JPH0353643B2 - - Google Patents

Info

Publication number
JPH0353643B2
JPH0353643B2 JP59222350A JP22235084A JPH0353643B2 JP H0353643 B2 JPH0353643 B2 JP H0353643B2 JP 59222350 A JP59222350 A JP 59222350A JP 22235084 A JP22235084 A JP 22235084A JP H0353643 B2 JPH0353643 B2 JP H0353643B2
Authority
JP
Japan
Prior art keywords
vehicle
sensor
turning
turn
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59222350A
Other languages
Japanese (ja)
Other versions
JPS61100812A (en
Inventor
Hiroshi Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP59222350A priority Critical patent/JPS61100812A/en
Publication of JPS61100812A publication Critical patent/JPS61100812A/en
Publication of JPH0353643B2 publication Critical patent/JPH0353643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2輪差駆動型の無人車両の旋回制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turning control method for a two-wheel differential drive type unmanned vehicle.

〔従来の技術〕[Conventional technology]

一般に、2輪差駆動型の車両とは、第1図に示
すように2つの独立した駆動輪1,2の回転差に
より車両の操舵を行うものであり、2輪を同速で
互いに逆回転させることにより心地旋回を行うこ
とができる。
In general, a two-wheel differential drive vehicle is one in which the vehicle is steered by the difference in rotation between two independent drive wheels 1 and 2, as shown in Figure 1, and the two wheels rotate at the same speed but in opposite directions. By doing so, you can perform comfortable turning.

従来、この種の無人車両を走路Aに沿つて走行
させ、この走路Aに交差する走路Bに乗り移らせ
る際には、2つの駆動輪1,2を結ぶ線分の中心
点Cが、走路AとBの交差点Oと一致した時点で
車両を停止させ、左右の駆動輪1,2を等速で互
いに逆回転させることにより、その場旋回を行わ
せるようにしていた。
Conventionally, when this type of unmanned vehicle travels along a running route A and transfers to a running route B that intersects this running route A, the center point C of the line segment connecting the two drive wheels 1 and 2 is The vehicle is stopped when it coincides with the intersection O between A and B, and the left and right drive wheels 1 and 2 are rotated in opposite directions at the same speed to perform a turn on the spot.

しかし、この方法は、車両の旋回中心Cと交差
点Oとが一致した時点で車両を正確に停止させな
ければならず、また、設定された旋回角度で正確
に旋回を停止させなければならないため、路面の
凹凸、車両のブレーキ精度等によつては常に安定
な旋回が行えるとは限らない。
However, with this method, the vehicle must be stopped accurately when the turning center C of the vehicle coincides with the intersection O, and the turning must be stopped accurately at a set turning angle. Depending on the unevenness of the road surface, the accuracy of the vehicle's brakes, etc., stable turns may not always be possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記実情に鑑みてなされたもので、安
定かつ精度の高い旋回を行うことができる無人車
両の旋回制御方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a turning control method for an unmanned vehicle that can perform stable and highly accurate turning.

〔問題点を解決するための手段および作用〕[Means and actions for solving problems]

この発明によれば、誘導磁界を発生する走路A
から該走路Aとある角度で交差する誘導磁界を発
生する走路Bに乗り換える際に、左右独立して正
逆転する駆動輪を互いに逆方向に回転して旋回す
る無人車両において、前記走路Bからの磁界を車
両の前後方向に指向性を持つて検出する第1およ
び第2のセンサを、前記2つの駆動輪を結ぶ線分
の中心点からそれぞれ車両の前方および後方に一
定の距離離間して配設し、走路Aの走行中に走路
Aから走路Bに乗り換える際に、前記第1のセン
サの出力を一方の駆動輪の正の速度指令とし、前
記第2のセンサの出力を他方の駆動輪の負の速度
指令として与えることにより、走路B上で正確に
心地旋回を完了させることができる。
According to this invention, the running path A that generates the induced magnetic field
In an unmanned vehicle that turns by rotating drive wheels that rotate forward and reverse independently on the left and right sides in mutually opposite directions when transferring from the running track A to a running track B that generates an induced magnetic field that intersects the running track A at a certain angle, First and second sensors that detect magnetic fields with directionality in the longitudinal direction of the vehicle are arranged at fixed distances in front and rear of the vehicle, respectively, from the center point of the line segment connecting the two drive wheels. When changing from track A to track B while traveling on track A, the output of the first sensor is used as a positive speed command for one drive wheel, and the output of the second sensor is used as a positive speed command for the other drive wheel. By giving this as a negative speed command, it is possible to accurately complete a center turn on the running path B.

