JPS6020574A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS6020574A
JPS6020574A JP12828483A JP12828483A JPS6020574A JP S6020574 A JPS6020574 A JP S6020574A JP 12828483 A JP12828483 A JP 12828483A JP 12828483 A JP12828483 A JP 12828483A JP S6020574 A JPS6020574 A JP S6020574A
Authority
JP
Japan
Prior art keywords
semiconductor layer
region
impurity concentration
base
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12828483A
Other languages
Japanese (ja)
Inventor
Yoshitaka Oishi
好高 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP12828483A priority Critical patent/JPS6020574A/en
Publication of JPS6020574A publication Critical patent/JPS6020574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To accelerate the switching operation especially shortening the storage time by a method wherein the impurity concentration of an electrode fetching part such as a base electrode etc. is lowered. CONSTITUTION:Base regions are not formed in series so that the impurity concentration at the base regions 2a-2d to be junctioned with metallic electrodes 4a-4d as the fetching parts of base electrode may be lowered but provided with the parts to be formed corresponding to individual emitter regions 3a-3d or to be formed individually. When base electrode fetching parts are formed through these procedures, the impurity in the region 2A (parasitic diode region) excluding the part 2B immediately below the emitter region required for transistor operation being very little, in case the transistor is saturated, the minor carriers injected from the region 2A to collector region 1 may be reduced to shorten the storage time especially out of the switching characteristics.

Description

【発明の詳細な説明】 本発明は、半導体装置の高性能化に関するものである。[Detailed description of the invention] The present invention relates to improving the performance of semiconductor devices.

従来の半導体装置のうち、特にバイポーラ形npn)ラ
ンジスタの構造を第1図に示す。この1、ランジスタは
、N+形半導体層とN形半導体層からなるコレクタ領域
1と、ベース領域2と、エミッタ領域3a、3b、3c
・・と、金属電極4a。
Among conventional semiconductor devices, the structure of a bipolar (NPN) transistor in particular is shown in FIG. This transistor 1 includes a collector region 1 consisting of an N+ type semiconductor layer and an N type semiconductor layer, a base region 2, and emitter regions 3a, 3b, and 3c.
...and the metal electrode 4a.

4b、4c、4d−,5a、5b、5c、5d−,6゜
7 とを有していも、一般的にエミッタ3a〜3cはく
し状や格子状の形をしており、エミッタ、ベース接合部
分(以下周辺長)を極力長くシ、高出力特性が得られる
ようにしである。尚8はフィールドシリコン酸化膜であ
る○ 上記従来例において、ベース領域2 ’t%%t %は
プレーナー拡散で形成されるだめ、表面に近いほど高濃
度である。高濃度であればあるほど、この部分が動作す
る際に寄生ダイオードとして動作し、高速性を妨げる。
4b, 4c, 4d-, 5a, 5b, 5c, 5d-, 6゜7 Generally, the emitters 3a to 3c have a comb-like or lattice-like shape, and the emitter-base junction part (hereinafter referred to as peripheral length) is made as long as possible to obtain high output characteristics. Note that 8 is a field silicon oxide film. In the above conventional example, the base region 2't%%t% is formed by planar diffusion, so the closer it is to the surface, the higher the concentration is. The higher the concentration, the more this part operates as a parasitic diode, impeding high speed performance.

このことを、第2図および第3図を用いて詳細に説明す
る。
This will be explained in detail using FIGS. 2 and 3.

第2図はトランジスタに寄生するダイオードDを考慮し
た前記トランジスタの等価回路図である。
FIG. 2 is an equivalent circuit diagram of the transistor in consideration of a diode D parasitic to the transistor.

