JP3216258B2 - Insulated gate semiconductor device - Google Patents

Insulated gate semiconductor device

Info

Publication number
JP3216258B2
JP3216258B2 JP24295092A JP24295092A JP3216258B2 JP 3216258 B2 JP3216258 B2 JP 3216258B2 JP 24295092 A JP24295092 A JP 24295092A JP 24295092 A JP24295092 A JP 24295092A JP 3216258 B2 JP3216258 B2 JP 3216258B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
conductivity type
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24295092A
Other languages
Japanese (ja)
Other versions
JPH0697447A (en
Inventor
功 吉田
嶺雄 勝枝
正文 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24295092A priority Critical patent/JP3216258B2/en
Publication of JPH0697447A publication Critical patent/JPH0697447A/en
Application granted granted Critical
Publication of JP3216258B2 publication Critical patent/JP3216258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に係り、特に
高周波用途に好適な絶縁ゲート半導体装置に関する。
The present invention relates to a semiconductor device, and more particularly to an insulated gate semiconductor device suitable for high frequency applications.

【0002】[0002]

【従来の技術】従来、電力用途の絶縁ゲート形電界効果
トランジスタ(MOSFET)においては、1990年
電子情報通信学会秋季全国大会C−481及び1991
年電子情報通信学会春季全国大会C−569に記載のよ
うに、高周波特性改善のために、ゲート長や低濃度ドレ
イン領域の長さを短くして、遮断周波数の向上やドレイ
ン−基板間の容量の低減の方策が取られていた。
2. Description of the Related Art Conventionally, in the field of insulated gate field effect transistors (MOSFETs) for power use, the Institute of Electronics, Information and Communication Engineers Autumn National Convention C-481 and 1991, 1990.
As described in IEICE Spring National Convention C-569, the gate length and the length of the low-concentration drain region were shortened to improve the high-frequency characteristics, thereby improving the cut-off frequency and the capacitance between the drain and the substrate. Measures were taken to reduce emissions.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術には、M
OSFETのゲート長が短くなった場合に、高周波特性
がゲート電極の抵抗により制限されて低下する問題や、
しきい電圧の低下、安全動作領域が狭くなる問題があっ
た。従って、本発明の一つの目的は、ゲート電極の抵抗
を低減して高周波特性を改善することにある。また、本
発明の一つの目的は、しきい電圧特性や安全動作領域を
改善することによって、高性能な絶縁ゲート半導体装置
を提供することにある。
The above prior art includes M
When the gate length of the OSFET is shortened, the high frequency characteristics are limited by the resistance of the gate electrode and deteriorate,
There has been a problem that the threshold voltage is reduced and the safe operation area is narrowed. Therefore, one object of the present invention is to improve the high frequency characteristics by reducing the resistance of the gate electrode. It is another object of the present invention to provide a high-performance insulated gate semiconductor device by improving a threshold voltage characteristic and a safe operation area.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明の一実施形態によれば、第1導電型の第1半
導体領域(1)上に第1導電型の第2半導体領域(2)
を設け、半導体主面から前記第1半導体領域(1)に達
するように形成した第1導電型の第3半導体領域(3)
を設け、第2導電型の第4半導体領域(4)をMOSF
ETのソース領域とし、前記第2半導体領域(2)内に
形成された第2導電型の低不純物濃度の第5半導体領域
(5)並びに第2導電型の高不純物濃度の第6半導体領
域(6)をドレイン領域とし、上記ソース、ドレイン間
に絶縁膜(8)を介してゲート電極(9)を形成し、そ
のゲート電極(9)の膜厚がゲート長よりも大きくした
こと特徴とするものである(図1参照)。本発明の好適
な実施形態は、前記ソース領域端部に隣接して設けられ
た第1導電型の第7半導体領域(7)を設けたことを特
徴とするものである(図1参照)。本発明の好適な実施
形態によれば、前記第1導電型の第7半導体領域(7)
が前記ゲート電極もしくはそのゲート電極を覆った絶縁
物をマスクとして、半導体主面に対して斜め方向のイオ
ン打ち込み法によって形成されたことを特徴とするもの
である(図3参照)。
According to one embodiment of the present invention, a second semiconductor region of a first conductivity type is formed on a first semiconductor region of a first conductivity type. (2)
And a third semiconductor region (3) of the first conductivity type formed so as to reach the first semiconductor region (1) from the semiconductor main surface.
And the fourth semiconductor region (4) of the second conductivity type is MOSF
A second conductive type low impurity concentration fifth semiconductor region (5) formed in the second semiconductor region (2) and a second conductive type high impurity concentration sixth semiconductor region ( 6) is a drain region, a gate electrode (9) is formed between the source and the drain via an insulating film (8), and the thickness of the gate electrode (9) is larger than the gate length. (See FIG. 1). A preferred embodiment of the present invention is characterized in that a first conductive type seventh semiconductor region (7) provided adjacent to the end of the source region is provided (see FIG. 1). According to a preferred embodiment of the present invention, the first conductive type seventh semiconductor region (7).
Are formed by ion implantation in a direction oblique to the semiconductor main surface using the gate electrode or an insulator covering the gate electrode as a mask (see FIG. 3).

