JPS6020575B2 - Exhaust gas recirculation device for multi-cylinder internal combustion engines - Google Patents

Exhaust gas recirculation device for multi-cylinder internal combustion engines

Info

Publication number
JPS6020575B2
JPS6020575B2 JP52144678A JP14467877A JPS6020575B2 JP S6020575 B2 JPS6020575 B2 JP S6020575B2 JP 52144678 A JP52144678 A JP 52144678A JP 14467877 A JP14467877 A JP 14467877A JP S6020575 B2 JPS6020575 B2 JP S6020575B2
Authority
JP
Japan
Prior art keywords
cylinder
exhaust gas
valve
intake valve
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52144678A
Other languages
Japanese (ja)
Other versions
JPS5477828A (en
Inventor
益夫 天野
敏雄 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP52144678A priority Critical patent/JPS6020575B2/en
Publication of JPS5477828A publication Critical patent/JPS5477828A/en
Publication of JPS6020575B2 publication Critical patent/JPS6020575B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多気筒内燃機関の排気ガス再循環装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas recirculation device for a multi-cylinder internal combustion engine.

排気ガス中の有害成分NQを低減するための有効な方法
として排気ガスを再循環する方法が知られている。
A method of recirculating exhaust gas is known as an effective method for reducing the harmful component NQ in exhaust gas.

しかしながら、排気ガス再循環(以下、EGRと称す)
量を増量せしめると火炎の伝播速度が遅くなるため燃焼
速度が遅くなって安定した燃焼が得られないばかりでな
く、着火性が低下して場合によっては失火する場合もあ
る。排気ガスを再循環した場合に燃焼速度を増大させる
方法として燃焼室内に旋回流或いはスキッシュ流が発生
するように燃焼室、吸気弁、ピストン或は吸気管を配置
構成して燃焼速度を速めるようにした方法が知られてい
る。しかしながら、この種の方法を採用した内燃機関で
はEGR装置と旋回流或はスキッシュ流発生機構の双方
を具備しなければならないという欠点を有している。こ
のような欠点を除去するためにECRガスを直接燃焼室
内に噴出せしめて、この噴出EGRガスにより燃焼室内
に乱れを生ぜしめるようにした多気筒内燃機関が提案さ
れている。この多気筒内燃機関では各気筒内に夫々達通
する複数個のEGRガス供給枝通路を1個のEGRガス
供給共通通路に連結すると共に該枝通路内に夫々副吸気
弁を配設し、一対の気筒の各副吸気弁を一方の気筒が排
気行程で他方の気筒が吸気行程のとき同時に開弁して上
記他方の気筒内に排気ガスを噴出させ、それによって燃
焼室内に乱れを発生せしめるように構成されている。し
かしながら、吸気行程時に発生した乱れは排気行程末期
にはかなり減衰してしまうため燃焼過程中継続する乱れ
を発生させることが困難である。本発明は圧縮行程末期
に噴出した排気ガスにより燃焼過程時中継続する強力な
乱れを燃焼室内に発生させて燃焼速度を速め、それによ
ってトルク変動並びに失火することなく十分なN○xの
低減効果が得られるようにした多気筒内燃機関の排気ガ
ス再循環装置を提供することにある。
However, exhaust gas recirculation (hereinafter referred to as EGR)
If the amount is increased, the propagation speed of the flame becomes slower, which not only slows down the combustion speed and makes it impossible to obtain stable combustion, but also reduces the ignitability and may cause a misfire in some cases. A method of increasing the combustion rate when exhaust gas is recirculated is to arrange and configure the combustion chamber, intake valve, piston, or intake pipe so as to generate a swirling flow or squish flow within the combustion chamber to increase the combustion rate. The method is known. However, an internal combustion engine employing this type of method has the disadvantage that it must be equipped with both an EGR device and a swirl flow or squish flow generation mechanism. In order to eliminate these drawbacks, a multi-cylinder internal combustion engine has been proposed in which ECR gas is directly injected into the combustion chamber and the ejected EGR gas causes turbulence within the combustion chamber. In this multi-cylinder internal combustion engine, a plurality of EGR gas supply branch passages that respectively communicate with each cylinder are connected to one EGR gas supply common passage, and sub-intake valves are arranged in each of the branch passages. The auxiliary intake valves of the cylinders are simultaneously opened when one cylinder is in the exhaust stroke and the other cylinder is in the intake stroke to inject exhaust gas into the other cylinder, thereby causing turbulence in the combustion chamber. It is composed of However, since the turbulence generated during the intake stroke is considerably attenuated at the end of the exhaust stroke, it is difficult to generate turbulence that continues during the combustion process. The present invention generates strong turbulence in the combustion chamber that continues during the combustion process using the exhaust gas ejected at the end of the compression stroke, increasing the combustion speed, thereby achieving a sufficient N○x reduction effect without causing torque fluctuations or misfires. An object of the present invention is to provide an exhaust gas recirculation device for a multi-cylinder internal combustion engine, which provides the following.

