JPS60206485A - Treatment of fluorine-containing waste water - Google Patents

Treatment of fluorine-containing waste water

Info

Publication number
JPS60206485A
JPS60206485A JP6388484A JP6388484A JPS60206485A JP S60206485 A JPS60206485 A JP S60206485A JP 6388484 A JP6388484 A JP 6388484A JP 6388484 A JP6388484 A JP 6388484A JP S60206485 A JPS60206485 A JP S60206485A
Authority
JP
Japan
Prior art keywords
fluorine
reaction tank
calcium
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6388484A
Other languages
Japanese (ja)
Other versions
JPS646832B2 (en
Inventor
Izumi Hirasawa
泉 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP6388484A priority Critical patent/JPS60206485A/en
Publication of JPS60206485A publication Critical patent/JPS60206485A/en
Publication of JPS646832B2 publication Critical patent/JPS646832B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To obtain high fluorine removal capacity generating no clogging, by packing a reaction tank with solid particles containing calcium and fluorine, and adding a calcium agent to a recirculation system or tank to allow fluorine-containing waste water to reversely flow to the packed tank. CONSTITUTION:Fluorine-containing waste water from a pipe 1 is introduced into a reaction tank 5 along with a part of the outflow water of the reaction tank 1 from a pipe 2. The reaction tank 5 is packed with solid particles 4 of fluorite or phosphate rock and said solid particles are fluidized by the upwardly flowing waste water. A calcium agent 3 is injected in the recirculation line 2 of the outflow water from the reaction tank 5 or the reaction tank 5 and the concn. of calcium in the tank is held to a predetermined amount while the contact reaction of fluorine in waste water and solid particles is promoted and fluorine is crystallized on the surfaces of solid particles in a calcium fluoride form over the entire region in the tank. A part of treated water 6, from which fluorine is removed, is re-utilized as recirculation water and the remainder thereof is discharged out of the system.

Description

【発明の詳細な説明】 本発明は電子工業、アルミニウム工業、リン酸工業など
から排出されるフッ素含有排水からフッ案分を除去する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing a proportion of fluorine from fluorine-containing wastewater discharged from electronic industries, aluminum industries, phosphoric acid industries, etc.

近年環境保全、公害防止の立場から排水中に含まれるフ
ッ素の排出規制は15 ”76以下に、一部の地域では
8ジり以下にするようにめられている。
In recent years, from the standpoint of environmental conservation and pollution prevention, the emission regulations for fluorine contained in wastewater have been set to 15"76 or less, and in some areas to 8 or less.

しかしながら、従来一般的に行われてきた消石灰や塩化
カルシウム添加によるフン化カルシウム沈澱法では処理
水中のフッ素が20〜5014残存し、さらに除去率を
向上させようとして大量のカルシウム剤を使用すると多
量の微細なフン化カルγウムが生成し、沈澱し難く、ま
た沈澱汚泥の処理が難しくなると言う問題があった。ま
た最近フッ素含有排水をリン鉱石やフッ化カルシウム粒
子を担持させた固体と接触させる方法が行われているが
、これらの固体粒子の固定床充填層にIト液を通液した
場合、フッ素の濃度が高いと、しばしば多量の懸濁物質
が発生し、充填層の目詰りを生じ、頻繁に逆洗しなけれ
ばならないと言う問題があつだ。またこれらの固体を懸
濁せしめた場合においても、前記の従来一般的に行なわ
れてきたフッ化カルシウム沈澱法と同様の問題は解決さ
れ゛ていない。
However, in the conventional calcium fluoride precipitation method by adding slaked lime or calcium chloride, 20 to 5,014 fluorides remain in the treated water, and if a large amount of calcium agent is used to further improve the removal rate, a large amount of fluorine remains. There was a problem in that fine calcium fluoride was generated, which was difficult to settle, and the treatment of the settled sludge was difficult. Recently, a method has been used in which fluorine-containing wastewater is brought into contact with a solid supporting phosphate rock or calcium fluoride particles, but when the I solution is passed through a fixed bed packed bed of these solid particles, fluorine High concentrations often result in large amounts of suspended solids, which can clog the packed bed and require frequent backwashing. Furthermore, even when these solids are suspended, the same problems as those of the conventional calcium fluoride precipitation method described above remain unsolved.