すなわち、第1図のトランジスタQは、そのベースBと
、コレクタCとの間にダイオードDが挿入された回路で
表わされている。このトランジスタにおいて、オン状態
すなわち飽和状態にあるときは、ベースBの電位はコレ
クタCの電位よりも高く、寄生ダイオードDは順方向に
バイアスされるため、ベース領域から寄生ダイオードD
を介してコレクタ領域1へ少数キャリアが注入され、こ
れがキャリアの蓄積量を増やし、第3図に示すように、
トランジスタをオフする際の蓄積時間t8(ベース電流
■8 を反転させてからコレクタ電流1゜がオン時の9
0%に低下するまでの時間)が長くすり、スイッチング
速度を低下させている。
That is, the transistor Q in FIG. 1 is represented by a circuit in which a diode D is inserted between its base B and collector C. In this transistor, when it is in the on state, that is, in the saturated state, the potential of the base B is higher than the potential of the collector C, and the parasitic diode D is biased in the forward direction.
Minority carriers are injected into the collector region 1 through
Accumulation time t8 when turning off the transistor (9 when collector current 1° is turned on after base current ■8 is reversed)
The time it takes for the voltage to drop to 0% is long, reducing the switching speed.

ここで前記寄生ダイオードから注入される少数キャリア
の量を減らす方法として、ベース領域全体の不純物濃度
を下げれば良いことはすでに知られている。しかしなが
らプレーナ拡散で形成するにいたっては、表面付近が最
も濃度が高いことは、さけられないのが現状である。
It is already known that one way to reduce the amount of minority carriers injected from the parasitic diode is to lower the impurity concentration in the entire base region. However, when forming by planar diffusion, it is unavoidable that the concentration is highest near the surface.

本発明は上記した点に鑑みてなされたもので、エミッタ
M手導体層直下以外に形成されるベース領域の濃度をプ
レーナ拡散で形成したベース領域のb′へ方向拡散によ
って濃度を下げることを可能とし、そのため、ベース領
域からコレクタ領域への少数キャリアの注入を減らし、
キャリアの蓄積を極力少なくすることによってスイッチ
ングタイム、とりわけ蓄積時間t8 を小さくできる半
導体装置、ならびにその製造方法を提供することを目的
とする。
The present invention has been made in view of the above points, and it is possible to reduce the concentration of the base region formed other than directly under the emitter M conductor layer by directional diffusion toward b' of the base region formed by planar diffusion. Therefore, the injection of minority carriers from the base region to the collector region is reduced,
It is an object of the present invention to provide a semiconductor device that can shorten switching time, especially storage time t8, by minimizing carrier storage, and a method for manufacturing the same.

本発明の半導体装置は、−導電形の第1半導体層内に該
半導体層とは逆導電形の第2半導体層を有し、該第2半
導体層内にその表面から途中の深さの領域にわたって第
1半導体層と同じ導電形の第3半導体層を有し、前記第
2半導体層は前記第3半導体層から遠ざかるに従って不
純物濃度が低くなるような濃度勾配部を持ち、該不純物
濃度が低い部分を含む表面に電極を設けたことを特徴と
する。
The semiconductor device of the present invention has a second semiconductor layer of a conductivity type opposite to that of the semiconductor layer in a first semiconductor layer of a -conductivity type, and a region in the second semiconductor layer at a depth halfway from the surface of the second semiconductor layer. a third semiconductor layer having the same conductivity type as the first semiconductor layer; the second semiconductor layer has a concentration gradient portion such that the impurity concentration decreases as the distance from the third semiconductor layer increases, and the impurity concentration is low; The feature is that an electrode is provided on the surface including the part.

まだ、この半導体装置を製造する本発明の方法は、前記
不純物濃度の低下した部分を、第1半導体層の表面に形
成した絶縁膜の開口部から加える不純物を第1半導体層
の該開口部周辺の絶縁膜直下に拡散させることによって
形成することを特徴とする。
However, in the method of the present invention for manufacturing this semiconductor device, impurities are added from an opening in an insulating film formed on the surface of the first semiconductor layer to the area where the impurity concentration has decreased, and the impurity is added to the area around the opening in the first semiconductor layer. It is characterized by being formed by diffusion directly under the insulating film.