以下、添付図面を参照して本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図に本発明に係る4気筒内燃機関の平面図を示す。FIG. 1 shows a plan view of a four-cylinder internal combustion engine according to the present invention.

第1図において1は機関本体、2は吸気マニホルド、3
は排気マニホルド、4a,4b,4c,4dは夫々、1
番気筒、2番気筒、3番気筒、4番気筒を示す。各気筒
4a,4b,4c,4dは夫々吸気弁5a,5b,5c
,5d並びに排気弁6a,6b,6c,6dを有する。
これら各気筒4a,4b,4c,4dは一方では各吸気
弁5a,5b,5c,5d並びに吸気ボート7a,7b
,7c,7dを介して吸気マニホルド2に連結され、他
方では各排気弁6a,6b,6c,6d並びに排気ボー
ト8a,8b,8c,8dを介して排気マニホルド3に
連結される。第3図は第1図の1番気筒4aの側面断面
図を示す。他の気筒4b,4c,4dについては1番気
筒4aと同様の構造を有するので特に図示しない。第3
図を参照すると、機関本体1はシリンダブロック10と
、シリンダブロック10内に形成されたシリンダボア1
1内を往復動するピストン12と、ガスケツト13を介
してシリンダブロツク10上に固緒されたシリンダヘツ
ド14とを具備し、ピストン頂面12aとシリンダヘッ
ド内壁14a間に1番気筒4aの燃焼室15が形成され
る。吸気弁5aのバルブステム上端部にはバルブリテー
ナ16が固定され、このバルブリテーナ16とシリンダ
ヘツド14間にバルブスプリング17が挿着される。吸
気弁5aはロッカーアーム18‘こより作動され、一方
この〇ッカーアーム18は機関クランクシャフト(図示
せず)に連結されかつクランクシャフトの1′2の回転
速度で回転するカムシャフト19により駆動される。シ
リンダへッド14内にはECR供給枝通路20aが形成
され、このEGR供給枝通路20aの燃焼室側開□端の
開閉制御をする副吸気弁21aがシリンダヘッド14内
に摺動可能に設けられる。
In Figure 1, 1 is the engine body, 2 is the intake manifold, and 3 is the engine body.
is the exhaust manifold, 4a, 4b, 4c, 4d are each 1
The number cylinder, the second cylinder, the third cylinder, and the fourth cylinder are shown. Each cylinder 4a, 4b, 4c, 4d has an intake valve 5a, 5b, 5c, respectively.
, 5d and exhaust valves 6a, 6b, 6c, and 6d.
Each of these cylinders 4a, 4b, 4c, 4d is connected to each intake valve 5a, 5b, 5c, 5d and each intake boat 7a, 7b.
, 7c, 7d to the intake manifold 2, and on the other hand to the exhaust manifold 3 via the respective exhaust valves 6a, 6b, 6c, 6d and exhaust boats 8a, 8b, 8c, 8d. FIG. 3 shows a side sectional view of the No. 1 cylinder 4a of FIG. 1. The other cylinders 4b, 4c, and 4d are not particularly illustrated because they have the same structure as the first cylinder 4a. Third
Referring to the figure, the engine body 1 includes a cylinder block 10 and a cylinder bore 1 formed in the cylinder block 10.
The combustion chamber of the first cylinder 4a is provided between the top surface 12a of the piston and the inner wall 14a of the cylinder head. 15 is formed. A valve retainer 16 is fixed to the upper end of the valve stem of the intake valve 5a, and a valve spring 17 is inserted between the valve retainer 16 and the cylinder head 14. The intake valve 5a is actuated by a rocker arm 18', which in turn is driven by a camshaft 19 connected to the engine crankshaft (not shown) and rotating at a rotational speed of 1'2 of the crankshaft. An ECR supply branch passage 20a is formed in the cylinder head 14, and an auxiliary intake valve 21a is slidably provided in the cylinder head 14 to control the opening and closing of the combustion chamber side open end of this EGR supply branch passage 20a. It will be done.