〔実施例〕〔Example〕

以下、本発明を添付図面を参照して詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図において、走路AはiA=IA・sinωAtな
る交流電流を流しており、走路BはiB=IB・sinωB
tなる交流電流を流しており、それぞれ誘導磁界
を発生している。また、走路Aと走路Bとはある
角度(ここでは90゜)で交差している。
In Fig. 2, path A carries an alternating current of i A = I A · sinω A t, and path B carries an alternating current of i B = I B · sinω B
An alternating current of t is flowing through each of them, and each generates an induced magnetic field. Further, the running route A and the running route B intersect at a certain angle (here, 90°).

無人車両は独立して正逆転する左右の駆動輪1
および2を有し、これらの駆動輪1および2を独
立して速度制御することにより走行操舵および旋
回を行う。
The unmanned vehicle has left and right drive wheels 1 that rotate forward and reverse independently.
and 2, and by independently controlling the speed of these drive wheels 1 and 2, driving steering and turning are performed.

センサ10および11は、それぞれ走路からの
磁界を幅方向に指向性を持つて検出するもので、
センサ10と11の中央に走路(ここでは走路
A)が位置するように走行操舵指令を発生する。
なお、この種の操舵方法は一般的に行われている
ため、ここでは詳細な説明は省略する。
The sensors 10 and 11 each detect the magnetic field from the running path with directionality in the width direction.
A travel steering command is generated so that the running route (here, running route A) is located in the center of the sensors 10 and 11.
Note that since this type of steering method is commonly used, detailed explanation will be omitted here.

センサ12および13は、それぞれ走路Bから
の磁界を車両の前後方向に指向性を持つて検出す
るもので、センサ12は2つの駆動輪1と2を結
ぶ線分の中心点Cから前方に距離lだけ離間して
配設され、センサ13は中心点Cから後方に距離
lだけ離間して配設されている。センサ14およ
び15はセンサ13,12の信号を位相検波する
ためのもので、前記中心点Cから距離lの位置
で、センサ12を挟んでセンサ12とδ(0<δ
<90゜)の位置に配設されている。なお、第3図
はセンサ10〜15の位置関係を斜視的に表わし
た図である。
Sensors 12 and 13 each detect the magnetic field from track B with directionality in the longitudinal direction of the vehicle. The sensor 13 is spaced apart from the center point C by a distance l. The sensors 14 and 15 are for phase detection of the signals of the sensors 13 and 12, and are located at a distance l from the center point C, with the sensor 12 and δ (0<δ
<90°). Note that FIG. 3 is a perspective view showing the positional relationship of the sensors 10 to 15.

次に、無人車両がセンサ10および11を用い
て走路Aに沿つて走行し、走路AとBとの交差点
近傍で右に旋回して走路Bに乗り換える場合につ
いて説明する。
Next, a case will be described in which an unmanned vehicle uses sensors 10 and 11 to travel along route A, turns to the right near the intersection of routes A and B, and transfers to route B.

いま、第4図に示すように、無人車両が走路A
の走行中に、センサ12によつて走路Bとの交差
点近傍に達したことが走路Bからの磁界検出レベ
ルによつて検知されると、センサ10および11
による車両の走行操舵は禁止され、センサ12お
よび13による旋回制御が開始される。センサ1
2〜15は走路Bからの角速度ωBの磁界のみ検
出できるように、フイルタが設けられている。ま
た、前記旋回制御が開始される位置は、そのとき
の車両の中心点Cと交差点との距離が少なくとも
トレツドの2分の1の長さWよりも小さくなるよ
うに設定されている。
Now, as shown in Figure 4, the unmanned vehicle is traveling on route A.
When the sensor 12 detects, based on the magnetic field detection level from the running route B, that the sensor 12 has reached the vicinity of the intersection with the running route B, the sensors 10 and 11
The steering of the vehicle is prohibited, and turning control by the sensors 12 and 13 is started. sensor 1
Filters 2 to 15 are provided so that only the magnetic field having an angular velocity ω B from the running path B can be detected. Further, the position at which the turning control is started is set such that the distance between the center point C of the vehicle and the intersection at that time is smaller than at least one-half length W of the tread.