本願の発明は前記の問題点を改善し、フッ素濃度が比較
的高濃度の範囲にある場合に対しても高いフッ素除去率
を維持しつつ、かつ汚泥発生量を著しく低減せしめる処
理方法を提供することにある。
The invention of the present application improves the above-mentioned problems and provides a treatment method that can significantly reduce the amount of sludge generated while maintaining a high fluorine removal rate even when the fluorine concentration is in a relatively high concentration range. There is a particular thing.

本願発明は、フッ素含有排水をカルシウム、フッ素を含
有する固体粒子を充填した反応槽に導入して処理する方
法において、前記排水と循環返送せしめた反応槽流出水
の一部を、反応槽の下部から導入し、該反応槽内の粒状
固体を流動させながら上向流に通水すると共に、前記反
応槽流出水の循環返送経路又は反応槽内に直接カルシウ
ム剤を注入して処理するフッ素含有排水の処理方法であ
る。
The present invention provides a method for treating fluorine-containing wastewater by introducing it into a reaction tank filled with solid particles containing calcium and fluorine. Fluorine-containing wastewater is introduced from the reaction tank and passed upward while fluidizing the granular solids in the reaction tank, and is treated by injecting a calcium agent directly into the circulation return route of the reaction tank effluent or into the reaction tank. This is the processing method.

本発明者は、前記した従来法の問題点を解決するため種
々研究を重ねた結果、カルシウム、フッ素を含有する粒
状固体(以下「粒状固体」と略す)の流動反応槽を用い
、反応槽流出水の一部を循環返送すると共に、反応槽の
カルシウム濃度を所定量に維持しながら通水することに
よシ、フッ素含有排水中のフッ素を効率よく除去できる
ことを見い出した。
As a result of various studies in order to solve the problems of the conventional method described above, the present inventor used a fluidized reaction tank for granular solids containing calcium and fluorine (hereinafter abbreviated as "granular solids") to prevent the flow out of the reaction tank. It has been discovered that fluorine in fluorine-containing wastewater can be efficiently removed by circulating and returning a portion of the water while maintaining the calcium concentration in the reaction tank at a predetermined level.

次に本願発明の実施態様を以下の図面に基づいて説明す
る。
Next, embodiments of the present invention will be described based on the following drawings.

まず第1図について説明すると管1からのフッ素含有排
水を管2からの反応槽流出水の一部と共に反応槽5に導
入し、上向流に通水する。反応槽には粒状固体4が充填
されているが、前記排水の上向流通水によシ該粒状固体
は流動化される。反応槽流出水の循環ライン2又は反応
槽内にはカルシウム剤が注入され、反応槽内のカルシウ
ム濃度を所定量に維持し、排水中のフッ素と粒状固体と
の接触反応を促進させ、反応槽内の全層にわだつ 。
First, referring to FIG. 1, fluorine-containing waste water from pipe 1 is introduced into reaction tank 5 together with a portion of reaction tank outflow water from pipe 2, and the water is passed in an upward flow. The reaction tank is filled with granular solids 4, which are fluidized by the upwardly flowing water of the waste water. A calcium agent is injected into the reaction tank effluent circulation line 2 or into the reaction tank to maintain the calcium concentration in the reaction tank at a predetermined level, promote the contact reaction between fluorine in the wastewater and granular solids, and Ruts throughout the inner layer.