以下本発明の一実施例を第4図および第5図によシ説明
する。第4図において、第1図と同−勾号は同じ構成要
素を示す。すなわち、1はN1−形半導体層およびN形
半導体層からなるコレクタ領域、2x、2a、2b、2
cm・は該コレクタ領域内に形成されたP形半導体層で
なる べ一人領域、3a、3b、3cmは各ベース領域
2a、2b。
An embodiment of the present invention will be explained below with reference to FIGS. 4 and 5. In FIG. 4, the same sign as in FIG. 1 indicates the same component. That is, 1 is a collector region consisting of an N1-type semiconductor layer and an N-type semiconductor layer, 2x, 2a, 2b, 2
cm. is a single region made of a P-type semiconductor layer formed in the collector region, and 3a, 3b, and 3cm are base regions 2a, 2b.

2’c・・・の各表面から途中の深さ部分にわたって形
成されたN+形半導体層からなるエミッタ領域、4a、
4b、4c はベース電極6の取シ出し部分となる金属
電極、5a、5b、5c・・はエミッタ電極7の取り出
し部分となる金属電極である。
2'c... An emitter region made of an N+ type semiconductor layer formed over a midway depth from each surface, 4a,
Reference numerals 4b and 4c are metal electrodes from which the base electrode 6 is taken out, and 5a, 5b, 5c, . . . are metal electrodes from which the emitter electrode 7 is taken out.

コレクタ電極はコレクタ領域1の図面上下π11に形成
されるが図示を省略している。本発明においては、ベー
ス電極の取シ出し部分となる金属電極48〜4dに接合
されるベース領域2a〜2dの部分における不純物濃度
が低濃度となるように、ベース領域を一連に形成するの
ではなく、個々のエミッタ領域3a〜3dに対応して形
成されるが寸だけ個々に形成される部分を有する。すな
わち金属電極4a〜4dが接合される部分の不純物濃度
分布は、金属電極4bについて代表して示すと、その横
方向分布(点a、b間の濃度分布)が第5図(A)のよ
うになり、また深さ方向の濃度分布(点d、e間の濃度
分布)は第5図(B)に示すようになる。なお、端部の
ベース領域2Xは端部の金属電極4aの不純物濃度を他
の領域の不純物濃度と同じにするために設けられたもの
であるOこのようにベース電極取り出し部分を形成する
と、トランジスタ動作に必要なエミッタ領域直下の部分
2 B以外の領域2A(寄生ダイオード領域)の不純物
月6が少であるため、トランジスタが飽和状態になった
際に、ここからコレクタ領域1へ注入される少数キャリ
アが減少し、スイッチング特性のうち、とりわけ第3図
に示した蓄積時間t8を減少させることが可能である。
The collector electrode is formed above and below π11 in the drawing of the collector region 1, but is not shown. In the present invention, the base regions are formed in series so that the impurity concentration in the portions of the base regions 2a to 2d that are joined to the metal electrodes 48 to 4d, which are the lead-out portions of the base electrodes, is low. Rather, they are formed corresponding to the individual emitter regions 3a to 3d, but have portions that are formed individually. That is, the impurity concentration distribution in the portion where the metal electrodes 4a to 4d are joined is represented by the lateral distribution (concentration distribution between points a and b) as shown in FIG. 5(A) for the metal electrode 4b. The concentration distribution in the depth direction (concentration distribution between points d and e) is as shown in FIG. 5(B). Note that the base region 2X at the end is provided to make the impurity concentration of the metal electrode 4a at the end the same as the impurity concentration in other regions. Since the impurity 6 in the region 2A (parasitic diode region) other than the part 2B directly under the emitter region necessary for operation is small, a small number of impurities are injected from here into the collector region 1 when the transistor becomes saturated. The carriers are reduced, and among the switching characteristics, it is possible to reduce the storage time t8 shown in FIG. 3 in particular.