【0005】[0005]

【作用】本発明の代表的な実施形態(図1)では、短チ
ャネルを有するMOSFETのゲート電極の膜厚をゲー
ト長さより大とされている。これにより、ゲート電極の
抵抗が大幅に低減でき、高周波特性を向上できる(図4
参照)。本発明の好適な実施形態では、ソース領域端部
に隣接してポケット状に高濃度ベース領域を設けたこと
である。これにより、ゲート電極の抵抗が大幅に低減で
き、MOSFETの高周波特性を向上させることができ
る(図4参照)とともに、ポケット状の高濃度ベース領
域によって、しきい電圧の低下(図5参照)や安全動作
領域の減少を防止して、高性能MOSFETを提供でき
る。本発明のMOSFETを電力用高周波増幅器として
用いた場合、20GHzの動作周波数においても動作さ
せることができ、2.5GHzでの付加効率の向上が図
れる。
In a typical embodiment of the present invention (FIG. 1), the gate electrode of a MOSFET having a short channel has a thickness greater than the gate length. As a result, the resistance of the gate electrode can be significantly reduced, and the high-frequency characteristics can be improved (FIG. 4).
reference). In a preferred embodiment of the present invention, a high-concentration base region is provided in a pocket shape adjacent to the end of the source region. As a result, the resistance of the gate electrode can be significantly reduced, the high-frequency characteristics of the MOSFET can be improved (see FIG. 4), and the threshold voltage can be reduced (see FIG. 5) by the pocket-like high-concentration base region. A high-performance MOSFET can be provided by preventing a reduction in the safe operation area. When the MOSFET of the present invention is used as a high-frequency power amplifier, it can be operated at an operating frequency of 20 GHz, and the additional efficiency at 2.5 GHz can be improved.

【0006】[0006]