てフッ素の粒状固体表面での晶析反応を進行させ □る
。フッ素を除去した処理水6は一部は循環水として再利
用し他は系外べ排出する。
□ to advance the crystallization reaction of fluorine on the surface of the granular solid. A portion of the treated water 6 from which fluorine has been removed is reused as circulating water, and the rest is discharged outside the system.

本願発明の原理は液中のフッ素とカルシウムの反応によ
って生成するフン化カルシウムの晶析現象を利用したも
のである。
The principle of the present invention utilizes the crystallization phenomenon of calcium fluoride produced by the reaction between fluorine and calcium in a liquid.

即ちカルシウム、フッ素を含有する粒状固体表面に液中
のフッ素がフッ化カルシウムの形で固着され、これに伴
って液中のフッ素が除去される。
That is, fluorine in the liquid is fixed in the form of calcium fluoride to the surface of the granular solid containing calcium and fluorine, and the fluorine in the liquid is removed accordingly.

従って従来の沈澱法に見られる汚泥の発生はない。Therefore, there is no generation of sludge, which is seen in conventional sedimentation methods.

本願発明はこのような原理に基づいたもので、フーツ素
を含む排水に必要に応じてカルシウム剤を添加して種晶
となる物質(フッ素除去剤)と接触させると、種晶表面
で Ca” ” + 2 F−CaF2↓ ・・−・(1)
に示す反応が効果的に進行する。
The present invention is based on such a principle, and when a calcium agent is added as necessary to wastewater containing fluorine and brought into contact with a substance that becomes a seed crystal (a fluorine removal agent), Ca'' is removed on the surface of the seed crystal. ” + 2 F−CaF2↓ ・−・(1)
The reaction shown in will proceed effectively.

本願発明の処理方法の特徴を要約すれば次のようになる
The features of the processing method of the present invention can be summarized as follows.

(i)汚泥発生量が著しく少くない。(i) The amount of sludge generated is not significantly small.

(11) 薬品添加量を大幅に節減で°きる。(11) The amount of chemicals added can be significantly reduced.

(111)全工程の滞溜時間が短く、しかも汚泥処理が
不要となるため省スペース型プロセスである。
(111) It is a space-saving process because the residence time of the entire process is short and sludge treatment is not required.

本法のフッ素除去反応に影響を及ぼす因子について説明
すると、反応槽内のカルシウムとフッ素の量の比は前記
(1)式に基づけば約1であればよいわけであるが、測
定にはCaO量を多くする必要があシ、実験結果によれ
ば反応槽内のCa/Fの比は5〜20になるようにカル
シウム剤を注入することが望ましい。
To explain the factors that affect the fluoride removal reaction of this method, the ratio of the amount of calcium to fluorine in the reaction tank should be approximately 1 based on the above equation (1), but in the measurement, CaO According to experimental results, it is desirable to inject the calcium agent in a large amount so that the Ca/F ratio in the reaction tank is 5 to 20.

カルシウムとフッ素との反応においてはPH4〜10の
範囲にあることが有用な領域であるとされているので、
排水が当該PH域外にある場合は、排水のPH調整を要
し、カルシウム剤としてアルカリ性であるCa剤即ち消
石灰や炭酸カルシウムを使用することが望ましいが、P
H調整を要しない場合はこの他に石コウ、塩化カルシウ
ムも使用出来る。
In the reaction between calcium and fluorine, it is said that a pH range of 4 to 10 is a useful range.
If the wastewater is outside the PH range, it is necessary to adjust the pH of the wastewater, and it is preferable to use an alkaline Ca agent, such as slaked lime or calcium carbonate.
If H adjustment is not required, gypsum and calcium chloride can also be used.

