JPS6020560A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6020560A
JPS6020560A JP58127674A JP12767483A JPS6020560A JP S6020560 A JPS6020560 A JP S6020560A JP 58127674 A JP58127674 A JP 58127674A JP 12767483 A JP12767483 A JP 12767483A JP S6020560 A JPS6020560 A JP S6020560A
Authority
JP
Japan
Prior art keywords
formation
semiconductor layer
drain
source
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58127674A
Other languages
Japanese (ja)
Inventor
Mitsuzo Sakamoto
光造 坂本
Takeaki Okabe
岡部 健明
Masatoshi Kimura
正利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58127674A priority Critical patent/JPS6020560A/en
Publication of JPS6020560A publication Critical patent/JPS6020560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive to enhance the speed and to enhance the withstand voltage of a drain earthed laterally structural insulated gate field effect transistor by a method wherein a high concentration impurity buried layer is provided in the neighborhood directly under the source thereof as not to reduce the withstand voltage between the source and the drain. CONSTITUTION:An N type buried layer 2A is formed in a high resistivity P type substrate 1A, and after N type epitaxial layers 3A-3C are formed, P type diffusion layers 4A, 4B to be used for element isolation and as the drain of a laterally structural MOSFET are formed. After then, formation of a gate oxide film 101, formation of a poly-Si gate 7A, ion implantation for formation of a P type impurity diffusion layer 5A to enhance the withstand voltage, formation of a P type diffusion layer 8A, formation of an N type diffusion layer 9A to short-circuit between the epitaxial layer and the source, formation of contacts, and formation of Al wirings are performed according to the manufacturing method of the usual high withstand voltage laterally structural MOSFET. Accordingly, because the high concentration impurity buried layer 2A is existing in the neighborhood directly under the source diffusion layer 8A, a punch through is hard to be generated between the source and the drain (the substrate), and the effect of a vertically parasitic PNP transistor can be reduced, too.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は絶縁ゲート電界効果トランジスタを含む集積回
路に係り、特に高速、高耐圧が要求されるドレイン接地
構造の横形構造絶縁ゲート電界効果トランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an integrated circuit including an insulated gate field effect transistor, and particularly to a lateral structure insulated gate field effect transistor with a grounded drain structure that requires high speed and high breakdown voltage.

〔発明の背影〕[Background of invention]

第1図に単体横形構造絶縁ゲート電界効果トラ、ンジス
タの断面構造を示した。ソースとゲートは表面から端子
を取るが、ドレインは裏面から端子を取るため、ドレイ
ンの抵抗低減のためIAは畠不純物濃度であった。この
ため、IAと3B間に形成される空乏層は低不純物濃度
の3B側によく伸びソース・ドレイン間がパンチスルー
しやすいという欠点があった。
Figure 1 shows the cross-sectional structure of a single lateral structure insulated gate field effect transistor. The source and gate have terminals from the front surface, but the drain has terminals from the back surface, so IA had a Hatake impurity concentration to reduce the resistance of the drain. Therefore, the depletion layer formed between IA and 3B extends well toward the low impurity concentration 3B side, and there is a drawback that punch-through between the source and drain tends to occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的はドレイン接地の横形構造絶縁ゲ−ト電界
効果トランジスタにおいてソース・ドレイン間耐圧を低
下させないようにソース直下近傍に高濃度不純物埋込層
を設けこの高濃度不純物埋込層によりソースとドレイン
の耐圧を向上させた半導体装置を提案することにある。
An object of the present invention is to provide a high-concentration impurity buried layer directly below the source in order to prevent a decrease in source-drain breakdown voltage in a lateral structure insulated gate field effect transistor with a common drain. The object of the present invention is to propose a semiconductor device with improved drain breakdown voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図によp説明する。製造
法は高抵抗率のp形基板IAKn形埋込層2Aを形成し
、n形エピタキシャル層3A。
An embodiment of the present invention will be described below with reference to FIG. The manufacturing method is to form a high resistivity p-type substrate IAKn-type buried layer 2A, and then form an n-type epitaxial layer 3A.

