JPS6020578A - Insulated gate semiconductor device and manufacture thereof - Google Patents

Insulated gate semiconductor device and manufacture thereof

Info

Publication number
JPS6020578A
JPS6020578A JP12763883A JP12763883A JPS6020578A JP S6020578 A JPS6020578 A JP S6020578A JP 12763883 A JP12763883 A JP 12763883A JP 12763883 A JP12763883 A JP 12763883A JP S6020578 A JPS6020578 A JP S6020578A
Authority
JP
Japan
Prior art keywords
drain
source
substrate
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12763883A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
健治 高橋
Yasunobu Tanizaki
谷崎 泰信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12763883A priority Critical patent/JPS6020578A/en
Publication of JPS6020578A publication Critical patent/JPS6020578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To improve high-frequency properties fT, saturation properties and etc, by forming a thick oxide film between a drain terminal and a gate electrode by high-pressure oxidation and by forming the p<+> type region of the same conductive type as the substrate right under the channel part. CONSTITUTION:By forming a thick insulating film 8 of about 1mum thick between source and drain terminals and a gate electrode 5 by selective oxidation, the capacitance of the gate and drain CGD is reduced thereby improving fT. Furthermore, by forming the p<+> type buried region 9 of higher concentration than that of the substrate's conductive type in the p<-> type semiconductor substrate right under the channel part by ion implantation, e.g. of boron, a depletion layer 7 extends as shown by the broken line when a gate voltage VG is applied, so as to restrain a punch-through and to reduce the saturation properties which is peculiar to a short channel. At this time, the source and drain current flows in ID direction designated by the arrow through the channel part into the drain.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は絶縁ゲート電界効果トランジスタ(MOSFE
T)を有する半導体装置のショート(短)チャネル化技
術に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an insulated gate field effect transistor (MOSFE).
This invention relates to short channel technology for semiconductor devices having T).

メモリの高密度化、微細化に伴い、MQSFETにおい
てショート・チャネル化がすすみ、ゲート・ドレイン容
量増大、■th低下あるいはパンチスルーなどとショー
ト、チャネル効果が問題となっている。
With the increasing density and miniaturization of memories, short channels in MQSFETs are progressing, and short and channel effects such as increased gate-drain capacitance, decreased th, and punch-through have become problems.

第1図にプレーナ型のnチャネルMQSFETが示され
、1はpfisi基体、2はソースn+型領域、3はド
レインn1型領域、4はゲート絶縁膜、5はゲート電極
となる導体(金属又はポ1Jsi)層であって、ゲート
電圧■。が印加される。ソース・ドレイン表面にA、l
アルミニウム)電極S。
A planar type n-channel MQSFET is shown in FIG. 1Jsi) layer with gate voltage ■. is applied. A, l on the source/drain surface
aluminum) electrode S.

Dが設けられる。D is provided.

このよりな4昔造のMQSFETにおいて、チャネル長
しが2μm以下であるとすると、ドレイン電圧VDを大
きくしていくと、ドレイン端の反転層がなく、 1xす
、空乏層のみができる状態となる。
Assuming that the channel length of this 4-year-old MQSFET is 2 μm or less, as the drain voltage VD is increased, there will be no inversion layer at the drain end, and only a 1x depletion layer will be formed. .