前記のよう金属電極4a〜4dを設ける部分の不純物濃
度を低下させる手段としては、金属電極4a〜4dの直
下の部分にベース領域形成とは別個に不純物の低濃度部
分を形成することが考えられるが、本発明においては、
第6図に示すように、コレクタ領域となる第1半導体層
1上に開口部12g、12b、12cm・を絶縁膜9a
、9b、9C・中に有する絶縁膜パターンを形成し、開
口部12a、12b、12cから拡散法、イオン注入法
、気相成長法等により、第2半導体層形成用の不純物を
加え、該開口部12a、12b、12c下に矢印10に
示すような下方への不純−物拡散により第2半導体層を
形成すると共に、開口部12a、12b、12cmの周
辺の絶縁膜9a、9b。
As a means for reducing the impurity concentration in the portion where the metal electrodes 4a to 4d are provided, as described above, it is possible to form a low impurity concentration portion directly under the metal electrodes 4a to 4d, separately from the formation of the base region. However, in the present invention,
As shown in FIG. 6, openings 12g, 12b, and 12 cm are formed in the insulating film 9a on the first semiconductor layer 1, which becomes the collector region.
, 9b, 9C. Impurities for forming the second semiconductor layer are added through the openings 12a, 12b, 12c by diffusion, ion implantation, vapor growth, etc. A second semiconductor layer is formed under the portions 12a, 12b, 12c by downward impurity diffusion as shown by the arrow 10, and the insulating films 9a, 9b are formed around the openings 12a, 12b, 12cm.

9c・・の直下部分に矢印11に示すような横方向の不
純物の拡散によって該第2半導体層の不純物濃度が低下
した部分を前記開1コ部における第2半導体層に連続し
て形成する。これによって、絶縁膜9 a 、 9 b
 + 9 c −の直下に不純物の濃度が低下した部分
が形成される。なお、前記矢印10に示すような横方向
の拡散によって不純物の低濃度部分を形成する場合、絶
縁膜9a、9b、9cは存在しない状態で拡散を行わせ
るようにしてもよい0 このように不純物濃度の低下した部分を形成した後は、
第2半導体層2a、2’b、2c・・内にそれぞれ表面
から所定の深さにわたって第3半?η体層3a、3b、
3cパを形成し、該第3半導体層3a、3b、3c・・
・の表面および第2半導体層2a、2b、2c・の不純
物濃度の低下した部分の壺面にそれぞれ金属電極5a、
5b、5c・および4a、4b、4c・を形成する。
Directly below 9c, a portion where the impurity concentration of the second semiconductor layer is reduced by lateral impurity diffusion as shown by arrow 11 is formed to be continuous with the second semiconductor layer in the opening 1 portion. As a result, the insulating films 9 a and 9 b
A region where the concentration of impurities is reduced is formed directly below +9c-. Note that when forming a low concentration region of impurities by lateral diffusion as shown by the arrow 10, the diffusion may be performed in a state where the insulating films 9a, 9b, and 9c are not present. After forming the area of reduced concentration,
The third half of the second semiconductor layer 2a, 2'b, 2c, . η body layers 3a, 3b,
3c layers, and the third semiconductor layers 3a, 3b, 3c...
Metal electrodes 5a, 5a and 5b are respectively formed on the surface of the pot and the lower impurity concentration portions of the second semiconductor layers 2a, 2b, 2c.
5b, 5c· and 4a, 4b, 4c· are formed.

このような方法でこのトランジスタを作ることにより、
第2半導体層の不純物濃度が低下した部分を形成するだ
めの特別な工程を設ける必要がなくなる。なお、前記実
施例のように半導体層の表面に金属電極を設けるのでは
々くポリシリコン等信の電極素材を用いることもある。
By making this transistor in this way,
There is no need to provide a special process for forming a portion of the second semiconductor layer with a reduced impurity concentration. Incidentally, in order to provide a metal electrode on the surface of a semiconductor layer as in the above embodiment, a metal electrode material such as polysilicon may be used.

寸だ、以上の説明は、バイポーラ形トランジスタについ
て行ったが、寄生ダイオードの影響が存在する他の半導
体装置についても本発明を適用することが可能である。
Although the above explanation has been made regarding bipolar transistors, the present invention can also be applied to other semiconductor devices that are affected by parasitic diodes.

以」二述べたように、本発明の半導体装置は、ベース電
極等の電極取り出し部分の不純物濃度を低下させだので
、特に蓄積時間を短くすることができ、スイッチング動
作を高速化することができる。
As described above, since the semiconductor device of the present invention reduces the impurity concentration at the electrode extraction portion such as the base electrode, it is possible to particularly shorten the storage time and speed up the switching operation. .