3B、3Cを形成後、素子分離および横形構造絶縁ゲー
ト電界効果トランジスタのドレインとして用いるp膨拡
散層4A、4Bを形成する。その後、通常の高耐圧横形
構造絶縁ゲート電界効果トランジスタの製造方法により
、ゲート酸化膜1o1形成、polySjのゲート(7
A)形成、ドーズ量I X 1012cm−”程度の高
耐圧化のだめのp形不純物拡散層5Aのためのイオン打
込、p形のソース拡散層8Aの形成、エビタギシャル層
とソースを短絡するだめのn膨拡散層9Aの形成、コン
タクト形成、A/、配線形成を行うことにょシ製造でき
る。第2図に示した構造では、ドレイン端子を表面から
取るため、基板IAを低不純物濃度にできる。このため
、IAと3B間の空乏層はIA側に広カル。特に、ソー
ス8A直下近傍には高濃度不純物埋込層2Aがあるため
、ソースとドレイン(基板)はパンチスルーが生じに<
<、寄生縦形PNPの効果も小さくできる。また、基板
IAが低濃度であるため、高濃度埋込層2Aがあっても
、アバランシェによる耐圧低下は少ない。また、基板I
Aよシ高濃夏なドレイン部(4Aと4B)は高濃度埋込
層2Aとは直接に接しないように形成するため、4Aや
4B近傍でのアバランシェによる耐圧低下も防げる。ま
た、ドレインは基板と同電位になっているため、使用上
の制約はあるが、ドレインが分離された構造に比べ、素
子面積は小さくなるという利点がある。
After forming layers 3B and 3C, p-swelled diffusion layers 4A and 4B are formed to be used for element isolation and as a drain of a lateral structure insulated gate field effect transistor. Thereafter, a gate oxide film 1o1 is formed and a polySj gate (7
A) Formation, ion implantation for p-type impurity diffusion layer 5A with a dose of about I x 1012 cm-'' for high breakdown voltage, formation of p-type source diffusion layer 8A, and ion implantation for short-circuiting between the evitigmental layer and the source. It can be manufactured by forming the n-swelled diffusion layer 9A, contact formation, A/wire formation, etc. In the structure shown in FIG. 2, since the drain terminal is taken from the surface, the substrate IA can have a low impurity concentration. Therefore, the depletion layer between IA and 3B is wide on the IA side.In particular, since there is a high concentration impurity buried layer 2A directly under the source 8A, punch-through occurs between the source and drain (substrate).
<, the effect of parasitic vertical PNP can also be reduced. In addition, since the substrate IA has a low concentration, even if the high concentration buried layer 2A is present, there is little reduction in breakdown voltage due to avalanche. Also, the substrate I
Since the highly concentrated drain portions (4A and 4B) of A are formed so as not to be in direct contact with the highly doped buried layer 2A, a drop in breakdown voltage due to avalanche near 4A and 4B can be prevented. Further, since the drain is at the same potential as the substrate, there are restrictions on use, but it has the advantage that the device area is smaller than a structure in which the drain is separated.

第3図には、第2図の実施例とゲート7の構造が異なる
実施例を示す。
FIG. 3 shows an embodiment in which the structure of the gate 7 is different from the embodiment shown in FIG.

第4図にはソース拡散層4Bとドレイン拡散層4Cを同
時に形成した場合である、この場合、ドレイン拡散層4
Cは基板IAに到達するが、ソース拡散層4Bは埋込層
2Aにより基板IAとパンチスルーしないようにしてい
る。
FIG. 4 shows a case where a source diffusion layer 4B and a drain diffusion layer 4C are formed at the same time.
C reaches the substrate IA, but the source diffusion layer 4B is prevented from punching through the substrate IA by the buried layer 2A.

第5図には、第4図で使用していた高耐圧化のためのP
拡散層5Aをとった構造を示した。
Figure 5 shows the P for high voltage resistance used in Figure 4.
A structure with a diffusion layer 5A is shown.

第6図には、ゲート2個(7C,7D)用い、左右に電
流を流せるようにした構造を示した。なお、この実施例
では、累子分離部のフィールドブル−)7A、7B、7
Eとしてゲート(7C97]))と同一の膜(例、po
lysi)を用いたので、ゲート以外の導電性の配線(
例、At)は1層だけ(IOA、l0B)でよい。
FIG. 6 shows a structure in which two gates (7C, 7D) are used to allow current to flow left and right. In addition, in this embodiment, the field blue (7A, 7B, 7) of the separator separation section is
E as the gate (7C97])) and the same film (e.g., po
lysi) was used, conductive wiring other than the gate (
For example, At) only needs one layer (IOA, 10B).

第7図には本発明横形構造絶縁ゲート電界効果トランジ
スタ(pチャネル)と同一プロセスで形成できる縦形構
造絶縁ゲート電界効果トランジスタ(nチャネル)を示
した。この2種のトランジスタを用いることにより、第
8図の回路を構成できる。この回路は、たとえば、パワ
ーMO8FETアンプ出力段に使用できる。
FIG. 7 shows a vertical insulated gate field effect transistor (n channel) which can be formed in the same process as the lateral insulated gate field effect transistor (p channel) of the present invention. By using these two types of transistors, the circuit shown in FIG. 8 can be constructed. This circuit can be used, for example, in a power MO8FET amplifier output stage.