さて、車両が上記旋回制御開始位置に達する
と、センサ12および13の出力はセンサ14の
出力によつて位相検波され、この検波されたセン
サ12のアナログ信号は左の駆動輪1の正の速度
指令として利用され、センサ13のアナログ信号
は右の駆動輪2の負の速度指令として利用され
る。
Now, when the vehicle reaches the turning control start position, the outputs of the sensors 12 and 13 are phase-detected by the output of the sensor 14, and the detected analog signal of the sensor 12 is the positive speed of the left driving wheel 1. The analog signal from the sensor 13 is used as a negative speed command for the right drive wheel 2.

この時点では、センサ12からの出力Vaとセ
ンサ13からの出力Vbは、Va>Vbの関係があ
り、また駆動輪1と2は互いに逆回転しているの
で、車両は車体中心点Cと駆動輪2とを結ぶ線分
上にある旋回中心を中心にして右旋回を行う。駆
動輪1が高速で、駆動輪2が低速で、かつ、互い
に逆回転することで車両は旋回し、センサ12は
走路Bから遠ざかり、センサ13は走路Bに近づ
く(第5図参照)。このため、駆動輪1と2の回
転速度差が徐々に少なくなり、車体の旋回中心
が、車体中心点Cに近づき、心地旋回に近づく。
At this point, the output V a from the sensor 12 and the output V b from the sensor 13 have a relationship of V a > V b , and the drive wheels 1 and 2 are rotating in opposite directions, so the vehicle is centered at the center of the vehicle body. A right turn is made around the turning center on the line segment connecting point C and drive wheels 2. The drive wheels 1 rotate at high speed and the drive wheels 2 rotate at low speed and in opposite directions, causing the vehicle to turn, causing the sensor 12 to move away from the road B and the sensor 13 to approach the road B (see FIG. 5). Therefore, the rotational speed difference between the drive wheels 1 and 2 gradually decreases, and the turning center of the vehicle body approaches the vehicle body center point C, approaching comfortable turning.

車両の旋回中心が車体中心点Cと一致するの
は、センサ12,13が走路Bに対して等しい距
離になつた時であり、この時車体中心点Cは走路
B上に存在しなければならない。車体中心点Cが
走路B上に有り、かつセンサ12,13がともに
走路B上に来た時、走路Bからの磁界はセンサ1
2,13の向きと直交するため、センサ12,1
3からの出力は0になる。したがつて、この旋回
動作は、車両が走路B上に正しく乗り移ることに
より収束する(第6図参照)。
The turning center of the vehicle coincides with the vehicle body center point C when the sensors 12 and 13 are at the same distance from the running road B, and at this time the vehicle body center point C must be on the running road B. . When the vehicle body center point C is on the running track B and both sensors 12 and 13 are on the running track B, the magnetic field from the running track B is
Since it is perpendicular to the direction of sensors 12 and 13,
The output from 3 will be 0. Therefore, this turning operation is converged when the vehicle correctly transfers onto the running path B (see FIG. 6).

また、センサ14を用いてセンサ12,13の
出力を位相検波しているため、旋回の最終でセン
サ12,13が走路Bを通過してしまつた場合に
は、出力信号の正負が反転するため、旋回のしす
ぎを補正するように作用する。
In addition, since the sensor 14 is used to detect the phase of the outputs of the sensors 12 and 13, if the sensors 12 and 13 pass through the running path B at the end of the turn, the positive and negative of the output signals will be reversed. , acts to correct excessive turning.

なお、左旋回する場合には、センサ15を用い
てセンサ12,13の出力を位相検波し、センサ
12の出力を右の駆動輪2の正の速度指令とし、
センサ13の出力を左の駆動輪1の負の速度指令
とすればよい。
Note that when turning left, the sensor 15 is used to phase-detect the outputs of the sensors 12 and 13, and the output of the sensor 12 is used as a positive speed command for the right drive wheel 2.
The output of the sensor 13 may be used as a negative speed command for the left driving wheel 1.

