JPS60205613A - Run control system for unmanned car - Google Patents

Run control system for unmanned car

Info

Publication number
JPS60205613A
JPS60205613A JP59060775A JP6077584A JPS60205613A JP S60205613 A JPS60205613 A JP S60205613A JP 59060775 A JP59060775 A JP 59060775A JP 6077584 A JP6077584 A JP 6077584A JP S60205613 A JPS60205613 A JP S60205613A
Authority
JP
Japan
Prior art keywords
rear wheels
speed
motors
steering
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59060775A
Other languages
Japanese (ja)
Inventor
Yutaka Hitomi
人見 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59060775A priority Critical patent/JPS60205613A/en
Publication of JPS60205613A publication Critical patent/JPS60205613A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To control the run of the unmanned car smoothly without snaking by giving steering motors for front and rear wheels a difference in speed according to a position shift with a plusewidth modulated current, and steering the car. CONSTITUTION:Speed patterns corresponding to respective position shifts + or -alpha1- + or -alpha4 are written previously on semiconductor memory. Then, guide detection signals from guide signal detection coils 7 and 8 are read in a computer 11 at constant intervals to calculate position shifts between front wheels 5 and rear wheels 6 from a guide signal line 3. When the position shifts are calculated, the computer 11 selects addresses alpha1-alpha4 of the semiconductor memory corresponding to respective position shifts, and outputs contents of the addresses to control a motor driving circuit 18, thereby performing speed control over steering motors 12 and 13 of the front wheels 5 and rear wheels 6 with the plusewidth modulated current. Namely, the motors 12 and 13 are controlled to higher speeds when a position shift is large and to lower speeds when small, thereby controlling the run of the unmanned car 1.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 走行路にあらかじめ敷設した誘導信号に沿って無人車を
走行させる、無人車の走行制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a driving control method for an unmanned vehicle, which causes the unmanned vehicle to travel along guidance signals installed in advance on a driving route.

〔従来技術とその問題点〕[Prior art and its problems]

従来の無人車の走行制御方式においては、サーボモータ
を用いて位置ずれ量が大きければす〜ポモータを速ぐ、
小さければサーボモータを遅く駆動制御する方式がある
が、この方式ではアンプ。
In conventional driving control systems for unmanned vehicles, a servo motor is used to speed up the motor if the amount of positional deviation is large.
If it is small, there is a method to control the drive of the servo motor slowly, but this method uses an amplifier.

駆動回路の大形化、複雑化および熱の発生等の問題点が
ある。
There are problems such as the drive circuit becoming larger and more complex and generating heat.

〔発明の目的〕[Purpose of the invention]

本発明は、走行路と°敷設した誘導信号線に沿って無人
車を円滑に走行制御することのできる無人車の走行制御
方式を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a driving control system for an unmanned vehicle that can smoothly control the driving of an unmanned vehicle along a driving path and a guidance signal line laid down.

〔発明の概要〕[Summary of the invention]

本発明は、あらかじめ位置ずれ量に対して、操截速度の
速度バタンを計算機内の入出力装置(Ilo)に内蔵し
た半導体メモリに書き込み、各測定点で測定した誘導検
出信号から位置ずれ量をめ、その位置ずれ量に対応した
速度バタンか格納されている半導体メモリの番地を計算
機で選択し、その選択した番地の内容で前輪、後輪の操
航用モータをパルス巾変調した電流で速度制御する。す
なわち、位置ずれ量の大きい場合には操歓用モータを速
く、小さい場合には操歓用モータを遅く駆動制御し、無
人車を走行制御する無人車の走行制御方式である。
In the present invention, a speed button of the steering speed is written in advance in a semiconductor memory built in the input/output device (Ilo) in the computer in response to the amount of positional deviation, and the amount of positional deviation is calculated from the guidance detection signal measured at each measurement point. Therefore, a computer selects the address in the semiconductor memory where the speed button corresponding to the amount of positional deviation is stored, and the speed of the steering motors for the front and rear wheels is controlled by pulse-width modulated current according to the contents of the selected address. Control. That is, this is a driving control method for an unmanned vehicle in which the steering motor is driven quickly when the amount of positional deviation is large, and the steering motor is driven slowly when the amount of positional deviation is small, thereby controlling the driving of the unmanned vehicle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、誘導信号線からの位置ずれ量の大きさ
に対応した速度モードを設け、位置ずれ量の違いによp
11点車の前輪、後輪の操酌用モータを速度制御し、駆
動することによシ、誘導信号線に沿って酢行することな
く円滑に走行制御できる。
According to the present invention, a speed mode corresponding to the amount of positional deviation from the guidance signal line is provided, and the
By speed-controlling and driving the steering wheel motors for the front and rear wheels of the 11-point vehicle, it is possible to smoothly control the vehicle without moving along the guidance signal line.