また前記反応槽内へのカルシウム剤の添加は第2図に示
すが如く、Ca濃度の連続測定装置を設置し、Ca剤の
注入装置と連動させ、処理水のCa濃度を連続的に検知
しながら、Ca剤を層内に注入するのが好ましい適用例
の一つである。Ca9度の測定は、C,a選択性電極を
使用するイオン電極を用いれば、Ca剤注入装置との連
動が容易に行える。
Furthermore, as shown in Figure 2, the calcium agent is added into the reaction tank by installing a continuous measuring device for Ca concentration and linking it with the Ca agent injection device to continuously detect the Ca concentration in the treated water. However, one preferred application is to inject Ca agent into the layer. Measurement of Ca9 degree can be easily performed in conjunction with a Ca agent injection device by using an ion electrode that uses a C, a selective electrode.

充填層内の上向流速は、充填固体粒子を流動化させるに
要する流動化速度以上にする。
The upward flow velocity within the packed bed is set to be equal to or higher than the fluidization velocity required to fluidize the packed solid particles.

これは反応過程で発生したSSが固定床に置いては、炉
材充填層内に捕捉され炉層閉塞の原因となるが、流動床
とした場合、充填した固体粒子が結合して固シとなるこ
ともなく、また発生したSSは固体表面に固着する。ま
た流動床においては接触効果が高いので、固体の表面上
にフッ素を晶析させるには流動床とするのが適当である
This is because if the SS generated during the reaction process is placed in a fixed bed, it will be trapped in the packed bed of the reactor material and cause clogging of the reactor bed, but if it is made into a fluidized bed, the solid particles packed will combine and form a solid bed. The generated SS adheres to the solid surface. Furthermore, since a fluidized bed has a high contact effect, a fluidized bed is suitable for crystallizing fluorine on the surface of a solid.

充填剤であるカルシウム、フッ素含有固体は粒状のリン
鉱石や蛍石が最適であるが、Ca、Fを含有する結晶状
のものやc a F21 c a、F (p O,)3
を固体物質に担持したものも使用出来る。また流出水の
循環水量と原水の比は実施例4に示す如く1〜4が適当
である。
The best calcium and fluorine-containing solid fillers are granular phosphate rock and fluorite, but crystalline ones containing Ca and F and c a F21 c a, F (p O,)3
Supported on a solid substance can also be used. Further, the ratio of the circulating water amount of the effluent to the raw water is suitably 1 to 4 as shown in Example 4.

本願発明の実施例を以下に示す。Examples of the present invention are shown below.

実施例1 第3図のフローによって行なわれた本願発明の実施例お
よび比較例について述べる。本願発明の実施例において
はフローAを、比較例ではフローB、 C1を用いた。
Example 1 An example and a comparative example of the present invention carried out according to the flow shown in FIG. 3 will be described. Flow A was used in the examples of the present invention, and flows B and C1 were used in the comparative examples.

原水は電子工業より流出する排水(F含有量40〜50
℃)を用い、それぞれの方式に1′/8で通水した。
The raw water is wastewater discharged from the electronics industry (F content 40-50
℃), and water was passed through each method at a rate of 1'/8.

フローAでは内径7crrL1長さ200 ctnのカ
ラム(反応槽)に直径0.2〜0.3Bの粒状蛍石を高
さ100 cm充填(容量4.1 e) t、た。原水
は反応槽2流出水に消石灰400 ”/(3を添加した
循環水と1=1で混合され、反応槽(カラム)の下部よ
シ槽内に流入させた。さらに反応槽の下部よp 30 
cmの位置に消石灰を300 ”10注入し、2ケ月間
連続通水実験を行った(実験−1)。
In flow A, a column (reaction tank) with an inner diameter of 7 crrL and a length of 200 ctn was filled with granular fluorite with a diameter of 0.2 to 0.3 B to a height of 100 cm (volume 4.1 e). The raw water was mixed with circulating water containing 400"/3 of slaked lime added to the reaction tank 2 outflow water at a ratio of 1=1, and was allowed to flow into the lower part of the reaction tank (column). 30
Slaked lime was injected at a position of 300 cm, and a continuous water flow experiment was conducted for 2 months (Experiment-1).