第7図は本発明方法を実現するための装置のブ
ロツク図である。同図において、入力端子20に
は、中央処理装置、外部メモリ等に予め記憶され
た走行経路に基づいて次の交差点において左旋回
するか右旋回するかを示す左右旋回切替信号Sが
加えられている。もち論、交差点で直進する場合
も含む。
FIG. 7 is a block diagram of an apparatus for implementing the method of the invention. In the figure, a left/right turn switching signal S indicating whether to turn left or right at the next intersection is applied to an input terminal 20 based on a travel route stored in advance in a central processing unit, external memory, etc. ing. Of course, this also includes going straight at an intersection.

この左右旋回切替信号Sは、それぞれ切替回路
21および22に加えられる。切替回路21は、
切替信号Sが右旋回を示すときにはセンサ14の
出力を選択し、これをセンサ12および13の出
力を位相検波するときの基準信号として位相検波
回路23および24に出力し、切替信号Sが左旋
回を示すときにはセンサ15の出力を選択し、こ
れを位相検波回路23および24に出力する。
This left/right turning switching signal S is applied to switching circuits 21 and 22, respectively. The switching circuit 21 is
When the switching signal S indicates a right turn, the output of the sensor 14 is selected and outputted to the phase detection circuits 23 and 24 as a reference signal when phase detecting the outputs of the sensors 12 and 13, and the switching signal S indicates a left turn. When the time is indicated, the output of the sensor 15 is selected and outputted to the phase detection circuits 23 and 24.

位相検波回路23はセンサ12からの出力を、
位相検波回路24はセンサ13からの出力をそれ
ぞれ切替回路21からの基準信号によつて位相検
波してそれぞれ切替回路22に出力する。
The phase detection circuit 23 receives the output from the sensor 12,
The phase detection circuit 24 performs phase detection on the output from the sensor 13 using the reference signal from the switching circuit 21, and outputs the detected signal to the switching circuit 22, respectively.

切替回路22は、入力する切替信号Sが右旋回
を示すときには位相検波回路23から加わる信号
を正の速度指令としてモータ25に出力し、位相
検波回路24から加わる信号を負の速度指令とし
てモータ26に出力し、また、入力する切替信号
Sが左旋回を示すときには位相検波回路23から
加わる信号を正の速度指令としてモータ26に出
力し、位相検波回路24から加わる信号を負の速
度指令としてモータ25に出力する。
When the input switching signal S indicates right turn, the switching circuit 22 outputs the signal applied from the phase detection circuit 23 to the motor 25 as a positive speed command, and outputs the signal applied from the phase detection circuit 24 to the motor 25 as a negative speed command. 26, and when the input switching signal S indicates a left turn, the signal applied from the phase detection circuit 23 is outputted to the motor 26 as a positive speed command, and the signal applied from the phase detection circuit 24 is outputted as a negative speed command. Output to motor 25.

これにより、駆動輪1および2は、モータ25
および26により互いに逆回転するとともに、モ
ータ25および26に入力する速度指令の大きさ
に応じた速度で回転する。
As a result, drive wheels 1 and 2 are driven by motor 25.
and 26, the motors 25 and 26 rotate in opposite directions, and at a speed corresponding to the magnitude of the speed command input to the motors 25 and 26.

次に、本発明方法の旋回制御による無人車両の
動特性について考察する。
Next, the dynamic characteristics of an unmanned vehicle using the turning control method of the present invention will be considered.

走路Bの電流をI、この走路Bに対するセンサ
12の位置が第8図および第9図に示す位置にあ
る場合、走路Bの磁界を検出するセンサ12の出
力Vは、次式、 V∝hI/α2+h2 cos ……(1) で表わすことができる。今、車体が走路A,Bに
対して第10図に示す位置にあるとき、走路Bを
流れる電流の磁界をセンサ12,13で検出する
と、その出力Va,Vbは上記(1)式から、 Va=AIh/(lcos−y)2+h2cos ……(2) Vb=AIh/(lcos+y)2+h2cos ……(3) となる。ただし、Aは比例定数である。
When the current in path B is I and the position of sensor 12 with respect to path B is as shown in FIGS. 8 and 9, the output V of sensor 12 that detects the magnetic field in path B is expressed by the following formula, V∝hI /α 2 +h 2 cos ……(1) It can be expressed as follows. Now, when the vehicle body is in the position shown in Fig. 10 with respect to tracks A and B, when the magnetic field of the current flowing in track B is detected by the sensors 12 and 13, the outputs V a and V b are calculated by the above formula (1). From this, V a =AIh/(lcos−y) 2 +h 2 cos ……(2) V b =AIh/(lcos+y) 2 +h 2 cos ……(3). However, A is a proportionality constant.