副吸気弁21aのバルブステム上端部にはバルブリテー
ナ22が固定され、このバルブリテーナ22とシリンダ
ヘツド14間にバルブスプリング23が挿着される。こ
の副吸気弁21aはロッカーアーム24を介してカムシ
ヤフト19により駆動される。また第4図に示すように
燃焼室15内には点火中全電極25が配置される。第1
図並びに第3図に示されるようにシリンダヘッド14の
外壁上に中空容器27が固着され、この中空容器27は
その内部に貯留室28を有する。第3図に示されるよう
にECRガス供給枝通路20aはこの貯留室28に連結
され、また第1図に示すように他の気筒のECRガス供
給枝通路20b,20c,20dも貯留室28内に連結
される。なお、第1図において2番気筒4b、3香気筒
4c、4番気筒4dの副吸気弁を夫々21b,21c,
21dで示す。第5図に各気筒の吸気弁「排気弁並びに
副吸気弁の開弁時期を示す。
A valve retainer 22 is fixed to the upper end of the valve stem of the sub-intake valve 21a, and a valve spring 23 is inserted between the valve retainer 22 and the cylinder head 14. This sub-intake valve 21a is driven by the camshaft 19 via the rocker arm 24. Further, as shown in FIG. 4, all electrodes 25 are arranged within the combustion chamber 15 during ignition. 1st
As shown in the drawings and FIG. 3, a hollow container 27 is fixed on the outer wall of the cylinder head 14, and this hollow container 27 has a storage chamber 28 therein. As shown in FIG. 3, the ECR gas supply branch passage 20a is connected to this storage chamber 28, and as shown in FIG. connected to. In addition, in FIG. 1, the auxiliary intake valves of the second cylinder 4b, the third aromatic cylinder 4c, and the fourth cylinder 4d are respectively 21b, 21c,
21d. FIG. 5 shows the opening timings of the intake valve, exhaust valve, and sub-intake valve of each cylinder.

第5図において縦軸は弁錫程を示し、機軸はクランク角
度を示す。また第5図において曲線A,B,C, Dは
各気筒4a,4b,4c,4dの排気弁6a,6b,6
c,6dの閥弁時期を示し、曲線B,F,G,H‘ま各
気筒の吸気弁5a,5b,5c,5dの開弁時期を示す
。更に曲線1,Jは1番気筒亀aの副吸気弁21aの開
弁時期を示し、曲線K,Lは2番気筒4bの副吸気弁2
1bの関弁時期を示し、曲線M,Nは3番気筒4cの副
吸気弁21cの関弁時期を示し、曲線○,Pは4番気筒
4dの副吸気弁21dの関弁時期を示す。なお、第5図
は点火順序が1−2−3−4の場合について示す。また
第5図において各気筒の圧縮行程を矢印で示す。第5図
から明らかなように各気筒の副吸気弁は1サイクルの間
に2回開弁することがわかる。
In FIG. 5, the vertical axis shows the valve height, and the machine axis shows the crank angle. Also, in FIG. 5, curves A, B, C, and D indicate the exhaust valves 6a, 6b, 6 of each cylinder 4a, 4b, 4c, and
Curves B, F, G, and H' indicate the opening timings of the intake valves 5a, 5b, 5c, and 5d of each cylinder. Further, curves 1 and J indicate the opening timing of the sub-intake valve 21a of the first cylinder 4b, and curves K and L indicate the opening timing of the sub-intake valve 21a of the second cylinder 4b.
1b, curves M and N show the valve timings of the auxiliary intake valve 21c of the third cylinder 4c, and curves ◯ and P show the valve timings of the auxiliary intake valve 21d of the fourth cylinder 4d. Note that FIG. 5 shows the case where the ignition order is 1-2-3-4. Further, in FIG. 5, the compression stroke of each cylinder is indicated by an arrow. As is clear from FIG. 5, the auxiliary intake valve of each cylinder opens twice during one cycle.