ツレで、ドレインに接する絶縁膜4が薄い(500〜8
00k)ことによりゲート・ドレイン間容量C6Dが太
き(、したがって周波数特性fTを大きくとることが困
難である。又、ドレイン端での電界集中により降伏電圧
BvDsが低下し、vTが低下する。さらにゲート電圧
印加によって空乏層7が第1図に破線で示すような形に
伸びてパンチスルーが起りやすく、十分な飽和特性が得
られない。すなわち、この場合第2図において破線で示
すような■DB ’8D特性を生じることになった。
Due to distortion, the insulating film 4 in contact with the drain is thin (500 to 8
00k), the gate-drain capacitance C6D is large (therefore, it is difficult to obtain a large frequency characteristic fT. Also, due to the electric field concentration at the drain end, the breakdown voltage BvDs decreases, and vT decreases. When the gate voltage is applied, the depletion layer 7 expands into the shape shown by the broken line in FIG. 1, and punch-through tends to occur, making it impossible to obtain sufficient saturation characteristics.In other words, in this case, the depletion layer 7 expands into the shape shown by the broken line in FIG. This resulted in DB'8D characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、上記したMQSFETに
おけるショート・チャネル効果を低減するためのもので
あって、すなわち、ショート・チャネルMO8FETに
おいてfTを向上し、降伏電圧を高めるとともに飽和特
性を改善することにある。
An object of the present invention is to reduce the short channel effect in the above-mentioned MQSFET, that is, to improve fT, increase the breakdown voltage, and improve the saturation characteristics in the short channel MO8FET. It is in.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、MQSFETにおいて、チャネル部直下の基
体内にこの基体(たとえばp−型)と同導電型高濃度(
たとえばp+型)の埋込領域を形成することによって空
乏層のパンチスルーを抑えるようにし、又、ゲートが形
成された絶縁膜の少なくともドレインと接する部分を選
択酸化による厚膜部とすることにより、ゲート・ドレイ
ン容量を低減し、もづてショートチャネル効果の低減を
図ったものである。
That is, in an MQSFET, there is a high concentration (for example, p-type) and the same conductivity type in the substrate directly under the channel part.
For example, by forming a p+ type buried region to suppress the punch-through of the depletion layer, and by making at least the portion of the insulating film in which the gate is formed, which is in contact with the drain, a thick film portion by selective oxidation. This is intended to reduce the gate/drain capacitance and thereby reduce the short channel effect.

〔実施例〕〔Example〕

第3図は本発明の一実施例であって、チャネル長2μm
のnチャネfivMQsFETの原理的構造を示す断面
図である。
FIG. 3 shows an embodiment of the present invention, with a channel length of 2 μm.
FIG. 2 is a cross-sectional view showing the basic structure of an n-channel fivMQsFET.

同図における構成部分であって前掲第1図における構成
部分と共通する部分は、第1図と同一指示番号記号が用
いられる。
The same designation numbers and symbols as in FIG. 1 are used for components in this figure that are common to those in FIG. 1 above.

この実施例では、ソース・ドレイン端(少なくともドレ
イン端)とゲート電極5との間に選択酸化による1μ!
n程度の厚膜の絶縁膜8を形成することにより、ゲート
・ドレイン容量CGDを低減し、もってfTを向上させ
る。
In this embodiment, the gap between the source/drain end (at least the drain end) and the gate electrode 5 is 1 μm by selective oxidation.
By forming the insulating film 8 with a thickness of about n, gate-drain capacitance CGD is reduced, thereby improving fT.

さらに、この実施例では、チャネル部直下のp−型半導
体基体内に基体の導電型よりも高濃度のp+型型埋領領
域9たとえばB(ボロン)のイオン打込みにより形成す
ることにより、ゲート電圧VG印加時空乏層7が同図の
破線で示す形に伸びて、パンチスルーな抑制してシミー
トチャネルに特有の不飽和特性を低減する。このときの
ソース・ドレイン電流は、矢印■。方向にそってチャネ
ル部を通ってドレインに流れる。
Furthermore, in this embodiment, a p+ type buried region 9 having a higher concentration than the conductivity type of the base material is formed in the p- type semiconductor substrate directly under the channel portion by ion implantation of B (boron), thereby increasing the gate voltage. When VG is applied, the depletion layer 7 extends in the shape shown by the broken line in the same figure, suppressing punch-through and reducing the unsaturated characteristics peculiar to the cimit channel. The source/drain current at this time is indicated by the arrow ■. flows along the direction through the channel portion to the drain.

なお、点線7′はp+型領領域9形成しない場合の空乏
層ののびの形態を示し、ショートチャネル時に同図の矢
印■。′で示す電流成分が無視することができず、第2
図の破線で示す分のリーク特性となる。この■。成分は
、空乏層の断面積に比例するものである。実施例で説明
した本発明によれば空乏層のパンチスルーがおさえられ
ることでI、/成分が低減される。
Note that the dotted line 7' indicates the form of the depletion layer in the case where the p+ type region 9 is not formed, and is indicated by the arrow ■ in the figure when a short channel is formed. ′ cannot be ignored, and the second
The leak characteristics are shown by the broken line in the figure. This ■. The component is proportional to the cross-sectional area of the depletion layer. According to the present invention described in the embodiments, punch-through of the depletion layer is suppressed, thereby reducing the I,/component.