丑だ本発明における電極取り出し部分となる不純物低濃
度部分は、該領域を分割形成する際の境界部分に形成す
ることができるため、高速スイッチングのだめの微細化
構造に適している。また、FL、R(フィールドリミッ
ティングリング)や、はみ出し電極(フィールドブレー
ド等)等の従来の高耐圧化の手法がその−1ま導入でき
、高耐圧化に適している。また、本発明の製造方法1て
よ九ば、電極数シ出し部分となる不純物低濃度部分は、
該領域を形成させる時の横方向拡散を利用するだめ、特
別な工程を必要とせず、簡単に作ることができる。
In the present invention, the low impurity concentration portion serving as the electrode extraction portion can be formed at the boundary portion when dividing the region, and is therefore suitable for a miniaturized structure for high-speed switching. In addition, conventional techniques for increasing withstand voltage such as FL, R (field limiting ring) and protruding electrodes (field blades, etc.) can be introduced to -1, making it suitable for increasing withstand voltage. In addition, the third aspect of the manufacturing method of the present invention is that the low impurity concentration portion, which is the part where the number of electrodes is exposed, is
By utilizing lateral diffusion when forming the region, no special process is required and it can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のランリングの一例を示す断面図、第2図
はその等価回路図、第3図はそのスイッチング特性を説
明する電流波形図、第4図は本発明によるトランジスタ
の一実施例を示す断面図、第5図(A)(B)はそれぞ
れベース電極下の横方向および深さ方向の不純物濃度分
布図、第6図は本発明の方法を実施する場合のベース領
域形成時の状態を示す部分拡大断面図である。 1・・コレクタ領域、2a〜2X・・ベース領域、3a
 〜3 d−エミッタ領域、4a〜4d、5a〜5d、
6.7・・・金属電極、8,9・・絶縁膜、9妃繕瀝 特許出願人ディーバーゲイ株式会社 代理人 弁理士 若 1)勝 − 第1図 手続補正書(自発) 1事件の表示 111(和58年特許願第128284号2発明の名称 ゛IL導体装置ならびにその製造方法 3補IFをする者 =J<件との関係 特許出願人 住 所 東京都中央区日本橋−丁目13番1号名 称 
(3013)ティーディーケイ株式会社代表者 大 歳
 寛 4代理人〒272 細な説明の欄、図面(第1図) 7補正の内容 別紙の通り 〔1〕明細書中、下記の補正を行う。 (1)特許請求の範囲を別紙のように補正する。 (2)3頁6行の「際に」と「寄生ダイオード」との間
に「特に2−A部が」を加入する。 (3)4頁5行ないし同頁6行の「ベース領域全体」を
「2−A部分」と訂正する。 (4)5頁4行の「有し、Jと「前記第2半導体層」と
の間に「表面において」を加入する。 〔2〕第1図を別紙のように補正する。 以」二 特許請求の範囲 1、−導電形の第1半導体層内に該半導体層と逆導電形
の第2半導体層を有し、該第2半導体層内にその表面か
ら途中の深さの領域にわたって第1半導体層と同じ導電
形の第3半導体層を有し、表面において前記第2半導体
層は前記第3半導体層から遠ざかるに従って不純物濃度
が低くなるような濃度勾配部を持ち、該不純物濃度が低
い部分を含む表面に電極を設けたことを特徴とする半導
体装置。 2、第1半導体層をコレクタ、第2半導体層をベース、
第3半導体層をエミッタとするバイポーラ形トランジス
タである前記特許請求の範囲第1項記載の半導体装置。 3、−導電形の第1¥:導体層上に絶縁膜を形成し5該
絶縁膜を開口し、該開口部から前記第1半導体層とは逆
導電形の第2半導体層を形成する不純物を加えて該開口
部に第2半導体層を形成すると共に、制量1−」部の周
辺の絶縁膜の直下部分に不純物の拡散によって該第2半
導体層の不純物濃度が低下した部分をnfI記開口開口
部ける第2半導体層に連続して形成し、該第2半導体層
内にilJl暗記半導体層と同じ導電形の第3半導体層
を形成し、前記第2半導体層の不純物濃度が低下した部
分を含む表面に電極を形成することを特徴とする半導体
装置の製造方法。
Figure 1 is a cross-sectional view showing an example of a conventional run ring, Figure 2 is its equivalent circuit diagram, Figure 3 is a current waveform diagram explaining its switching characteristics, and Figure 4 is an example of a transistor according to the present invention. 5(A) and 5(B) are impurity concentration distribution diagrams in the lateral and depth directions under the base electrode, respectively, and FIG. FIG. 3 is a partially enlarged sectional view showing the state. 1... Collector area, 2a to 2X... Base area, 3a
~3d-emitter region, 4a-4d, 5a-5d,
