 38・・・・・・内筒体 41・・・・・・加熱アダプター 第6図 第8図 2
1 and 2 are explanatory sectional views showing a conventional example, FIG. 3 is an explanatory sectional view showing an embodiment of a hot runner used in the runnerless injection molding method according to the present invention, and FIG. 4 is an explanatory sectional view showing an embodiment of the present invention. A partially cutaway cross-sectional view of a hot runner showing another example according to the above, an enlarged cross-sectional view of the same striped area A in Figure N45, No. 6
The figure is a partially cutaway sectional view showing another embodiment of the present invention, FIG. 7 is an enlarged sectional view of the LB section, and FIG. 8 is a sectional view of essential parts when the embodiment is used in an injection molding machine. , FIG. 9 is an explanatory sectional view No. 1 showing another hot runner according to the present invention.
FIG. 0 is an explanatory sectional view of essential parts showing an embodiment of a runnerless injection molding apparatus using the same hot runner. 4......Gate 5...Runner part 6, 9, 12.・36...Hot Runner-7...-
・・・・・・Heating body 10・・・・・・Intermittent heating wire 14.21.30・・・・・・・・・・・・・・・・・・
Cliff - Cartridge heater as a heating element (electrical heating source) 17...Temperature sensor arrangement for temperature sensing element 18 19.29...Cooling air supply pipe 25...
・Baffle plate 28.34...Cap 31...Needle tube 35...-Manifold 38...Inner cylinder body 41...Heating adapter No. 6 Figure 8 Figure 2

Claims (1)

【特許請求の範囲】 (【)電気的加熱源を有するホットランナ−によりラン
ナ一部内の熱可塑性樹脂を溶融可塑化し、かつキャピテ
イに通ずるゲート部の前記樹脂を加熱溶融または冷却固
化させて、ゲートを開閉することにより射出成形操作を
行うようにしたランナーレス射出成形方法において、ホ
ットランナ−に内蔵される電気的加熱源を単−構成部材
とし、ゲート側に向う前部を他の部に比し高温度分布と
してホットランナ−の先端を熱伝導によシ加熱できるよ
うにし、かつ必要以北の熱エネルギーを排熱すると共に
前記電気的熱源の電源の開閉または通電量の多寡に応じ
てゲート部に臨まれるホットランナ−の先端部の温度を
昇降させてゲート部の樹脂を加熱溶融または冷却固化さ
せてゲートを開閉して射出成形できるようにしたランナ
ーレス射出霞][ぞづ〒#士へ (2)前記方法において、ホットランナ−内に冷却空気
送気管を設け、電気的熱源の電源の開閉または通電量の
多寡に関連または関連することなく前記冷却空気送気管
よシ吐出される冷却空気をホットランナ−の先端部に供
給して先端部を急速に冷却してゲート部の樹脂の冷却同
化を促進し、これによりゲートを閉じるようにしたラン
ナーレス射出成形方法。 (3)砲弾型の形状を有する外部体内に、前部に行くに
従い捲回密度の高い単一の電熱線を捲装すると共に、こ
の電熱線と外筒体との間に多孔構造の過熱防止用の邪魔
板を介装させ、さらに冷却空気送気管を設けて成るホッ
トランナ−8(4)円筒状の外筒体の中心軸上に、ゲー
トおよびランナ一部を縦通し、外周部に多孔構造の邪魔
板を介装させると共にこの邪魔板の外周に、前部に行く
に従い捲回密度の冒い単一の電熱線の外周に冷却空気送
気管を縦裂して成るホットランナ−6
[Claims] ([) The thermoplastic resin in a part of the runner is melted and plasticized by a hot runner having an electric heating source, and the resin in the gate portion leading to the cavity is heated and melted or cooled and solidified. In a runnerless injection molding method in which the injection molding operation is performed by opening and closing, the electric heating source built into the hot runner is a single component, and the front part facing the gate side is compared to the other parts. The tip of the hot runner can be heated by heat conduction as a high temperature distribution, and the heat energy beyond the required amount can be exhausted, and the gate can be opened or closed depending on the power supply of the electric heat source or the amount of electricity supplied. Runnerless injection haze that enables injection molding by opening and closing the gate by raising and lowering the temperature of the tip of the hot runner that faces the area to heat and melt or cool and solidify the resin in the gate part] (2) In the above method, a cooling air supply pipe is provided in the hot runner, and cooling is discharged from the cooling air supply pipe without being related to or related to the opening/closing of the power source of the electric heat source or the amount of electricity supplied. A runnerless injection molding method in which air is supplied to the tip of a hot runner to rapidly cool the tip to promote cooling assimilation of resin in the gate, thereby closing the gate. (3) A single heating wire is wound inside the shell-shaped external body, increasing the winding density toward the front, and a porous structure is provided between the heating wire and the outer cylinder to prevent overheating. 8 (4) The gate and a part of the runner are passed vertically on the central axis of the cylindrical outer body, and porous holes are provided on the outer periphery of the hot runner. A hot runner 6 is constructed by interposing a structural baffle plate and having a cooling air supply pipe vertically split around the outer periphery of a single heating wire, the winding density of which increases as it goes toward the front, on the outer periphery of the baffle plate.
JP6221384A 1984-03-31 1984-03-31 Runnerless injection molding and hot runner Granted JPS60206612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6221384A JPS60206612A (en) 1984-03-31 1984-03-31 Runnerless injection molding and hot runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6221384A JPS60206612A (en) 1984-03-31 1984-03-31 Runnerless injection molding and hot runner