次に前記実験終了後、反応槽内に消石灰を直接注入する
ことは中止し、反応槽流出水に消石灰700 ”/6を
添加した以外は実験−1と同様に1ケ月間連続通水実験
を行った(実験−2)。
Next, after the above experiment was completed, we stopped directly injecting slaked lime into the reaction tank, and conducted a continuous water flow experiment for one month in the same manner as in Experiment 1, except that slaked lime 700"/6 was added to the reaction tank outflow water. (Experiment-2).

さらに、前記実験終了後反応槽流出水に消石灰を添加す
ることは中止し、反応槽内の下部より30備の位置に消
石灰700■/e注入した以外は実験−1と同様に1ケ
月間連続通水実験を行った(実験−3)。
Furthermore, after the experiment was completed, the addition of slaked lime to the reaction tank outflow water was stopped, and 700 μ/e of slaked lime was injected into the reaction tank at a position 30 minutes from the bottom. A water flow experiment was conducted (Experiment-3).

フローBは内径10crn高さ200 cmOカラムに
直径0.2〜0.3Bの粒状蛍石を高さ100crIL
充填(容量8.31 ) した。原水は消石灰700 
”7g添加し反応槽下部から通水速度120m/hrで
通水した。
Flow B is a column with an inner diameter of 10 crn and a height of 200 cm.
It was filled (volume 8.31). Raw water is slaked lime 700
7g was added and water was passed from the bottom of the reaction tank at a water flow rate of 120 m/hr.

フロー〇は原水を有効容量201の攪拌槽に導入し10
0〜200メツシユに粉砕した蛍石4.1eを懸濁させ
連続的に攪拌させた槽内(回転数100〜150 r、
p、m >に30分間滞留するように連続通水実験を行
った。
Flow ○ introduces raw water into a stirring tank with an effective capacity of 201.
In a tank in which fluorite 4.1e crushed into 0 to 200 meshes was suspended and continuously stirred (rotation speed 100 to 150 r,
A continuous water flow experiment was conducted so that the water remained at > p, m for 30 minutes.

以上の処理条件で実験を行なった結果を表−1に示す。Table 1 shows the results of experiments conducted under the above processing conditions.

表 −1 本願発明の実施においては、いずれの方式においても処
理水のフッ素濃度は安定して10 ”/6以下に維持で
きた。
Table 1 In implementing the present invention, the fluorine concentration of the treated water was stably maintained at 10''/6 or less in all methods.

またSSの発生量も20℃g以下であり、比較例に比べ
て著しく低減できた。本願発明の実施の中ではカルシウ
ム剤である消石灰を循環水と反応槽内に分けて注入する
方式が最も侵れていることが判明した。
Further, the amount of SS generated was 20° C.g or less, which was significantly reduced compared to the comparative example. In the implementation of the present invention, it has been found that the method in which slaked lime, which is a calcium agent, is separately injected into the circulating water and the reaction tank is the most destructive.

一方ンローBによる比較例は処理水のフッ素濃度を9〜
12−に低減させることはできるが反面充填層に短期間
で目詰りが起とシ、逆洗頻度が1回/12時間通水を必
要とした。この逆洗により反応槽内に捕捉されたSSが
系外に流出しこのためSS発生量が40〜50″騎とな
シ高くなった。またフロー〇による比較例においては本
願発明に比較して処理水質も悪く、SS発生量も多かっ
た。
On the other hand, in the comparative example using Nro B, the fluorine concentration of the treated water was 9 to 9.
Although it was possible to reduce the amount to 12-1, the packed bed became clogged in a short period of time, and the backwashing frequency required 1 time/12 hours of water flow. Due to this backwashing, the SS trapped in the reaction tank flowed out of the system, resulting in an increase in the amount of SS generated by 40 to 50". Also, in the comparative example with flow 〇, compared to the present invention, The quality of the treated water was poor, and the amount of SS generated was large.