第4図〜第8図は、本発明の一実施例であってエンハン
スモードnチャネルMO8FETの製造プロセスを示す
工程断面図である。各工程は下記のように行われる。
FIGS. 4 to 8 are process cross-sectional views showing the manufacturing process of an enhanced mode n-channel MO8FET, which is an embodiment of the present invention. Each step is performed as follows.

(1)p−型Si基体(サブストレート)1の−生表面
上に形成したS i B N4(シリコン窒化物)膜1
0をマスクとしてAs (ヒフ4)+P(リン)等を高
濃度イオン打込みし拡散することによりn+型領領域2
3を、ソース・ドレインとして形成する。
(1) S i B N4 (silicon nitride) film 1 formed on the raw surface of p-type Si substrate 1
By implanting high-concentration ions of As (Hif 4) + P (phosphorus), etc. using 0 as a mask and diffusing them, the n+ type region 2 is formed.
3 is formed as a source/drain.

(第4図)。(Figure 4).

t21 Si、N4膜10を取り除き、口1型領域2.
3上に新たに形成したSi、N4膜11をマスクとして
n+型領領域はさまれた基体表面に酸化膜12を通して
低濃度にAs等をイオン打込みしチャネル部となる部分
にxl−型層13を形成する(第5図X(3) 前記S
i3N4膜11を取り除き、新たにS i3N。
t21 The Si, N4 film 10 is removed and the mouth 1 type region 2.
Using the Si, N4 film 11 newly formed on 3 as a mask, ions of As or the like are implanted at a low concentration through the oxide film 12 onto the surface of the substrate between the n+ type regions, and an xl- type layer 13 is formed in the part that will become the channel part. (Fig. 5 X (3))
Remove the i3N4 film 11 and add new Si3N.

膜14を形成しSi基体の一部を窓開した状態で81表
面を0.5μm程度エッチした後高圧酸化を行なって上
記窓開部分のSiを選択酸化し、厚さ1μm程度の厚膜
酸化膜(S i02 ’11!’%)8を形成する。
After forming the film 14 and etching the surface of 81 by about 0.5 μm with a window open in a part of the Si substrate, high-pressure oxidation is performed to selectively oxidize the Si in the window open area to form a thick film oxidation with a thickness of about 1 μm. A film (S i02 '11!'%) 8 is formed.

この厚い酸化flu 8は第6図に示すようにドレイン
側においてはゲートとの境界部(n+型領領域3チャネ
ルn−型層13との境)に形成される力t、ソース側で
はn+型領領域2内側にくるように形成される。
As shown in FIG. 6, this thick oxidized flu 8 is caused by a force t formed at the boundary with the gate (border with the n+ type region 3 channel n- type layer 13) on the drain side, and an n+ type on the source side. It is formed so as to be located inside the territory area 2.

(4)ソース・ドレイン表面のSi、N4膜を取り除℃
・て酸化しフィールド酸化膜15を形成する(第7図)
(4) Remove the Si and N4 films on the source and drain surfaces ℃
・Oxidize to form field oxide film 15 (FIG. 7)
.

(5)チャネル部上のSi”N4膜を取り除き、表面エ
ッチ後ゲート酸化を行りてゲート絶縁膜(厚さ800A
)を形成する。この後、ゲート絶縁膜4を通してBイオ
ン打込みし、チャネル部となるn−型層13直下のSi
基体内に深く高濃度に導入したBをアニールにより拡散
して第8図に示すようにp+型領領域9高圧酸化膜で囲
まれた領域内にセルファラインで形成する。
(5) Remove the Si''N4 film on the channel part, perform gate oxidation after surface etching, and remove the gate insulating film (thickness: 800A).
) to form. After that, B ions are implanted through the gate insulating film 4, and Si
B is introduced deeply into the substrate at a high concentration and is diffused by annealing to form a p+ type region 9 in a region surrounded by a high-pressure oxide film in a self-aligned manner as shown in FIG.