〔発明の実施例〕[Embodiments of the invention]

本発明による一実施例を第1図から第5図を用い説明す
る。まず機器の構成を説明する。
An embodiment according to the present invention will be described using FIGS. 1 to 5. First, the configuration of the device will be explained.

第1図に示すように無人車1の走行路2に誘導信号線3
を敷設し、誘導信号線3に発振器4より周波数fOの交
番電流を流す。また無人車1の前輪5、後輪6に誘導信
号線3からの誘導信号を検出する誘導信号検出コイル7
.8と前@5.後輪6の操椴角を検出するボテンシ田メ
ータ9.10t−取シ付け、誘導信号検出コイル7.8
とポテンシ目メータ9,10の信号を計算機(■10を
含む)11に入力する。また無人車1には前輪5.後輪
6の操敏用モータ12,13.走行用モータ14,15
.16.17が取シ付けられてお・す1以上のモータは
モータ駆動回路18を介しすべて計算機11で制御する
構成となっている。
As shown in FIG.
is installed, and an alternating current with a frequency fO is passed through the induction signal line 3 from an oscillator 4. Further, a guidance signal detection coil 7 that detects guidance signals from the guidance signal line 3 to the front wheels 5 and rear wheels 6 of the unmanned vehicle 1
.. 8 and before @5. Botenshi meter 9.10t-mounted to detect the steering angle of the rear wheel 6, induction signal detection coil 7.8
and the signals of the potentiometers 9 and 10 are input to the computer (including ■10) 11. In addition, the unmanned vehicle 1 has front wheels 5. Rear wheel 6 steering motors 12, 13. Traveling motors 14, 15
.. 16 and 17 are attached, and all of the one or more motors are controlled by the computer 11 via the motor drive circuit 18.

つぎに無人車のかじ取り方法について第2図を用い説明
する。無人車1の前輪5.後輪6の車軸の中心に誘導信
号検出コイル7.8を取シ付け。
Next, a method for steering an unmanned vehicle will be explained using FIG. 2. Front wheel of unmanned vehicle 1 5. Attach the induction signal detection coil 7.8 to the center of the axle of the rear wheel 6.

走行路2に敷設した誘導信号線3に流れる交番電流によ
って生ずる磁界を検出する。この磁界の方向は誘導信号
線3を境界にして向きがかわるので誘導信号検出コイル
7.8で誘導信号線3からのずれ量と方向を検出するこ
とができ、このずれ量と方向で無人車1の前輪5.後輪
6を各々の矢印の方向へかじ取シを行い、ずれ量が零に
なるよう制御を行なう。操栢角度および方向は第3図に
示すように誘導信号検出コイルで検出された誘導検出信
号Egがボテンシロメータで検出される操航角信号Bs
と等しくなるように制御する。すなわち無人車Kaの位
置ずれがあればbの誘導検出信号が検出され、この検出
信号と等しいCの操航角信号が発生するdの操敏角まで
車輪のかじ取りを行なうと誘導検出コイルが誘導信号線
に近ずく。
The magnetic field generated by the alternating current flowing through the induction signal line 3 installed on the running path 2 is detected. Since the direction of this magnetic field changes with the guidance signal line 3 as a boundary, the amount and direction of deviation from the guidance signal line 3 can be detected by the induction signal detection coil 7.8. 1 front wheel 5. The rear wheels 6 are steered in the directions of the respective arrows, and control is performed so that the amount of deviation becomes zero. As shown in Fig. 3, the steering angle and direction are determined by the steering angle signal Bs detected by the induction detection signal Eg detected by the induction signal detection coil and the potentiometer.
control so that it is equal to In other words, if there is a positional shift of the unmanned vehicle Ka, a guidance detection signal b is detected, and when the wheels are steered to a steering angle d at which a steering angle signal C, which is equal to this detection signal, is generated, the induction detection coil is activated. Get close to the signal line.