本発明方法は上記第(2)、第(3)式で得られた出力
で、車体の左右の駆動モータを制御するものであ
る。右旋回の場合は、第(2)式で得られるVaが左
の駆動モータの速度となるように制御し、第(3)式
で得られるVbの負の値−Vbが右の駆動モータの
速度となるように制御する。
The method of the present invention controls the left and right drive motors of the vehicle body using the outputs obtained from equations (2) and (3) above. In the case of a right turn, control is made so that V a obtained from equation (2) becomes the speed of the left drive motor, and the negative value of V b - V b obtained from equation (3) is the speed of the left drive motor. The speed of the drive motor is controlled so that the speed of the drive motor is as follows.

左モータ25の速度をva右モータ26の速度を
vbとすれば、 va=Va vb=−Vb ……(4) である。また、車両の中心点Cの速度vcは、 vc=va+vb/2 ……(5) である。第10図に示すように走路Bをx軸、走
路Aをy軸とすれば、 dy/dt=va+vb/2cos ……(6) dy/dt=va+vb/2sin ……(7) である。一方、旋回半径Rは、 Rcos=dy/d……(8) 更に、Rは車両のトレツド2wを速度VaとVb
内分した位置と中心点Cまでの長さに等しいの
で、 R=wva+vb/va−vb ……(9) で表わすことができる。上記第(6),(8),(9)式か
ら、 d=va−vb/2w dt ……(10) となり、第(2),(3),(4),(10)式から、 d/dt=AIh/2wcos〔1/lcos−y)2+h −1/(lcos+y)2+h2〕 ……(11) を得る。これをルンゲ・クツタ法を用いて解析す
れば、を求めることができ、同時に第(6),(7)式
からx,yが求められる。
The speed of the left motor 25 is v aThe speed of the right motor 26
If v b , then v a =V a v b =−V b ...(4). Further, the speed v c of the center point C of the vehicle is v c = v a + v b /2 (5). As shown in Fig. 10, if the travel path B is the x-axis and the travel path A is the y-axis, d y /d t = v a +v b /2cos... (6) d y /d t = v a +v b / 2sin...(7). On the other hand, the turning radius R is R cos = d y / d...(8) Furthermore, since R is equal to the length between the position where the vehicle's tread 2w is internally divided by the speeds V a and V b and the center point C, R=wv a +v b /v a −v b (9). From equations (6), (8), and (9) above, d=v a −v b /2w dt ...(10), and equations (2), (3), (4), and (10) From this, we obtain d/dt=AIh/2wcos[1/lcos−y) 2 +h −1/(lcos+y) 2 +h 2 ]...(11). By analyzing this using the Runge-Kutzta method, it is possible to obtain, and at the same time, x and y can be obtained from equations (6) and (7).

第11図は上記解析結果を示すもので、旋回開
始時点からそれぞれ0秒,0.1秒,0.3秒、0.7秒、
2.0秒、5.0秒後の駆動輪1,2の位置を示してい
る。また、Lは車体中心点Cの軌跡を示す。な
お、解析に際してのデータは次の値を用いた。
Figure 11 shows the above analysis results, which are 0 seconds, 0.1 seconds, 0.3 seconds, 0.7 seconds from the start of the turn, respectively.
It shows the positions of drive wheels 1 and 2 after 2.0 seconds and 5.0 seconds. Further, L indicates the locus of the vehicle body center point C. The following values were used for the data in the analysis.

〔AI=80,h=0.1m,w=1m,l=1m y=−0.5m =0度ただし、旋回開始時点〕 第11図からも明らかなように、旋回中心は駆
動輪2上から車体中心点Cへ移動し、車体中心点
Cが走路Bへ漸近するにつれて旋回角度が90゜
に近づく。
[AI = 80, h = 0.1m, w = 1m, l = 1m y = -0.5m = 0 degree However, at the start of the turn] As is clear from Figure 11, the center of the turn is from above the drive wheels 2 to the vehicle body. The vehicle moves to the center point C, and as the vehicle body center point C asymptotically approaches the running path B, the turning angle approaches 90°.