第9図にはロチャネルトランジスタの耐圧を向上させる
ために公知の技術(たとえば公開特許公報昭55−30
844)を用いた例を示した。
FIG. 9 shows a known technique for improving the withstand voltage of a low-channel transistor (for example, published patent publication No. 55-30).
844) was shown.

第10図には素子分離用拡散層(4A、4B)の内側に
形成されるドレイン(8c)は、基板IAまで致達しな
くてもよいことを示した実施例である。この場合8cの
横方向の拡散が4 A 。
FIG. 10 shows an example showing that the drain (8c) formed inside the element isolation diffusion layers (4A, 4B) does not have to reach the substrate IA. In this case, the lateral diffusion of 8c is 4 A.

4Bに比べ小さいので、素子面積を節約できる。Since it is smaller than 4B, the element area can be saved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、(以下に述べるような効果がある。ソ
ース・ドレイン間のパンチスルーによる耐圧低下とアバ
ランシェにょる制圧劣化が少ない高耐圧のドレイン接地
構造横形構造絶縁ゲート電界効果トランジスタが実現で
きる。また、ドレイ/接地構造であるため、素子分離領
域の分たけ面積が小さい。
According to the present invention, it is possible to realize an insulated gate field effect transistor with a lateral structure of a common drain structure and a high withstand voltage, with less reduction in breakdown voltage due to punch-through between the source and drain and less deterioration of suppression due to avalanche. Furthermore, since the device has a drain/ground structure, the area of the element isolation region is small.

また、上記ドレイン接地構造横形構造絶縁ゲート電界効
果トランジスタをこれと同一チップ上に形成したコンプ
リメンタリな特性を持つ絶縁ゲート電界効果トランジス
タと接続したソースフォロワのプッシュプル回路は、高
周波・高耐圧の性能を小さい素子面積で実現できる。
In addition, the push-pull circuit of the source follower connected to the insulated gate field effect transistor with complementary characteristics formed on the same chip as the horizontal insulated gate field effect transistor with the common drain structure has high frequency and high breakdown voltage performance. This can be achieved with a small element area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はドレイン接地横形構造絶縁ゲート電界効果トラ
ンジスタの断面図、第2図から第6図と第10図は本発
明のドレイン接地横形構造絶縁ゲート電界効果トランジ
スタの断面図、第7図は同一チップ上に縦形構造絶縁ゲ
ート電界効果トランジスタQ2を形成した場合の断面図
、第8図は縦形構造絶縁ゲート電界効果トランジスタQ
2を厚いエピタキシャル層領域で形成した場合の断面図
、第9図は第7図や第8図に示した素子によって構成で
きるコンプリメンタリ回路を示す図である。 I A ・I)形基板、2A、2B・−n+埋込層、3
八〜3F・・・n形エピタキシャル層、4A、4B。 4C・・・p膨拡散層(素子分離と横形構造絶縁ゲート
電界効果トランジスタのドレイン)、5A〜5D・・・
p−拡散層、6A〜6■・・・絶縁膜(例5i02゜P
SG)、7八〜7E・・・ゲートとシールドプレート(
例、poly3i)、s A〜s E−、)膨拡散層、
9A、9B、9C・ n膨拡散層、−10〜10H・・
・配線(例、At)、IIA〜11E・・・絶縁膜(例
、8jO2、PSG、PIQ)、12A、12B、12
C・・・配線(例、At)、13A、13 B−n形拡
散第 1 図 χ 4 図 第5 図 第 6(2]
FIG. 1 is a cross-sectional view of a common drain lateral structure insulated gate field effect transistor, FIGS. 2 to 6 and 10 are cross sectional views of a common drain lateral structure insulated gate field effect transistor of the present invention, and FIG. 7 is the same. A cross-sectional view of a vertical structure insulated gate field effect transistor Q2 formed on a chip, FIG. 8 is a vertical structure insulated gate field effect transistor Q
FIG. 9 is a cross-sectional view when 2 is formed of a thick epitaxial layer region, and is a diagram showing a complementary circuit that can be constructed by the elements shown in FIGS. 7 and 8. IA/I) type substrate, 2A, 2B/-n+ buried layer, 3
8-3F...n-type epitaxial layer, 4A, 4B. 4C...p swelling diffusion layer (element isolation and drain of lateral structure insulated gate field effect transistor), 5A to 5D...
p-diffusion layer, 6A~6■...Insulating film (Example 5i02゜P
SG), 78~7E...Gate and shield plate (
Example, poly3i), s A to s E-,) swelling diffusion layer,
9A, 9B, 9C/n swelling diffusion layer, -10~10H...
・Wiring (e.g., At), IIA to 11E... Insulating film (e.g., 8jO2, PSG, PIQ), 12A, 12B, 12
C... Wiring (e.g., At), 13A, 13 B-n type diffusion Figure 1 χ 4 Figure 5 Figure 6 (2)