6.7...Metal electrode, 8,9...Insulating film, 9 Patent applicant Devergay Co., Ltd. Representative Patent attorney Waka 1) Win - Figure 1 Procedural amendment (voluntary) 1 Indication of case 111 (Japanese Patent Application No. 128284 2 Name of the invention ``IL conductor device and its manufacturing method 3 Supplement IF person = J<Relationship with the matter Patent applicant Address 13-1 Nihonbashi-chome, Chuo-ku, Tokyo Title name
(3013) TDC Co., Ltd. Representative Hiroshi Otoshi 4 Agent 〒272 Detailed explanation column, drawings (Figure 1) Contents of 7 amendments As shown in the attached sheet [1] The following amendments will be made to the description. (1) Amend the claims as shown in the attached sheet. (2) In page 3, line 6, add ``particularly the 2-A section'' between ``at the same time'' and ``parasitic diode.'' (3) Correct "entire base area" from line 5 on page 4 to line 6 on page 4 to "part 2-A." (4) In page 5, line 4, ``has,'' and ``on the surface'' is added between J and ``the second semiconductor layer.'' [2] Correct Figure 1 as shown in the attached sheet. Claim 1: - A second semiconductor layer of a conductivity type opposite to that of the first semiconductor layer is provided in the first semiconductor layer, and a second semiconductor layer is provided within the second semiconductor layer at a depth halfway from the surface of the second semiconductor layer. The second semiconductor layer has a third semiconductor layer having the same conductivity type as the first semiconductor layer over a region, and the second semiconductor layer has a concentration gradient portion such that the impurity concentration decreases as the distance from the third semiconductor layer increases. A semiconductor device characterized in that an electrode is provided on a surface including a low concentration portion. 2. The first semiconductor layer is the collector, the second semiconductor layer is the base,
The semiconductor device according to claim 1, which is a bipolar transistor having the third semiconductor layer as an emitter. 3.-first conductivity type: an impurity forming an insulating film on the conductor layer, opening the insulating film, and forming a second semiconductor layer having a conductivity type opposite to the first semiconductor layer from the opening; is added to form a second semiconductor layer in the opening, and a portion where the impurity concentration of the second semiconductor layer is reduced due to the diffusion of impurities is written as nfI in a portion directly under the insulating film around the control 1-'' portion. A third semiconductor layer is formed in succession to the second semiconductor layer in the opening, and a third semiconductor layer having the same conductivity type as the ilJl memorization semiconductor layer is formed in the second semiconductor layer, and the impurity concentration of the second semiconductor layer is reduced. A method for manufacturing a semiconductor device, comprising forming an electrode on a surface including a portion.