解析の結果、従来の心地旋回に求められる重要
な条件、すなわち地上旋回点と車体中心点Cが一
致した時点で正確に車両を停止させなければなら
ないという条件を満たす必要がないことがわか
る。解析では旋回開始時点において車体中心点C
が走路Bから0.5mずれているにもかかわらず、
旋回終了後には走路B上に正確に乗つている。
As a result of the analysis, it is found that it is not necessary to satisfy the important condition required for conventional center turning, that is, the condition that the vehicle must be stopped accurately when the ground turning point and the vehicle center point C coincide. In the analysis, the vehicle body center point C at the start of the turn
Although it is 0.5m off from the running path B,
After completing the turn, the vehicle is accurately on track B.

ただし、本発明方法は旋回終了に近づくにつれ
て駆動輪の速度が0に近づくため、旋回終了まで
に論理的には無限大の時間がかかる。したがつ
て、実用的には以下に示すような工夫が必要とな
る。
However, in the method of the present invention, since the speed of the driving wheels approaches 0 as the end of the turn approaches, it theoretically takes an infinite amount of time to complete the turn. Therefore, for practical purposes, the following measures are required.

(1) 旋回終了付近で、センサ10および11によ
る通常の操舵信号を加算する。
(1) Near the end of the turn, normal steering signals from sensors 10 and 11 are added.

(2) 旋回終了付近で系のゲインを上げる。例え
ば、前記第(11)式での比例定数AIをAI=A0×t
として時間関数にする。
(2) Increase the system gain near the end of the turn. For example, the proportionality constant AI in equation (11) is defined as AI=A 0 ×t
as a time function.

(3) 旋回終了付近で駆動輪1,2の速度を一定に
する。
(3) Keep the speed of drive wheels 1 and 2 constant near the end of the turn.

また、本発明方法は前後進に対して全く対称で
あるため、前進左右旋回、後進左右旋回は等価的
に実現できる。
Further, since the method of the present invention is completely symmetrical with respect to forward and backward movement, forward left and right turns and backward left and right turns can be realized equivalently.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、路面の凹
凸、車両の停止精度等によらず、常に安定かつ精
度の高い旋回を行うことができる。また、従来に
おける地上旋回点と車体中心点とが一致した時点
で正確に車両を停止させるというステツプを踏ま
ないため、旋回に要する時間の短縮化も期待でき
る。
As explained above, according to the present invention, it is possible to always perform stable and highly accurate turns regardless of the unevenness of the road surface, the stopping accuracy of the vehicle, etc. Furthermore, since the conventional step of stopping the vehicle accurately when the ground turning point and the center point of the vehicle body coincide, the time required for turning can be expected to be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無人車両の従来の旋回方法を説明する
ために用いた図、第2図および第3図はそれぞれ
本発明方法の実施に用いられるセンサの配置態様
の一実施例を示す図、第4図,第5図および第6
図は本発明方法を説明するために用いた図で、そ
れぞれ旋回開始時、旋回途中および旋回終了近傍
の車両状態図、第7図は本発明方法を実現するた
めの装置の一実施例を示すブロツク図、第8図お
よび第9図はそれぞれ本発明に用いるセンサの出
力を説明するために用いた側面図および平面図、
第10図は本発明方法による車両の動特性を解析
するためのパラメータを示す図、第11図は旋回
開始時点からそれぞれ0秒,0.1秒,0.3秒,0.7
秒,2.0秒,5.0秒後の駆動輪の位置を示す図であ
る。 1,2…駆動輪、10〜15…センサ、21,
22…切替回路、23,24…位相検波回路、2
5,26…モータ、A,B…走路。
FIG. 1 is a diagram used to explain a conventional turning method for an unmanned vehicle, and FIGS. Figures 4, 5 and 6
The figures are diagrams used to explain the method of the present invention, and are vehicle state diagrams at the start of a turn, in the middle of a turn, and near the end of a turn, respectively. Fig. 7 shows an embodiment of a device for realizing the method of the present invention. The block diagram, FIGS. 8 and 9 are a side view and a plan view, respectively, used to explain the output of the sensor used in the present invention.
Fig. 10 is a diagram showing parameters for analyzing the dynamic characteristics of a vehicle using the method of the present invention, and Fig. 11 is a diagram showing parameters for analyzing the dynamic characteristics of a vehicle using the method of the present invention, and Fig. 11 shows parameters for 0 seconds, 0.1 seconds, 0.3 seconds, and 0.7 seconds from the start of a turn, respectively.
It is a figure which shows the position of a drive wheel after 2.0 seconds, 2.0 seconds, and 5.0 seconds. 1, 2... Drive wheel, 10-15... Sensor, 21,
22...Switching circuit, 23, 24...Phase detection circuit, 2
5, 26...Motor, A, B...Runway.