したがって誘導検出信号が6点よシ矢印の方向へ減少し
操杭角信号も矢印の方向へ減少して誘導信号線へ沿って
無人車が走行する。
Therefore, the guidance detection signal decreases from 6 points in the direction of the arrow, the steering angle signal also decreases in the direction of the arrow, and the unmanned vehicle runs along the guidance signal line.

走行制御は、第4図に示すように、あらかじめ誘導信号
線からの車輪の位置ずれ量をα1.α2.α3゜α4.
−αl、−α2.−α3.−α4に細分割しておく。つ
ぎに第5図に示すように計算機内I10に内蔵している
半導体メモリの番地に各位置ずれ量α1.α2.α3.
α4.−α1−α2.−α3.−α4の各々に対する速
度パタン、速度パタン1から速度パタン8を書き込んで
おく。ここで速度パタン1と速度パタン5.速度パタン
2と速度パタン6、速度パタン3と速度パタン7、速度
パタン4と速度パタン8はそれぞれ速度は同じでもモー
タの回転方向が違うだけである。
As shown in FIG. 4, the traveling control is performed by adjusting the amount of wheel position deviation from the guidance signal line in advance by α1. α2. α3゜α4.
-αl, -α2. -α3. - Subdivide into α4. Next, as shown in FIG. 5, each positional deviation amount α1. α2. α3.
α4. -α1-α2. -α3. - Write speed patterns 1 to 8 as speed patterns for each of α4. Here, speed pattern 1 and speed pattern 5. Speed pattern 2 and speed pattern 6, speed pattern 3 and speed pattern 7, and speed pattern 4 and speed pattern 8 have the same speed but differ only in the direction of rotation of the motor.

そこで一定間隔毎に誘導信号検出コイル7.8からの誘
導検出信号を計算機11に読み込み、誘導検出信号から
前輪5.後輪6の誘導信号線3からの位置ずれ量を各々
の計算する。前輪5.後輪60位内ずれ量が各々求まれ
ば計算機11で各々位置ずれ量に対応する半導体メモリ
のα1から−α4の番地を選択し、その番地の内容を出
力してモータ駆動回路18を制御し、前輪5.後輪6の
操柚用モータ12 、13をパルス巾変調した電流で速
度制御する。すなわち位置ずれ量の大きい場合には操把
用モータ12,13を速く、小さい場合には操増用モー
タ12,13を遅く駆動制御し、無人車1を走行制御す
る。
Therefore, the induction detection signal from the induction signal detection coil 7.8 is read into the computer 11 at regular intervals, and the front wheel 5.8 is read from the induction detection signal. The amount of positional deviation of the rear wheels 6 from the guidance signal line 3 is calculated. Front wheel 5. Once the displacement amount within 60 positions of the rear wheels has been determined, the computer 11 selects the addresses α1 to -α4 of the semiconductor memory corresponding to the respective displacement amounts, and outputs the contents of the address to control the motor drive circuit 18. , front wheel5. The speed of the citrus manipulation motors 12 and 13 of the rear wheels 6 is controlled by pulse width modulated current. That is, when the amount of positional deviation is large, the handling motors 12 and 13 are driven quickly, and when it is small, the handling motors 12 and 13 are driven slowly, and the unmanned vehicle 1 is controlled to travel.