この後、ソース−ドレイン表面のコンタクトホトエッチ
を行いA感(アルミニウム)を蒸着しノくターニングす
ることにより第3図に示すような電極S、Dを有するn
チャネ、ryMQsFETを完成するO 第10図〜第14図は本発明の他の一実施例であって、
テプレツションモードnチャネyv M O5FETの
製造プロセスを示す工程断面図である。
After that, contact photoetching is performed on the source-drain surface, and A-type (aluminum) is deposited and then turned to form electrodes S and D as shown in FIG.
10 to 14 show another embodiment of the present invention,
FIG. 3 is a process cross-sectional view showing a manufacturing process of a depression mode n-channel YV MO5FET.

各工程は下記のように行われる。Each step is performed as follows.

(1) 第10図に示すようにp−型Si基体1の一主
表面上に薄℃□・酸化膜(sio、 l1ff、)’ 
2を介してナイトライド膜(Si、N、膜)14を形成
したものを用意する。
(1) As shown in FIG. 10, a thin ℃□・oxide film (sio, l1ff, )' is formed on one main surface of the p-type Si substrate 1.
A nitride film (Si, N, film) 14 formed thereon via 2 is prepared.

(2)第11図に示すようにホトレジスト処理により上
側のSi、N4膜14の一部を窓開し、P(リン)をイ
オン打込みしてSiQ、膜12を通してSi基体表面に
Pを導入しアニールすることによりn+型領領域16形
成する。
(2) As shown in FIG. 11, a part of the upper Si, N4 film 14 is opened by photoresist treatment, and P (phosphorus) is ion-implanted to introduce P into the Si substrate surface through the SiQ film 12. By annealing, an n+ type region 16 is formed.

+ (3151sN4膜をマスクにして高圧酸化を行ってn
型領域16の上に厚い酸化膜8を形成した後、第12図
に示すようにソース−ドレインとなる領域上にホトレジ
スト等によるマスク17を形成した状態で高濃度B(ボ
ロン)をイオン打込みしSiQ。
+ (N
After forming a thick oxide film 8 on the mold region 16, as shown in FIG. 12, high concentration B (boron) is ion-implanted with a mask 17 made of photoresist or the like formed on the region that will become the source-drain. SiQ.

膜12を通してp−型基体内に深くBを導入する。B is introduced deeply into the p-type substrate through the membrane 12.

(4)アニールすることによりp−型基板1内のBを拡
散してp+型領領域9形成する。この後、第13図に示
すようにSiをデポジットしてポリSi層18を形成し
、ホトエッチすることによりポリSiゲート18を形成
する。
(4) By annealing, B is diffused in the p − type substrate 1 to form a p + type region 9 . Thereafter, as shown in FIG. 13, Si is deposited to form a poly-Si layer 18 and photo-etched to form a poly-Si gate 18.

(5)厚い酸化膜8及びポリSiゲート18をマスクと
してP(リン)をイオン打込み、アニールして第14図
に示すように基体表面にn+型領領域23を拡散しセル
7アラインでソースlドレインを形成する。
(5) Using the thick oxide film 8 and poly-Si gate 18 as a mask, P (phosphorus) is ion-implanted and annealed to diffuse an n+ type region 23 on the substrate surface as shown in FIG. Form a drain.

この後、全面にPSG(リン・シリケートガラス)膜(
図示されない)を形成し、コンタクトホトエッチの後、
A[を蒸着しバター二/グすることによりnチャネルM
O8FETを完成する。
After this, PSG (phosphorus silicate glass) film (
(not shown) and after contact photoetch,
n-channel M by evaporating and buttering A[
Complete O8FET.

〔効果〕〔effect〕

以上実施例により説明した本発明によれば、下記の効果
が得られる。
According to the present invention explained in the examples above, the following effects can be obtained.

(1) ソース・ドレイン端、又は少なくともドレイン
端とゲート電極との間に高圧酸化による厚い酸化膜を形
成することによりゲート・ドレイ/容量を小さくするこ
とができ高周波特性fTを向上することができる。
(1) By forming a thick oxide film by high-pressure oxidation between the source/drain end, or at least between the drain end and the gate electrode, the gate/drain/capacitance can be reduced and the high frequency characteristics fT can be improved. .

(2)チャネル部直下に基体と同じ導電型のp+型領領
域形成したことにより、空乏層のバンチスルーを抑え、
飽和特性を向上できる。
(2) By forming a p+ type region of the same conductivity type as the substrate directly under the channel part, bunch-through of the depletion layer is suppressed,
Saturation characteristics can be improved.