例えば1番気筒に注目すると曲線A,1で示されるよう
に排気行程のほぼ真中あたりで副吸気弁は開弁し、次い
で曲線Jに示されるように圧縮行程の末期に再び副吸気
弁が開弁することがわかる。このような副吸気弁の関弁
時期は他の気筒においても同様である。或る気筒が排気
行程にあるとその気筒の副吸気弁が開弁する。
For example, if we focus on the No. 1 cylinder, the auxiliary intake valve opens approximately in the middle of the exhaust stroke, as shown by curve A, 1, and then opens again at the end of the compression stroke, as shown by curve J. I know how to speak. The valve timing of the auxiliary intake valve is the same in other cylinders as well. When a certain cylinder is in the exhaust stroke, the auxiliary intake valve of that cylinder opens.

上述したように副吸気弁は排気行程のほぼ真中で開弁す
るが、このときの気筒内の排気ガス圧はかなり高圧とな
っている。従がつて、高圧の排気ガスはEGR供給枝通
路を介して貯留室28内に送り込まれ、その結果高圧の
排気ガスが貯留室28内に貯留される。次いで或る気筒
が圧縮行程末期に達すると前述したように副吸気弁が開
弁する。圧縮行程末期には気筒内の圧力はかなり高圧と
なっているが貯留室28内に貯留された排気ガス圧の方
がはるかに高く、従がつて副吸気弁が開弁すると排気ガ
スが貯留室28からEOR供給枝通路20a並びに副吸
気弁21aを介して高速度で燃焼室ーl5内に噴出し、
燃焼室15内の可燃混合気に強力な乱れを与える。この
ように圧縮行程末期に燃焼室15内に強力な乱れが発生
せしめられるのでこの乱れは燃焼過程中継競され、斯く
してEGRガスによるN○x低減効果を確保しつつ燃焼
速度が大中に速められる。また貯留室28内の排気ガス
EEはほぼ一定に保たれるため、各気筒に噴出する排気
ガスの流量並びに流速は互いに等しくなる。従がつて、
各気筒における燃焼速度がばらつくことがないのでトル
ク変動の発生が防止される。第6図から第8図に第3図
の別の実施例を示す。
As described above, the sub-intake valve opens approximately in the middle of the exhaust stroke, but the exhaust gas pressure in the cylinder at this time is quite high. Therefore, the high-pressure exhaust gas is sent into the storage chamber 28 through the EGR supply branch passage, and as a result, the high-pressure exhaust gas is stored in the storage chamber 28. Next, when a certain cylinder reaches the end of its compression stroke, the sub-intake valve opens as described above. At the end of the compression stroke, the pressure inside the cylinder is quite high, but the pressure of the exhaust gas stored in the storage chamber 28 is much higher, so when the sub-intake valve opens, the exhaust gas flows into the storage chamber. 28 into the combustion chamber-15 at high speed via the EOR supply branch passage 20a and the sub-intake valve 21a,
Strong turbulence is given to the combustible mixture in the combustion chamber 15. In this way, strong turbulence is generated in the combustion chamber 15 at the end of the compression stroke, and this turbulence is relayed during the combustion process, thereby increasing the combustion speed while ensuring the N○x reduction effect of EGR gas. Expedited. Further, since the exhaust gas EE in the storage chamber 28 is kept substantially constant, the flow rate and flow velocity of the exhaust gas ejected to each cylinder are equal to each other. Accordingly,
Since the combustion speed in each cylinder does not vary, torque fluctuations are prevented from occurring. 6 to 8 show other embodiments of the embodiment shown in FIG. 3.