【実施例】以下、本発明の実施例を図面により詳細に説
明する。図1は本発明の第1の実施例の絶縁ゲート半導
体装置の断面図を示してある。本素子はソース接地型の
高周波用MOSFETである。本構造は0.02Ωcm
以下のP型半導体基板1上に低濃度P型半導体層2を厚
さ5μmのエピタキシャル成長したものを用いる。その
半導体表面より、ベースコンタクト層となるP型領域3
をP型半導体基板1に達するように5μm以上の深さに
形成する。ゲート絶縁膜8は厚さ30nmで、ゲート電
極9はモリブデン金属を用い、膜厚0.8μm、ゲート
長0.4μmである。ここで、ゲート電極膜厚がゲート
長より大きいことに特徴があり、その結果、ゲート長が
短くなることによるゲート抵抗の増大が防止されてい
る。そして、ゲート電極の端部側壁を絶縁物スペーサ7
1で覆い、その絶縁物71下方の半導体表面領域に表面
濃度が1×1018/cm3以下の低濃度N型領域6が自
己整合的に配置されている。ここで、スペーサの幅は
0.8μmであり、ドレイン電極を取り出すドレイン・
コンタクト領域の幅は0.6μmである。さらに、ソー
ス領域4の端部はポケット状のP型半導体領域7で覆わ
れ、その領域はベース領域3に接続されている。なおア
ルミニウム金属のドレイン電極12及びソース電極10
は高濃度N型領域6、4に接続されている。裏面のソー
ス電極11は前記P型半導体基板1とP型領域3を介し
て前記ソース電極10に接続されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of an insulated gate semiconductor device according to a first embodiment of the present invention. This element is a common source type high frequency MOSFET. This structure is 0.02Ωcm
A low-concentration P-type semiconductor layer 2 having a thickness of 5 μm epitaxially grown on the following P-type semiconductor substrate 1 is used. From the semiconductor surface, a P-type region 3 serving as a base contact layer
Is formed to a depth of 5 μm or more so as to reach the P-type semiconductor substrate 1. The gate insulating film 8 has a thickness of 30 nm, the gate electrode 9 is made of molybdenum metal, and has a thickness of 0.8 μm and a gate length of 0.4 μm. Here, the feature is that the gate electrode film thickness is larger than the gate length, and as a result, an increase in gate resistance due to a shortened gate length is prevented. Then, the side wall at the end of the gate electrode is placed on the insulator spacer 7.
The low-concentration N-type region 6 having a surface concentration of 1 × 10 18 / cm 3 or less is self-aligned in a semiconductor surface region below the insulator 71. Here, the width of the spacer is 0.8 μm, and the width of the drain
The width of the contact region is 0.6 μm. Further, the end of the source region 4 is covered with a pocket-shaped P-type semiconductor region 7, which is connected to the base region 3. The aluminum metal drain electrode 12 and the source electrode 10
Are connected to the high-concentration N-type regions 6 and 4. The source electrode 11 on the back surface is connected to the source electrode 10 via the P-type semiconductor substrate 1 and the P-type region 3.

【0007】図2は本発明のMOSFETの平面図であ
り、ゲート電極9がストライプ状に形成され、そのスト
ライプの長さは300μmである。ゲート取り出し電極
はストライプ電極のバスライン部で接続されてされてい
る。またドレイン電極12はそのまま取り出し電極とな
り、ソース電極10はベース3とソース4とを接続する
ショートバーの役目をしている。
FIG. 2 is a plan view of a MOSFET according to the present invention. The gate electrode 9 is formed in a stripe shape, and the length of the stripe is 300 μm. The gate extraction electrode is connected to a bus line portion of the stripe electrode. Further, the drain electrode 12 serves as an extraction electrode as it is, and the source electrode 10 functions as a short bar connecting the base 3 and the source 4.

【0008】図3は本発明のMOSFETの主要製造プ
ロセスを示す断面構造図である。
FIG. 3 is a sectional structural view showing a main manufacturing process of the MOSFET of the present invention.