以上、詳述した本発明による一実施例による制御方式に
よれば駆動回路の大形化、複雑化が防止でき、かつ従来
の制御方式と同等の結果が得られ、無人車を誘導信号線
に沿って蛸行することなく、円滑に走行制御することが
できる。
As described above, according to the control method according to the embodiment of the present invention described in detail, it is possible to prevent the drive circuit from becoming larger and more complicated, and it is possible to obtain the same results as the conventional control method. The vehicle can be smoothly controlled without running along the vehicle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する構成図、第2図は走行
制御を説明する説明図、第3図および第4図は操境角、
操坑角信号、誘導検出信号、位置ずれ量の関係を示す曲
線図、第5図は位置ずれ量と速度パタンの関係を示す図
である。 1・・・無人車、 2・・・走行路、 3・・・誘導信号線、4・・・発振器、5.6・・・前
輪、後輪 7,8・・・誘導信号検出コイル9.10・
・・ポテンショメータ、11・・・計算機12.13・
・・操舵用モータ、14,15,16.17・・・走行
用モータ、18・・・モータ駆動回路。 代理人 弁理士 則近憲佑(ほか1名)第 3 図 第4図 第5図
FIG. 1 is a detailed configuration diagram of the present invention, FIG. 2 is an explanatory diagram explaining travel control, and FIGS. 3 and 4 are steering angles,
A curve diagram showing the relationship between the drilling angle signal, the guidance detection signal, and the amount of positional deviation, and FIG. 5 is a diagram showing the relationship between the amount of positional deviation and the speed pattern. 1... Unmanned vehicle, 2... Running path, 3... Guidance signal line, 4... Oscillator, 5.6... Front wheel, rear wheel 7, 8... Guidance signal detection coil 9. 10・
...Potentiometer, 11...Calculator 12.13.
... Steering motor, 14, 15, 16.17... Traveling motor, 18... Motor drive circuit. Agent Patent attorney Kensuke Norichika (and 1 other person) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 誘導信号線に沿って、前輪、後輪を各々の独立に操刑し
て走行する無人車に°−おいて、誘導信号線からの位置
ずれ量の大きさにより前輪、後輪の操確用モータにパル
ス巾変調した電流で速度差を与え、操歓を行なうことを
特徴とする無人車の走行制御方式。
An unmanned vehicle that runs along a guidance signal line with its front wheels and rear wheels independently controlled will be able to control the front and rear wheels depending on the amount of positional deviation from the guidance signal line. An unmanned vehicle driving control system that uses a pulse-width modulated current to give a speed difference to the motor to perform maneuvering.
JP59060775A 1984-03-30 1984-03-30 Run control system for unmanned car Pending JPS60205613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060775A JPS60205613A (en) 1984-03-30 1984-03-30 Run control system for unmanned car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060775A JPS60205613A (en) 1984-03-30 1984-03-30 Run control system for unmanned car

Publications (1)

Publication Number Publication Date
JPS60205613A true JPS60205613A (en) 1985-10-17

Family

ID=13151995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060775A Pending JPS60205613A (en) 1984-03-30 1984-03-30 Run control system for unmanned car

Country Status (1)

Country Link
JP (1) JPS60205613A (en)

Similar Documents

Publication Publication Date Title
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
JPH0646364B2 (en) How to guide an autonomous vehicle
JPH04113218A (en) Relative bearing detection system
JPS61278912A (en) Method for guiding unmanned moving machine by spot following system
JPS60205613A (en) Run control system for unmanned car
JPH0370802B2 (en)
JPH05333928A (en) Back traveling control method for unmanned carrier
JP2907876B2 (en) Autopilot running device for vehicles
JPH08202449A (en) Automatic operation controller for carring truck
KR0160302B1 (en) Control system for unmanned carrier vehicle
JPH0755610Y2 (en) Self-propelled unmanned vehicle
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPH03127105A (en) Steering device of magnetic induction type unmanned carrying car
JPH01161410A (en) Automatic steering control system
JPH05216535A (en) Automatic driving controller for vehicle
JPH0353643B2 (en)
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2996009B2 (en) Driving control method for unmanned vehicles
JP2779444B2 (en) Automatic guided vehicle
JPH01161406A (en) Automatic steering control system
JPH01161412A (en) Automatic steering control system
JP2002041147A (en) Method for controlling carrier and device for the time
JPS62182811A (en) Electromagnetically guided automatic traveling vehicle
JP2666511B2 (en) Automatic guided vehicle speed control device
JPS6195413A (en) Travel control system of moving car