実施例2 実施例1における原水と同じものを用い、実施例1にお
ける本願発明の処理フローAを用いて同様の連続通水実
験を行った。たソ本実験におけるカルシウム剤の薬注は
反応槽流出水に消石灰4001、反応槽下部より30c
mの位置に石コウ(CaSO3・2 H20)を注入し
た。石コウの注入は処理水の一部をとってその濃度を検
知し、そのCa濃度を400♂l/l となるように注
入ポンプの制御を行った。
Example 2 Using the same raw water as in Example 1, a similar continuous water flow experiment was conducted using the treatment flow A of the present invention in Example 1. In this experiment, slaked lime 4001 was added to the reaction tank outflow water, and 30 c of calcium was added from the bottom of the reaction tank.
Gypsum (CaSO3.2H20) was injected at position m. When injecting gypsum, a portion of the treated water was taken, its concentration was detected, and the injection pump was controlled so that the Ca concentration was 400♂l/l.

この結果原水フッ素濃度40〜50 ”/6に対しで、
処理水フッ素濃度を6〜81に維持出来だ。
As a result, for raw water fluorine concentration of 40-50''/6,
The fluorine concentration in treated water can be maintained between 6 and 81.

SS発生量は8〜12シgとなった。The amount of SS generated was 8 to 12 shg.

実施例3 実施例1の装置を5基製作し、排水をそれぞれ17/8
流せるようにした各カラムにそれぞれ粒径0.2〜0.
4Bの粒状の蛍石、ヨルダン産リン鉱石、砂にフン化カ
ルシウムを担持したもの、大理石、砂にフッ化マグネシ
ウム担持したもの、を充填し、実施例1の条件で通水を
行った。各沢材は一定期間ごとに抜き出し重量を測定し
、F材の肥大速度をめた。
Example 3 Five units of the apparatus of Example 1 were manufactured, and the drainage was 17/8 each.
Particle sizes of 0.2-0.
4B granular fluorite, Jordanian phosphate rock, sand carrying calcium fluoride, marble, and sand carrying magnesium fluoride were filled, and water was passed under the conditions of Example 1. Each swamp material was extracted at regular intervals and its weight was measured to determine the expansion rate of material F.

この肥大速度はフッ化カルシウムの固定速度と同一と考
えた。処理結果を図−4に示す。
This hypertrophy rate was considered to be the same as the fixation rate of calcium fluoride. The processing results are shown in Figure 4.

図−4に示すようにCa、Fを含有する蛍石、ヨルダン
産リン鉱石、フッ化カルシウムを担持した ′砂は、肥
大速度(フッ素を固定する速度に対応する)が90g/
8以上と良好でめった。一方炭酸カルシウムを主成分と
する大理石やフッ化マグネシウムを担持した砂は肥大速
度が著しぐ低かった。
As shown in Figure 4, the sand loaded with fluorite containing Ca and F, Jordanian phosphate rock, and calcium fluoride has an enlargement rate (corresponding to the rate of fixing fluorine) of 90 g/
A score of 8 or higher was good and rare. On the other hand, marble containing calcium carbonate as a main component and sand supporting magnesium fluoride had a significantly slow enlargement rate.

実施例4 実施例1のフローAに於て、通水速度、接触時間を一定
としたま\、循環比を0,5〜5に変化させて、循環比
の影響を調べた。結果を図−5に示す。
Example 4 In Flow A of Example 1, the influence of the circulation ratio was investigated by changing the circulation ratio from 0.5 to 5 while keeping the water flow rate and contact time constant. The results are shown in Figure 5.