【0009】(a)ゲート絶縁膜8形成後、モリブデン
金属及び絶縁膜70を被着し、ゲート電極9を形成す
る。 しかる後、(b)CVD法により絶縁膜を厚さ0.8μ
m被着し、全面ドライエッチングにより、絶縁膜スペー
サ71を形成する。次に、硼素イオン7’を図のように
半導体主面に斜めに照射する。加速エネルギは75ke
V、ドーズ量は5×1013/cm2である。この場合図
のごとく並置されたゲート電極9および絶縁膜スペーサ
71がマスクとなって、ポケット上のP型領域7はドレ
イン領域にはほとんど形成されないでソース側にのみ形
成される。 (c)前記絶縁膜スペーサ71をマスクにして、低濃度
ドレイン領域5および高濃度ソース領域4をそれぞれイ
オン打ち込みにより形成する。打ち込み量は、ドレイン
がリン5×1013/cm2、ソースが砒素1×1015
cm2である。 (d)ドレイン電極コンタクト用の高濃度ドレイン領域
6を形成する。打ち込み量は、砒素1×1015/cm2
である。 以下の工程は通常に行なわれる高周波半導体プロセスを
用いて製作できるので説明は省略する。本構造の特徴
は、ゲート電極膜の厚さがゲート長よりも大きいためゲ
ート長が短くなってもゲート抵抗の増大が抑えられるこ
と、そしてポケット状のベース領域がソース端部を覆っ
て設けられるためゲート長が短くなってもしきい電圧の
低下や安全動作領域の減少が抑えられること、さらには
ポケット状のベース領域がドレイン領域にはほとんど接
しないのでドレイン−ソース間の容量の増大も抑えられ
る。
(A) After forming the gate insulating film 8, a molybdenum metal and an insulating film 70 are applied to form a gate electrode 9. Thereafter, (b) the insulating film is formed to a thickness of 0.8 μm by the CVD method.
Then, an insulating film spacer 71 is formed by dry etching on the entire surface. Next, the semiconductor main surface is obliquely irradiated with boron ions 7 'as shown in the figure. The acceleration energy is 75 ke
V, the dose is 5 × 10 13 / cm 2 . In this case, the gate electrode 9 and the insulating film spacer 71 which are juxtaposed as shown in the figure serve as a mask, and the P-type region 7 on the pocket is hardly formed in the drain region but formed only on the source side. (C) Using the insulating film spacer 71 as a mask, the low concentration drain region 5 and the high concentration source region 4 are formed by ion implantation. The implantation amount was 5 × 10 13 / cm 2 for phosphorus at the drain and 1 × 10 15 / cm for arsenic at the source.
cm 2 . (D) A high concentration drain region 6 for drain electrode contact is formed. The implantation amount is 1 × 10 15 / cm 2 arsenic.
It is. The following steps can be manufactured by using a high-frequency semiconductor process that is usually performed, and thus description thereof is omitted. The feature of this structure is that the thickness of the gate electrode film is larger than the gate length, so that the increase in gate resistance is suppressed even if the gate length is shortened, and a pocket-like base region is provided to cover the source end. Therefore, even if the gate length is shortened, the threshold voltage and the safe operation area are suppressed from being reduced, and further, since the pocket-shaped base region hardly contacts the drain region, the increase in the capacitance between the drain and the source is also suppressed. .

【0010】本発明の効果を示す特性説明図を図4、図
5に示す。図4はパワーMOSFETの遮断周波数ft
のチャネル長Lc依存性である。ここでゲート電極膜厚
は、従来構造では0.3μm一定に対して、本発明の構
造ではLcが0.5μmでは0.6μm以上、Lcが0.
3μmでは0.6μm以上に設定している。ftは、Lc
の減少と共に向上するが、Lcが0.5μm以下の場合
には従来構造ではゲート抵抗の増大のために制限されて
しまう。一方、本発明の構造ではLcが0.5μm以下
となっても、ftは、図のごとく向上する。また、図5
はMOSFETのしきい電圧VTのチャネル長Lc依存性
である。ここで本発明の構造では、ポケット状のベース
領域が設けられている。従来構造ではLcが1.0μm
以下の場合、VTが低下すると共にバラツキが増大する
など、性能低下が発生するが、本発明によれば、0.2
μm程度まで、性能低下はほとんど発生しない。また、
本発明の構造のパワーMOSFETは、2次降伏などに
よる安全動作領域の減少も生じない。
FIGS. 4 and 5 are explanatory diagrams of characteristics showing the effect of the present invention. FIG. 4 shows the cutoff frequency ft of the power MOSFET.
Is dependent on the channel length Lc. Here, the gate electrode film thickness is constant at 0.3 μm in the conventional structure, but is 0.6 μm or more when Lc is 0.5 μm and Lc is 0.1 μm in the structure of the present invention.
At 3 μm, it is set to 0.6 μm or more. ft is Lc
However, when Lc is 0.5 μm or less, the conventional structure is limited by an increase in gate resistance. On the other hand, in the structure of the present invention, even if Lc becomes 0.5 μm or less, ft improves as shown in the figure. FIG.
Is the channel length Lc dependence of the threshold voltage V T of the MOSFET. Here, in the structure of the present invention, a pocket-shaped base region is provided. Lc is 1.0 μm in the conventional structure
In the following cases, performance degradation such as a decrease in V T and an increase in variation occurs.
Up to about μm, performance degradation hardly occurs. Also,
The power MOSFET having the structure of the present invention does not cause a reduction in the safe operation area due to secondary breakdown or the like.