なお、第6図から第8図において第3図と同様の構成要
素は同一の符号で示す。第6図を参照すると、シリンダ
ヘッド内壁14a上には水平壁30、一対の垂直壁31
,32並びに半円筒壁33によって郭成される淳章34
が形成され、副吸気弁21aの弁部がこの淳春34内に
露呈する。半円筒壁33は副吸気弁21aの弁部の周緑
に近接して配置され、従がつて副吸気弁21aが開弁し
たとき排気ガスは第7図において左側に形成される弁部
と弁座35間の開□を介して燃焼室15内に噴出する。
また第7図に示されるように溝34は燃焼室15の周辺
方向に延びるように形成されており、従がつてEGR供
給枝通路20aから副吸気弁21aを介して燃焼室15
内に噴出した排気ガスは、燃焼室15内に第7図におい
て矢印Zで示すような強力な旋回流を発生せしめる。こ
の旋回流は燃焼過程中継続せしめられるので燃焼速度は
大中に速められ、それによってEGRガスによるN○x
の抵減効果を確保しつつ安定した燃焼を得ることができ
る。なお、第6図に示す実施例では点火栓26の電極2
5を燃焼室15の頂点に配置することが好ましい。第9
図は第3図の更に別の実施例を示す。
In addition, in FIGS. 6 to 8, the same components as in FIG. 3 are indicated by the same reference numerals. Referring to FIG. 6, on the cylinder head inner wall 14a there is a horizontal wall 30 and a pair of vertical walls 31.
, 32 and a semi-cylindrical wall 33.
is formed, and the valve portion of the sub-intake valve 21a is exposed within this spring 34. The semi-cylindrical wall 33 is arranged close to the periphery of the valve part of the sub-intake valve 21a, so that when the sub-intake valve 21a opens, the exhaust gas flows between the valve part and the valve formed on the left side in FIG. It is ejected into the combustion chamber 15 through the opening □ between the seats 35.
Further, as shown in FIG. 7, the groove 34 is formed to extend in the peripheral direction of the combustion chamber 15, and is therefore connected to the combustion chamber 15 from the EGR supply branch passage 20a through the auxiliary intake valve 21a.
The exhaust gas ejected into the combustion chamber 15 generates a strong swirling flow as shown by arrow Z in FIG. Since this swirling flow is continued during the combustion process, the combustion speed is greatly increased, and the N○x generated by the EGR gas is thereby
It is possible to obtain stable combustion while ensuring a reduction effect. In the embodiment shown in FIG. 6, the electrode 2 of the spark plug 26
5 is preferably arranged at the top of the combustion chamber 15. 9th
The figure shows a further embodiment of FIG.