図に示すように循環比を1より小さく、又4よシ大きく
すると処理水のフッ素濃度が大巾に悪化した。
As shown in the figure, when the circulation ratio was made smaller than 1 or made larger than 4, the fluorine concentration of the treated water deteriorated significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明の実施態様の装置を示す。 第2図は第1図の装置にCa濃度連続計測装置を附設し
た態様を示す。 第3図は本願発明の実施例と比較例のフローの態様を示
す。 第4図は戸材の種類と肥大化速度との関係を示す。 第5図は循環水量と原排水水量との比率と処理水のフッ
素濃度との関係を示す。 1 ・・フッ素含有排水導入管 2・・・循環水導入管
3・・・消石灰 4・・・P材(カルシウム、5・・・
反応槽 フッ素含有固体粒子)6・・・処理水 8・・
・処理水採水管9・・・Ca濃度連続計測記録装置 代理人 弁理士 塩 崎 正 広 笥 l/27 第 3 m 第 4 図 斥東7ヅ奪濃崖 (M9/I) 第 5 図
FIG. 1 shows an apparatus according to an embodiment of the present invention. FIG. 2 shows an embodiment in which a Ca concentration continuous measuring device is added to the device shown in FIG. 1. FIG. 3 shows a flow pattern of an example of the present invention and a comparative example. Figure 4 shows the relationship between the type of door material and the rate of enlargement. Figure 5 shows the relationship between the ratio of the amount of circulating water to the amount of raw waste water and the fluorine concentration of the treated water. 1... Fluorine-containing wastewater introduction pipe 2... Circulating water introduction pipe 3... Slaked lime 4... P material (calcium, 5...
Reaction tank Fluorine-containing solid particles) 6... Treated water 8...
- Treated water sampling pipe 9...Ca concentration continuous measurement recording device Tadashi Shiozaki, Patent Attorney, Hirochan l/27 3rd m 4th Figure Higashi 7zu Uino Cliff (M9/I) Figure 5

Claims (1)

【特許請求の範囲】 1 フッ素含有排水をカルシウム、フッ素を含有する固
体粒子を充填した反応槽に導入して処理する方法におい
て、前記排水と循環返送せしめた反応槽流出水の一部を
、反応槽の下部から導入し、該反応槽内の粒状固体を流
動化させながら上向流に通水すると共に、前記反応槽流
出水中の循環返送系路及び又は反応槽内に直接カルシウ
ム剤を注入して処理することを特徴とするフッ素含有排
水の処理方法。 2 前記カルシウム剤の注入制御を、反応流出水中のカ
ルシウム量を連続的に測定しながら行なう特許請求の範
囲第1項記載の方法。 3 前記カルシウム、フッ素を含有する粒状固体が蛍石
および又はリン鉱石である特許請求の範囲第1項又は第
2項記載の方法。
[Scope of Claims] 1. In a method for treating fluorine-containing wastewater by introducing it into a reaction tank filled with solid particles containing calcium and fluorine, a part of the reaction tank effluent that is circulated and returned to the wastewater is subjected to a reaction. Water is introduced from the bottom of the tank and flows upward while fluidizing the granular solids in the reaction tank, and a calcium agent is directly injected into the circulation return system path in the reaction tank effluent and/or into the reaction tank. 1. A method for treating fluorine-containing wastewater, the method comprising: 2. The method according to claim 1, wherein the injection of the calcium agent is controlled while continuously measuring the amount of calcium in the reaction effluent. 3. The method according to claim 1 or 2, wherein the granular solid containing calcium and fluorine is fluorite and/or phosphate rock.
JP6388484A 1984-03-30 1984-03-30 Treatment of fluorine-containing waste water Granted JPS60206485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6388484A JPS60206485A (en) 1984-03-30 1984-03-30 Treatment of fluorine-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6388484A JPS60206485A (en) 1984-03-30 1984-03-30 Treatment of fluorine-containing waste water

Publications (2)

Publication Number Publication Date
JPS60206485A true JPS60206485A (en) 1985-10-18
JPS646832B2 JPS646832B2 (en) 1989-02-06

Family

ID=13242155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6388484A Granted JPS60206485A (en) 1984-03-30 1984-03-30 Treatment of fluorine-containing waste water

Country Status (1)