(3) ソース−ドレイン端とゲート電極との間に形成
した厚膜酸化膜をマスクとして基体内深く不純物を導入
することにより、チャネル部直下に基体と同じ導電型高
濃度領域をセルファラインで形成することかでき、ショ
ートチャネルMO8FETであってショートチャネル効
果を低減することができる。第9図はゲート長りとソー
ス・ドレイン電圧■D8との関係を示し、実線はチャネ
ル下にp+領領域形成する本発明のMQ S F ET
の場合、破腺はチャネル下にp+領領域形成しない場合
のVD8曲線を示す。
(3) By introducing impurities deep into the substrate using the thick oxide film formed between the source-drain end and the gate electrode as a mask, a high concentration region of the same conductivity type as the substrate is formed directly under the channel region using self-line. It is a short channel MO8FET and can reduce the short channel effect. FIG. 9 shows the relationship between gate length and source/drain voltage D8, and the solid line represents the MQ SFET of the present invention in which a p+ region is formed under the channel.
In this case, the gland shows a VD8 curve when no p+ region is formed under the channel.

(4)チャネル部直下に基体と同じ導電型のp4−型領
域を形成したことより、この部分の比抵抗が低下し、降
伏電圧を向上できる。
(4) Since a p4-type region of the same conductivity type as the substrate is formed directly under the channel portion, the specific resistance of this portion is lowered and the breakdown voltage can be improved.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor.

〔利用分野〕[Application field]

本発明は、ショートチャネルMQSFETを有するIC
(LSI)の全てに適用でき、特にメモリ、MQSオペ
アンプ用のIC(LSI)に応用して有効である。
The present invention provides an IC with a short channel MQSFET.
(LSI), and is particularly effective when applied to ICs (LSI) for memory and MQS operational amplifiers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はショートチャネルMO8FETの一例を示す断
面図である。 第2図はMQSFETにおけるショートチャネル効果を
示すvDs’8D特性を示す曲線図である。 第3図は本発明の一実施例であってショートチャネルM
O8FETの原理的構造を示す断面図である。 第4図〜第8図は本発明の一実施例であってMQSFE
Tの製造プロセスを示す工程断面図である。 第9図は、ショートチャネルMQSFBTにおけるゲー
ト長とソース・ドレイン電圧との関係を示す曲線図であ
る。 第10図〜第14図は、本発明の他の一実施例であって
、M□5FETの製造プロセスを示す工程断面図である
。 1・・・p型Si基体、2・・・ソースn+型領域、3
・・・ドレインn+型領域、4・・・ゲート絶縁膜(S
iQ。 膜)、5・・・ゲート電極、6・・・チャネル部、7・
・・空乏層、8・・・厚膜絶縁膜、9・・・高濃度p+
型型埋領領域10.11・・・Si、N4膜、12・・
・酸化膜、13・・・チャネル部n−型層、14・・・
Si、N、膜、15・・・フィールド酸化膜、16・・
・n+型領領域17・・・ホトレジストマスク、18・
・・ポリシリコンゲート。 第 1 図 第 2 図 D3 第 3 図 第 4 図 第 7 図
FIG. 1 is a cross-sectional view showing an example of a short channel MO8FET. FIG. 2 is a curve diagram showing vDs'8D characteristics showing the short channel effect in MQSFET. FIG. 3 shows an embodiment of the present invention, in which the short channel M
1 is a cross-sectional view showing the basic structure of an O8FET. FIG. 4 to FIG. 8 show an embodiment of the present invention, in which MQSFE
It is a process sectional view showing the manufacturing process of T. FIG. 9 is a curve diagram showing the relationship between gate length and source/drain voltage in a short channel MQSFBT. FIGS. 10 to 14 are process cross-sectional views showing the manufacturing process of an M□5FET, which is another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...p-type Si substrate, 2...source n+ type region, 3
...Drain n+ type region, 4...Gate insulating film (S
iQ. membrane), 5... gate electrode, 6... channel part, 7...
...Depletion layer, 8...Thick film insulating film, 9...High concentration p+
Mold buried region 10.11...Si, N4 film, 12...
- Oxide film, 13... Channel part n-type layer, 14...
Si, N, film, 15...field oxide film, 16...
・N+ type region 17...photoresist mask, 18・
...Polysilicon gate. Figure 1 Figure 2 Figure D3 Figure 3 Figure 4 Figure 7