Publications (2)

Publication Number Publication Date
JPS60206612A true JPS60206612A (en) 1985-10-18
JPH0316895B2 JPH0316895B2 (en) 1991-03-06

Family

ID=13193639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6221384A Granted JPS60206612A (en) 1984-03-31 1984-03-31 Runnerless injection molding and hot runner

Country Status (1)

Country Link
JP (1) JPS60206612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191117A (en) * 1986-02-17 1987-08-21 Hakko Denki Seisakusho:Kk Manifold block
JPH02100284A (en) * 1988-10-06 1990-04-12 Sanri Kk Lead wire ceramics heater and hot runner probe using that heater
JPH0556418U (en) * 1991-12-27 1993-07-27 日精樹脂工業株式会社 Nozzle heating device for injection molding machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191033A (en) * 1981-05-08 1982-11-24 Gellert Jobst U Heating probe for injection molding and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191033A (en) * 1981-05-08 1982-11-24 Gellert Jobst U Heating probe for injection molding and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191117A (en) * 1986-02-17 1987-08-21 Hakko Denki Seisakusho:Kk Manifold block
JPH02100284A (en) * 1988-10-06 1990-04-12 Sanri Kk Lead wire ceramics heater and hot runner probe using that heater
JPH0556418U (en) * 1991-12-27 1993-07-27 日精樹脂工業株式会社 Nozzle heating device for injection molding machine

Also Published As

Publication number Publication date
JPH0316895B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
JP3394244B2 (en) Mold for hot runner type injection molding machine and method for manufacturing the mold
EP1389517B1 (en) Method of controlling a shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines
JPS63236615A (en) Method and apparatus for runnerless injection molding of synthetic resin by means of intermittent cooling
JPS5910899B2 (en) Cap to prevent accumulation in runnerless molds
KR830007266A (en) Hot water heater assembly for injection molding machine
JPS60206612A (en) Runnerless injection molding and hot runner
JP3558165B2 (en) Metal alloy injection mold
JPH09300417A (en) Injection molding, injection molding die and injection molding device
JP2001079653A (en) Injection molding machine and nozzle temperature controller
JP2002205320A (en) Method for controlling temperature of molding mold
JP2004314399A (en) Temperature adjusting device of molding machine
JPH035112A (en) Intermittent heating method and its device in runnerless injection molding machine
JPS6141519A (en) Tip heater apparatus of hot runner for molding synthetic resin
JPH04284217A (en) Hot runner type molding device
JP3232222B2 (en) Hot runner mold for injection molding of metal materials
US5843495A (en) Hot nozzle for use with a side-gate runnerless injection molding system
JPS6132735Y2 (en)
JPH0347855Y2 (en)
JPH0639879A (en) Sprueless disc mold
JPS60206613A (en) Method and apparatus for injecting thermoplastic resin
JPH049144Y2 (en)
JPH0159895B2 (en)
JP2002530222A (en) Mold temperature control method for injection molding
JPH05336Y2 (en)
JP2006272600A (en) Hopper flange of injection molding machine