第9図において第3図と同様の構成要素は同一の符号で
示す。第9図を参照すると、シリンダヘッド14内に凹
所36が形成され、この凹所36内に畠8室要素37が
圧入される。この副室要素37内には副燃焼室38と蔓
通路39が形成され、この蓮通路39内に点火栓26の
電極25が配置される。この授施例では吸入行程時に吸
気弁5aを介して稀薄混合気が主燃焼室40内に導入さ
れる。次いで圧縮行程時、この稀薄混合気は蓮通路39
を介して副燃焼室38内に押込まれる。圧縮行程末期に
なると排気ガスが副吸気弁21aを介して主燃焼室40
内に噴出し、この頃出排気ガスによって主燃焼室40内
に強力な乱れが発生する。前述したようにこの乱れは燃
焼過程中継続する。次いで副燃焼室38内の可燃混合気
が点火栓26により着火されると火炎噴流が蓮通路39
から主燃焼室40内に噴出する。主燃焼室40内の可燃
混合気はこの火炎噴流により更に乱れを与えられかつ着
火される。このように第9図に示す実施例では副吸気弁
21aを介して噴出する排気ガスと蓮通路39から噴出
する火炎噴流の双方より燃焼過程時に主燃焼室40内の
可燃混合気には強力な乱れが与えられ、従がつて燃焼速
度は極めて速くなる。以上に述べたように、本発明によ
れば圧縮行程末期に排気ガスを気筒内に噴出することに
よって燃焼過程中継続する強力な乱れを発生せしめるこ
とができ、しかも各気筒に一様に排気ガスを供給するこ
とができるのでEORガスによるN○xの低減効果を確
保しつつ燃焼速度を速めてトルク変動並びに失火の生ず
ることのない安定した燃焼を得ることができる。
In FIG. 9, the same components as in FIG. 3 are designated by the same reference numerals. Referring to FIG. 9, a recess 36 is formed in the cylinder head 14, into which an eight-chamber element 37 is press-fitted. A sub-combustion chamber 38 and a tendon passage 39 are formed within the sub-chamber element 37, and the electrode 25 of the spark plug 26 is disposed within the lotus passage 39. In this embodiment, a lean air-fuel mixture is introduced into the main combustion chamber 40 via the intake valve 5a during the intake stroke. Then, during the compression stroke, this lean mixture flows through the lotus passage 39.
is pushed into the auxiliary combustion chamber 38 through the auxiliary combustion chamber 38. At the end of the compression stroke, exhaust gas flows into the main combustion chamber 40 via the auxiliary intake valve 21a.
At this time, strong turbulence occurs within the main combustion chamber 40 due to the emitted exhaust gas. As mentioned above, this turbulence continues throughout the combustion process. Next, when the combustible mixture in the sub-combustion chamber 38 is ignited by the spark plug 26, a jet of flame flows into the lotus passage 39.
from the main combustion chamber 40. The combustible mixture in the main combustion chamber 40 is further disturbed and ignited by this flame jet. As described above, in the embodiment shown in FIG. 9, both the exhaust gas ejected through the sub-intake valve 21a and the flame jet ejected from the lotus passage 39 have a strong effect on the combustible air-fuel mixture in the main combustion chamber 40 during the combustion process. Turbulence is imparted and the combustion rate therefore becomes extremely high. As described above, according to the present invention, by injecting the exhaust gas into the cylinder at the end of the compression stroke, it is possible to generate strong turbulence that continues during the combustion process, and moreover, the exhaust gas is uniformly distributed to each cylinder. Therefore, it is possible to increase the combustion speed while ensuring the effect of reducing N○x by the EOR gas, and to obtain stable combustion without torque fluctuations or misfires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の平面図、第2図は第1
図の側面図、第3図は第1図の側面断面図、第4図は第
3図のシリンダヘッドの底面図、第5図は吸気弁、排気
弁並びに副吸気弁の開弁時期を示す線図、第6図は第3
図の別の実施例の側面断面図、第7図は第6図のシリン
グヘッドの底面図、第8図は第6図の断面図、第9図は
第3図の更に別の実施例の側面断面図である。 4a,4b,4c,4d・・・気筒、5a,5b,5c
,5d・・・吸気弁、6a,6b,6c,6d・・・排
気弁、20a,20b,20c,20d…ECR供給枝
通路、21a,21b,21c,21d・・・劉吸気弁
、28…貯留室。 第−「図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図
FIG. 1 is a plan view of an internal combustion engine according to the present invention, and FIG.
3 is a side sectional view of FIG. 1, FIG. 4 is a bottom view of the cylinder head of FIG. 3, and FIG. 5 shows the opening timings of the intake valve, exhaust valve, and sub-intake valve. Line diagram, Figure 6 is the 3rd
7 is a bottom view of the shilling head of FIG. 6, FIG. 8 is a sectional view of the shilling head of FIG. 6, and FIG. 9 is a side sectional view of the further embodiment of FIG. FIG. 4a, 4b, 4c, 4d... cylinder, 5a, 5b, 5c
, 5d... Intake valve, 6a, 6b, 6c, 6d... Exhaust valve, 20a, 20b, 20c, 20d... ECR supply branch passage, 21a, 21b, 21c, 21d... Liu intake valve, 28... storage room. - Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 多気筒内燃機関の各気筒内に各々連通する再循環排
気ガス供給枝通路を共通の貯留室に連結すると共に該枝
通路内に夫々副吸気弁を設け、該副吸気弁を排気行程時
に開弁して高圧の排気ガスを1時的に貯留室内に貯留す
ると共に副吸気弁を圧縮行程後期に開弁して貯留排気ガ
スを気筒内に噴出するようにした多気筒内燃機関の排気
ガス再循環装置。
1. Recirculating exhaust gas supply branch passages that communicate with each cylinder of a multi-cylinder internal combustion engine are connected to a common storage chamber, and sub-intake valves are provided in each of the branch passages, and the sub-intake valves are opened during the exhaust stroke. Exhaust gas regeneration of a multi-cylinder internal combustion engine, in which high-pressure exhaust gas is temporarily stored in a storage chamber by a valve, and a sub-intake valve is opened in the latter half of the compression stroke to blow out the stored exhaust gas into the cylinders. Circulation device.
JP52144678A 1977-12-02 1977-12-02 Exhaust gas recirculation device for multi-cylinder internal combustion engines Expired JPS6020575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52144678A JPS6020575B2 (en) 1977-12-02 1977-12-02 Exhaust gas recirculation device for multi-cylinder internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52144678A JPS6020575B2 (en) 1977-12-02 1977-12-02 Exhaust gas recirculation device for multi-cylinder internal combustion engines