Claims (1)

【特許請求の範囲】 1、半導体基体の一主表面に基体の導電型と逆の導電型
の領域がソース・ドレインとして形成され、このソース
・ドレイン間の半導体基体表面をチャネル部としてその
上に絶縁膜を介してゲート電極が形成された絶縁ゲート
電界効果トランジスタを有する半導体装置であって、上
記ゲート電極が形成された絶縁膜の少な(ともドレイン
と接する部分は選択酸化により形成された厚膜であると
ともに、チャネル部直下の半導体基体内に基体と同じ導
電型の高濃度埋込領域が形成されていることを特徴とす
る絶縁ゲート半導体装置。 2、半導体基体は低濃度p型シリコンからなり、ソース
・ドレインとなる半導体領域は高濃度n型領域である特
許請求の範囲第1項に記載の絶縁ゲート半導体装置。 3、半導体基体の一主表面に基体の導電型と逆の導電型
の領域をソース、ドレインとして形成する工程と、上記
ソース、ドレインにはさまれた基体の表面上に半導体酸
化膜を介してゲート電極を形成する工程とを含む絶縁ゲ
ート半導体装置の製造法であって、ゲートとソース、ド
レインとなる領域の間に選択酸化による厚膜酸化膜を形
成し、この厚膜酸化膜をマスクとしてソース・ドレイン
間の基体内に高濃度の不純物を導入し、基体と同じ導電
型の高濃度埋込領域を形成することを特徴とする絶縁ゲ
ート半導体装置の製造法。 4、上記厚膜酸化膜は半導体基体表面上に部分的に形成
した半導体窒化膜をマスクとして半導体基体表面の一部
を高圧酸化することにより選択的に形成する特許請求の
範囲第3項に記載の絶縁ゲート半導体装置の製造法。
[Claims] 1. A region having a conductivity type opposite to that of the substrate is formed on one main surface of a semiconductor substrate as a source/drain, and the surface of the semiconductor substrate between the source and drain is used as a channel portion on top of the main surface. A semiconductor device having an insulated gate field effect transistor in which a gate electrode is formed through an insulating film, wherein a portion of the insulating film on which the gate electrode is formed (in both cases, the portion in contact with the drain is a thick film formed by selective oxidation). An insulated gate semiconductor device characterized in that a heavily doped buried region of the same conductivity type as the base is formed in the semiconductor base directly under the channel portion. 2. The semiconductor base is made of low concentration p-type silicon. , the insulated gate semiconductor device according to claim 1, wherein the semiconductor regions serving as sources and drains are highly doped n-type regions. 3. A semiconductor substrate having a conductivity type opposite to that of the substrate on one main surface of the semiconductor substrate. A method for manufacturing an insulated gate semiconductor device, comprising the steps of forming regions as a source and drain, and forming a gate electrode on the surface of a base sandwiched between the source and drain via a semiconductor oxide film, the method comprising: , a thick oxide film is formed by selective oxidation between the gate and the regions that will become the source and drain, and using this thick oxide film as a mask, high concentration impurities are introduced into the substrate between the source and drain. A method for manufacturing an insulated gate semiconductor device characterized by forming a conductive type high concentration buried region. 4. The thick oxide film is formed on the semiconductor substrate using a semiconductor nitride film partially formed on the surface of the semiconductor substrate as a mask. 4. The method of manufacturing an insulated gate semiconductor device according to claim 3, wherein the insulated gate semiconductor device is selectively formed by high-pressure oxidation of a part of the surface.
JP12763883A 1983-07-15 1983-07-15 Insulated gate semiconductor device and manufacture thereof Pending JPS6020578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12763883A JPS6020578A (en) 1983-07-15 1983-07-15 Insulated gate semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12763883A JPS6020578A (en) 1983-07-15 1983-07-15 Insulated gate semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6020578A true JPS6020578A (en) 1985-02-01

Family

ID=14965044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12763883A Pending JPS6020578A (en) 1983-07-15 1983-07-15 Insulated gate semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6020578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374068U (en) * 1989-11-15 1991-07-25
US7301241B2 (en) * 2002-07-31 2007-11-27 Fujitsu Limited Semiconductor device for preventing defective filling of interconnection and cracking of insulating film