Claims (1)

【特許請求の範囲】 1、第1導電形半導体基板上に形成された第2導電形の
第1半導体層を第1導電形の第2半導体層で分離し、そ
の内側に第1導電形の第3半導体層を形成し、各々を横
形構造絶縁ゲート電界効果トランジスタのソースとドレ
インとし、ソース直下近傍の第1導電形半導体基板と第
2半導体層との界面に第2半導体層よシ高濃度の第2導
電形の第5半導体層を前記第2半導体層や第4半導体層
の高濃度部分と直接に接しないように設けることを特徴
とする半導体装置。 2、前記第3半導体層と前記第4半導体層を同時に形成
することを特徴とする特許請求の範囲第1項記載の半導
体装置。 3、前記第4半導体層と前記第2半導体層を同時に形成
することを特徴とする特許請求の範囲第1項記載の半導
体装置。 4、前記第3半導体層と前記第4半導体層を前記第2半
導体層と同時に形成することを特徴とすることを特徴と
する特許請求の範囲第1項記載の半導体装置。
[Claims] 1. A first semiconductor layer of a second conductivity type formed on a semiconductor substrate of a first conductivity type is separated by a second semiconductor layer of a first conductivity type, and a semiconductor layer of a first conductivity type is formed inside the second semiconductor layer of a first conductivity type. A third semiconductor layer is formed, each serving as a source and a drain of a lateral structure insulated gate field effect transistor, and the second semiconductor layer is highly doped at the interface between the first conductivity type semiconductor substrate and the second semiconductor layer immediately below the source. A semiconductor device characterized in that a fifth semiconductor layer of a second conductivity type is provided so as not to be in direct contact with a high concentration portion of the second semiconductor layer or the fourth semiconductor layer. 2. The semiconductor device according to claim 1, wherein the third semiconductor layer and the fourth semiconductor layer are formed at the same time. 3. The semiconductor device according to claim 1, wherein the fourth semiconductor layer and the second semiconductor layer are formed at the same time. 4. The semiconductor device according to claim 1, wherein the third semiconductor layer and the fourth semiconductor layer are formed simultaneously with the second semiconductor layer.
JP58127674A 1983-07-15 1983-07-15 Semiconductor device Pending JPS6020560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127674A JPS6020560A (en) 1983-07-15 1983-07-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127674A JPS6020560A (en) 1983-07-15 1983-07-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6020560A true JPS6020560A (en) 1985-02-01

Family

ID=14965906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127674A Pending JPS6020560A (en) 1983-07-15 1983-07-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6020560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684240A1 (en) * 1991-11-21 1993-05-28 Sgs Thomson Microelectronics ZENER MOS TRANSISTOR WITH INTEGRATED PROTECTION.
US7986004B2 (en) 2006-06-21 2011-07-26 Panasonic Corporation Semiconductor device and method of manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684240A1 (en) * 1991-11-21 1993-05-28 Sgs Thomson Microelectronics ZENER MOS TRANSISTOR WITH INTEGRATED PROTECTION.
US7986004B2 (en) 2006-06-21 2011-07-26 Panasonic Corporation Semiconductor device and method of manufacture thereof

Similar Documents

Publication Publication Date Title
US20200111909A1 (en) Embedded JFETs for High Voltage Applications
US8193585B2 (en) Semiconductor device with increased snapback voltage
US7893489B2 (en) Semiconductor device having vertical MOSFET
US7466006B2 (en) Structure and method for RESURF diodes with a current diverter
CN104319238A (en) Method of forming a high electron mobility semiconductor device and structure therefor
CN103681826A (en) Power semiconductor device
JPH07283414A (en) Mos-type semiconductor device
TW399337B (en) Semiconductor device
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JP2002343960A (en) Semiconductor device
US20210296161A1 (en) Semiconductor Device and Method for Manufacturing Same
JPS6020560A (en) Semiconductor device
US5760444A (en) Silicon on insulator type semiconductor device
JP2005191031A (en) Lateral direction diffusion type field effect semiconductor device
US6225642B1 (en) Buried channel vertical double diffusion MOS device
JP6389247B2 (en) Insulated gate bipolar transistor amplifier circuit
US20210273118A1 (en) Semiconductor Device
US20210280573A1 (en) Semiconductor device and method for manufacturing same
JPS62136867A (en) Semiconductor device
JP3216258B2 (en) Insulated gate semiconductor device
JP2015211140A (en) Semiconductor device
US20240178277A1 (en) Semiconductor device and method of manufacturing the same
JP4547872B2 (en) Method for manufacturing switching element
US11444154B2 (en) Semiconductor device with a protected element
JP5213840B2 (en) Semiconductor device