Publications (2)

Publication Number Publication Date
JPS5477828A JPS5477828A (en) 1979-06-21
JPS6020575B2 true JPS6020575B2 (en) 1985-05-22

Family

ID=15367696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52144678A Expired JPS6020575B2 (en) 1977-12-02 1977-12-02 Exhaust gas recirculation device for multi-cylinder internal combustion engines

Country Status (1)

Country Link
JP (1) JPS6020575B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7472696B2 (en) * 2006-03-31 2009-01-06 Caterpillar Inc. Exhaust gas recirculation system with in-cylinder valve actuation
US8943822B2 (en) 2012-02-28 2015-02-03 Electro-Motive Diesel, Inc. Engine system having dedicated auxiliary connection to cylinder
US8875672B2 (en) 2012-02-28 2014-11-04 Electro-Motive Diesel, Inc. Engine system having dedicated cylinder-to-cylinder connection

Also Published As

Publication number Publication date
JPS5477828A (en) 1979-06-21

Similar Documents

Publication Publication Date Title
JPS5846667B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engines
EP0875670B1 (en) Direct injection type internal combustion engine
JP2580823B2 (en) Stratified combustion internal combustion engine
US4192265A (en) Combustion promoting device of a multi-cylinder engine
US6044642A (en) Direct fuel injection engine
US5735240A (en) Direct injected engine
JPH04228850A (en) In-cylinder injection type internal combustion engine
US4532899A (en) Internal combustion engine fuel-injection system
JPS59687B2 (en) Combustion chamber of internal combustion engine
JPS6020575B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engines
JPH05187326A (en) Exhaust gas reflux device for internal combustion engine
JPS5926775B2 (en) Combustion chamber of internal combustion engine
JPS63230920A (en) Within-cylinder gasoline injection engine
JP3146936B2 (en) In-cylinder injection internal combustion engine
JPH0431649A (en) Injection controller of cylinder injection engine
JPS61167129A (en) 2-cycle internal-combustion engine
JP2005098309A (en) Exhaust recirculation device for internal combustion engine
JPS6020574B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engines
JP2000282867A (en) Internal combustion engine
JP2001027170A (en) Direct injection type gasoline engine, and fuel injection valve
JPS62253956A (en) Intake device for engine
JP3453788B2 (en) Engine with storage room
JP3727357B2 (en) 4-cycle engine fuel injection control system
JP2699722B2 (en) Stratified combustion internal combustion engine
JP4082277B2 (en) In-cylinder direct injection CNG engine