Country Link
JP (1) JPS60206485A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676727A1 (en) * 1991-05-24 1992-11-27 Hydro Azote Process for the treatment and recycling of scrubbing water for fluorine-laden gases
JP2001047062A (en) * 1999-08-09 2001-02-20 Kurita Water Ind Ltd Treatment of leachate from landfill site
JP2003225677A (en) * 2002-02-06 2003-08-12 Japan Organo Co Ltd Method for treating drainage containing fluorine and hydrogen peroxide
JP2005021855A (en) * 2003-07-02 2005-01-27 Japan Organo Co Ltd Crystallization method of silicon/fluorine-containing wastewater
JP2006007010A (en) * 2004-06-22 2006-01-12 Japan Organo Co Ltd Crystallization treatment method of fluorine-containing water
JP2007137739A (en) * 2005-11-22 2007-06-07 Central Glass Co Ltd METHOD FOR RECOVERING CaF2
JP2008073690A (en) * 2007-10-24 2008-04-03 Matsushita Environment Airconditioning Eng Co Ltd Treatment method and apparatus of fluorine-containing waste water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676727A1 (en) * 1991-05-24 1992-11-27 Hydro Azote Process for the treatment and recycling of scrubbing water for fluorine-laden gases
JP2001047062A (en) * 1999-08-09 2001-02-20 Kurita Water Ind Ltd Treatment of leachate from landfill site
JP2003225677A (en) * 2002-02-06 2003-08-12 Japan Organo Co Ltd Method for treating drainage containing fluorine and hydrogen peroxide
JP2005021855A (en) * 2003-07-02 2005-01-27 Japan Organo Co Ltd Crystallization method of silicon/fluorine-containing wastewater
JP2006007010A (en) * 2004-06-22 2006-01-12 Japan Organo Co Ltd Crystallization treatment method of fluorine-containing water
JP2007137739A (en) * 2005-11-22 2007-06-07 Central Glass Co Ltd METHOD FOR RECOVERING CaF2
JP2008073690A (en) * 2007-10-24 2008-04-03 Matsushita Environment Airconditioning Eng Co Ltd Treatment method and apparatus of fluorine-containing waste water
JP4485562B2 (en) * 2007-10-24 2010-06-23 パナソニック環境エンジニアリング株式会社 Method and apparatus for treating fluorine-containing wastewater

Also Published As

Publication number Publication date
JPS646832B2 (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US5895576A (en) Method and apparatus for wastewater treatment by chemical reaction of reactive filler and propagated microorganisms
US4721569A (en) Phosphorus treatment process
EP0698579A2 (en) Apparatus and method for treatment of waste water and/or exhaust gases containing fluorine and surface active agents
Shimamura et al. Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system
JPS60206485A (en) Treatment of fluorine-containing waste water
JP2005246249A (en) Method for recovering phosphorus and its apparatus
JPS6331593A (en) Removal of phosphate ion in water
JPH0256955B2 (en)
KR100566761B1 (en) Method and device for treating manganese containing water
JPS6317513B2 (en)
JPH0130554B2 (en)
JPH02993B2 (en)
JPH04305295A (en) Biological treating method and device for organic acidic waste water
JPS648597B2 (en)
JPS61216795A (en) Treatment of phosphorus-containing waste water
JPS61271087A (en) Treatment of waste water containing phosphate
JP2005246318A (en) Method and apparatus for treating fluorine-containing wastewater
JPS5867396A (en) Removing method for nitrogen and phosphorus in waste water
JPS5827696A (en) Removal of nitrogen and phosphorus in waste water
JPS62262795A (en) Treatment of low-concentration organic waste water
JPH0121038Y2 (en)
JP2008073690A (en) Treatment method and apparatus of fluorine-containing waste water
JPS648598B2 (en)
JPH10216740A (en) Treatment of fluorine-containing waste water
JPS59199096A (en) Treatment of waste water containing phosphoric acid