Claims (1)

【特許請求の範囲】 1 誘導磁界を発生する走路Aから該走路Aとあ
る角度で交差する誘導磁界を発生する走路Bに乗
り換える際に、左右独立して正逆転する駆動輪を
互いに逆方向に回転して旋回する無人車両の旋回
制御方法であつて、 前記走路Bからの磁界を車両の前後方向に指向
性を持つて検出する第1および第2のセンサを、
前記2つの駆動輪を結ぶ線分の中心点からそれぞ
れ車両の前方および後方に一定の距離離間して配
設し、走路Aの走行中に走路Aから走路Bに乗り
換える際に、前記第1のセンサの出力を一方の駆
動輪の正の速度指令とし、前記第2のセンサの出
力を他方の駆動輪の負の速度指令として与えるこ
とを特徴とする無人車両の旋回制御方法。
[Scope of Claims] 1. When changing from a running path A that generates an induced magnetic field to a running path B that generates an induced magnetic field that intersects the running path A at a certain angle, drive wheels that rotate forward and reverse independently on the left and right sides are moved in opposite directions to each other. A turning control method for an unmanned vehicle that rotates and turns, the method comprising: first and second sensors that detect the magnetic field from the running path B with directionality in the longitudinal direction of the vehicle;
Disposed at a fixed distance from the center point of the line segment connecting the two driving wheels to the front and rear of the vehicle, respectively, and when changing from lane A to lane B while traveling on lane A, the first A turning control method for an unmanned vehicle, characterized in that the output of the sensor is given as a positive speed command for one drive wheel, and the output of the second sensor is given as a negative speed command for the other drive wheel.
JP59222350A 1984-10-23 1984-10-23 Method for controlling turning of unmanned vehicle Granted JPS61100812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222350A JPS61100812A (en) 1984-10-23 1984-10-23 Method for controlling turning of unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222350A JPS61100812A (en) 1984-10-23 1984-10-23 Method for controlling turning of unmanned vehicle

Publications (2)

Publication Number Publication Date
JPS61100812A JPS61100812A (en) 1986-05-19
JPH0353643B2 true JPH0353643B2 (en) 1991-08-15

Family

ID=16780960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222350A Granted JPS61100812A (en) 1984-10-23 1984-10-23 Method for controlling turning of unmanned vehicle

Country Status (1)

Country Link
JP (1) JPS61100812A (en)

Also Published As

Publication number Publication date
JPS61100812A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
JPH05126580A (en) Method for measuring turning rate of vehicle and self-steering type vehicle
JPS61278912A (en) Method for guiding unmanned moving machine by spot following system
JP3841206B2 (en) Automated guided vehicle
JPH0353643B2 (en)
JP3733642B2 (en) Vehicle control device
JP3128455B2 (en) Automatic operation control device for transport vehicles
JP3952548B2 (en) Method and apparatus for controlling unmanned vehicle
JPH0370802B2 (en)
JPH05333928A (en) Back traveling control method for unmanned carrier
JPS6167111A (en) Turning controller of electromagnetic induction type moving truck
JPH0313768Y2 (en)
JPH0981240A (en) Method for controlling traveling of autonomously traveling automated guided vehicle
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP3447480B2 (en) Position measurement method and device
JPH09267685A (en) Right and left turning signal device for vehicle
JPH0820899B2 (en) Unmanned vehicle running control device
JP3804235B2 (en) Automated guided vehicle
JPH0233607A (en) Driving method for three-wheeled unmanned vehicle
JPH0512803Y2 (en)
JPH0981238A (en) Method for controlling travelling of autonomously traveling automated guided vehicle
JPH0445042Y2 (en)
JPS60205613A (en) Run control system for unmanned car
JPS6081611A (en) Unmanned carrier car
JPH07113538B2 (en) Mobile object position recognition device