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374068U (en) * 1989-11-15 1991-07-25
US7301241B2 (en) * 2002-07-31 2007-11-27 Fujitsu Limited Semiconductor device for preventing defective filling of interconnection and cracking of insulating film
US7906851B2 (en) 2002-07-31 2011-03-15 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US7932609B2 (en) 2002-07-31 2011-04-26 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8410613B2 (en) 2002-07-31 2013-04-02 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped pattern
US8633594B2 (en) 2002-07-31 2014-01-21 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8633595B2 (en) 2002-07-31 2014-01-21 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8791576B2 (en) 2002-07-31 2014-07-29 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8829681B2 (en) 2002-07-31 2014-09-09 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8841775B2 (en) 2002-07-31 2014-09-23 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8847403B2 (en) 2002-07-31 2014-09-30 Fujitsu Semiconductor Limited Semiconductor device including two groove-shaped patterns
US8853861B2 (en) 2002-07-31 2014-10-07 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8872347B2 (en) 2002-07-31 2014-10-28 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8872352B2 (en) 2002-07-31 2014-10-28 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US8872353B2 (en) 2002-07-31 2014-10-28 Fujitsu Semiconductor Limited Semiconductor device having groove-shaped via-hole
US9082771B2 (en) 2002-07-31 2015-07-14 Fujitsu Semiconductor Limited Semiconductor device including two groove-shaped patterns that include two bent portions
US9105640B2 (en) 2002-07-31 2015-08-11 Fujitsu Semiconductor Limited Semiconductor device including two groove-shaped patterns
US9224690B2 (en) 2002-07-31 2015-12-29 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9224689B2 (en) 2002-07-31 2015-12-29 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9406613B2 (en) 2002-07-31 2016-08-02 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9406611B2 (en) 2002-07-31 2016-08-02 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9406612B2 (en) 2002-07-31 2016-08-02 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9406610B2 (en) 2002-07-31 2016-08-02 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9412698B2 (en) 2002-07-31 2016-08-09 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9412699B2 (en) 2002-07-31 2016-08-09 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9412697B2 (en) 2002-07-31 2016-08-09 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9412696B2 (en) 2002-07-31 2016-08-09 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9502353B2 (en) 2002-07-31 2016-11-22 Socionext Inc. Semiconductor device having groove-shaped via-hole
US9972531B2 (en) 2002-07-31 2018-05-15 Socionext Inc. Method of manufacturing a semiconductor device having groove-shaped via-hole
US10403543B2 (en) 2002-07-31 2019-09-03 Socionext Inc. Semiconductor device having groove-shaped via-hole

Similar Documents

Publication Publication Date Title
KR100752799B1 (en) Lateral thin-film soi device having a lateral drift region and method of making such a device
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
JP2001352057A (en) Semiconductor device and its manufacturing method
US4318216A (en) Extended drain self-aligned silicon gate MOSFET
JPH0575115A (en) Semiconductor device and manufacture thereof
KR960035908A (en) Manufacturing method of MOS field effect transistor
JP2002124671A (en) Semiconductor device and its manufacturing method
JPS6055665A (en) Manufacture of semiconductor device
CN1369903A (en) Method for mfg. silicon Mos field effect transistor on insulating layer
JPH0237777A (en) Vertical type field-effect transistor
JPS61263274A (en) Manufacture of semiconductor device
JPH07263693A (en) Preparation of fet and integration structure
JPS6020578A (en) Insulated gate semiconductor device and manufacture thereof
KR100257074B1 (en) Mosfet and method for manufacturing the same
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP2807718B2 (en) Semiconductor device and manufacturing method thereof
JPS6225457A (en) Manufacture of vertical semiconductor device
JPS6112390B2 (en)
JPH0342874A (en) Semiconductor device
JP2956538B2 (en) Method for manufacturing semiconductor device
JP2003318189A (en) Mosfet and its manufacturing method
JPS6367778A (en) Manufacture of semiconductor device
JPS63305566A (en) Semiconductor device and manufacture thereof
KR100260366B1 (en) Method for fabricating semiconductor device
KR0147255B1 (en) Method for manufacturing mosfet