Claims (1)

【特許請求の範囲】 1−導電形の第1半導体層内に該半導体層と逆導電形の
第2半導体層を有し、該第2半導体層内にその表面から
途中の深さの領域にわたって第1半導体層と同じ導電形
の第3半導体層を有し、前記第2半導体層は前記第3半
導体層から遠ざかるに従って不純物濃度が低くなるよう
な濃度勾配部を持ち、該不純物濃度が低い部分を含む表
面に電極を設けたことを特徴とする半導体装置。 2第1半導体層をコレクタ、第2半導体層をベース、第
3半導体層をエミッタとするバイポーラ形トランジスタ
である前記將許請求範囲第1項B載の半導体装置。 3−導電形の第1半導体層上に絶縁膜を形成し、該絶縁
膜を開口し、該開口部から前記第1半導体層とは逆導電
形の第2半導体層を形成する不純物を加えて該開[コ部
に第2半導体層を形成すると共に、該開口部の周辺の絶
縁膜の直下部分に不純物の°拡散によって該第2半導体
層の不純物濃度が低床 体層と同じ導電形の第3半導体層を形成し、前記第2半
導体層の不純物濃度が低下した部分を含む表面に電極を
形成することを特徴とする半導体装置の製造方法。
[Scope of Claims] 1- A second semiconductor layer of a conductivity type opposite to that of the first semiconductor layer is provided in a first semiconductor layer of a conductivity type, and a region of a depth halfway from the surface of the second semiconductor layer is provided. a third semiconductor layer having the same conductivity type as the first semiconductor layer; the second semiconductor layer has a concentration gradient portion where the impurity concentration decreases as the distance from the third semiconductor layer increases; the portion where the impurity concentration is low; A semiconductor device characterized in that an electrode is provided on a surface including. 2. The semiconductor device according to claim 1B, which is a bipolar transistor having the first semiconductor layer as a collector, the second semiconductor layer as a base, and the third semiconductor layer as an emitter. 3- Forming an insulating film on a first semiconductor layer of a conductivity type, opening the insulating film, and adding an impurity through the opening to form a second semiconductor layer of a conductivity type opposite to that of the first semiconductor layer. A second semiconductor layer is formed in the opening, and the impurity concentration of the second semiconductor layer is made to be of the same conductivity type as the low-level body layer by diffusion of impurities directly under the insulating film around the opening. A method for manufacturing a semiconductor device, comprising forming a third semiconductor layer and forming an electrode on a surface including a portion of the second semiconductor layer where the impurity concentration is reduced.
JP12828483A 1983-07-14 1983-07-14 Semiconductor device and its manufacture Pending JPS6020574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12828483A JPS6020574A (en) 1983-07-14 1983-07-14 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12828483A JPS6020574A (en) 1983-07-14 1983-07-14 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS6020574A true JPS6020574A (en) 1985-02-01

Family

ID=14981013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12828483A Pending JPS6020574A (en) 1983-07-14 1983-07-14 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS6020574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221154A (en) * 1986-03-24 1987-09-29 Sanken Electric Co Ltd Transistor
US11749482B2 (en) 2018-11-07 2023-09-05 Dexerials Corporation Protection element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221154A (en) * 1986-03-24 1987-09-29 Sanken Electric Co Ltd Transistor
JPH0535569B2 (en) * 1986-03-24 1993-05-26 Sanken Electric Co Ltd
US11749482B2 (en) 2018-11-07 2023-09-05 Dexerials Corporation Protection element

Similar Documents

Publication Publication Date Title
JPS589366A (en) Transistor
JPH0336311B2 (en)
JPH11274516A (en) Power semiconductor device
JPS6020574A (en) Semiconductor device and its manufacture
JPS61113270A (en) Based coupled transistor logic
US4595942A (en) Integrated circuit
JPS6081864A (en) Lateral type transistor
JPS63262870A (en) Gate cut-off thyristor and manufacture of the same
US7067900B2 (en) Insulated gate bipolar transistor having a reduced tail current and method of fabricating the same
JP2005026392A (en) Semiconductor device and its fabricating process
JP3128958B2 (en) Semiconductor integrated circuit
JPH05145064A (en) Gate turn-off thyristor
JP2763432B2 (en) Semiconductor device
JPH0416443Y2 (en)
JPS59155168A (en) Gate turn off device
JPS6022504B2 (en) Manufacturing method of semiconductor device
JP3395282B2 (en) Constant voltage generator
KR970010739B1 (en) Method for manufacturing a semiconductor device
JPS63308957A (en) Darlington transistor
JPS61150383A (en) Semiconductor device
JPH01286356A (en) Semiconductor integrated circuit
JPH11204536A (en) Semiconductor device and manufacture thereof
JPS6262059B2 (en)
JPS6010778A (en) Semiconductor device and manufacture thereof
JPH0567624A (en) Semiconductor device