【0011】図6は、本発明の第2の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのドレイン領域61を低濃度ドレイン領域5上
にN型不純物をドープした多結晶シリコンを積み上げる
ことにより形成している。これにより高濃度ドレイン領
域とシリコン基板との接触面積が減少し、ドレイン−ソ
ース間の容量が低減できた。また、低濃度ドレイン領域
5における高濃度ドレイン領域61の端部からゲート電
極9の端部までの距離、つまり実効オフセット長が増大
してドレイン耐圧が約10V向上した。
FIG. 6 is a sectional structural view of an insulated gate semiconductor device according to a second embodiment of the present invention. In this embodiment, the MO
The drain region 61 of the SFET is formed by stacking polycrystalline silicon doped with an N-type impurity on the low concentration drain region 5. As a result, the contact area between the high-concentration drain region and the silicon substrate was reduced, and the capacitance between the drain and the source could be reduced. Further, the distance from the end of the high-concentration drain region 61 to the end of the gate electrode 9 in the low-concentration drain region 5, that is, the effective offset length was increased, and the drain withstand voltage was improved by about 10V.

【0012】図7は、本発明の第3の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのドレイン電極を多層化し第2の取り出しドレ
イン電極13を設け、電流容量の増大と取り出し電極の
配線の自由度を向上している。本構造では1層目のドレ
イン電極の幅が小さいので、その電流容量を増大させる
必要がある。
FIG. 7 is a sectional structural view of an insulated gate semiconductor device according to a third embodiment of the present invention. In this embodiment, the MO
The drain electrode of the SFET is multi-layered and a second extraction drain electrode 13 is provided to increase the current capacity and improve the degree of freedom of the interconnection of the extraction electrode. In this structure, since the width of the first layer drain electrode is small, it is necessary to increase the current capacity.

【0013】図8は、本発明の第4の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのソース電極10を半導体基板の表面より取り
出す構造にしている。複数個並置されたゲート電極9の
膜厚が0.8μm、ゲート長が0.4μmで、そのゲー
ト電極の端部側壁を覆うように形成した絶縁物スペーサ
71をマスクとして形成し、N型高濃度ソース領域2、
N型低濃度ドレイン領域5、n型高濃度ドレイン領域
6、さらにポケット状のベース領域7を形成している。
その結果、ソース領域も低面積化が図れ、集積度が向上
した。
FIG. 8 is a sectional structural view of an insulated gate semiconductor device according to a fourth embodiment of the present invention. In this embodiment, the MO
The source electrode 10 of the SFET is taken out from the surface of the semiconductor substrate. A plurality of juxtaposed gate electrodes 9 have a film thickness of 0.8 μm and a gate length of 0.4 μm, and are formed by using an insulator spacer 71 formed so as to cover an end side wall of the gate electrode as a mask. Concentration source region 2,
An N-type low-concentration drain region 5, an n-type high-concentration drain region 6, and a pocket-shaped base region 7 are formed.
As a result, the area of the source region can be reduced, and the degree of integration is improved.

【0014】図9は、本発明の第5の実施例の通信用高
周波増幅器モジュールの回路配置図である。本実施例で
は、第1の実施例で説明したMOSFET(Q1、Q
2、Q3)に加えて、抵抗、容量、インピーダンスなど
の高周波整合回路を図のように配置し、セラミック基板
上でモジュール化した。その結果、電源電圧3V、動作
周波数2.5GHzにおいて、出力電力2W、付加効率
60%を達成し、従来のものに比べ格段に高性能化が図
れた。
FIG. 9 is a circuit layout diagram of a communication high-frequency amplifier module according to a fifth embodiment of the present invention. In this embodiment, the MOSFETs (Q1, Q1) described in the first embodiment are used.
In addition to 2, Q3), a high-frequency matching circuit such as a resistor, a capacitor, and an impedance was arranged as shown in the figure and modularized on a ceramic substrate. As a result, at a power supply voltage of 3 V and an operating frequency of 2.5 GHz, an output power of 2 W and an additional efficiency of 60% were achieved, and the performance was significantly improved as compared with the conventional one.

【0015】[0015]

【発明の効果】本発明によれば、ゲート電極の抵抗が大
幅に低減でき、MOSFETの遮断周波数を向上させる
ことができるとともに、ポケット状の高濃度ベース領域
によって、しきい電圧の低下や安全動作領域の減少を防
止して、高性能MOSFETを提供できるので、MOS
FETの高周波特性が格段に向上するという効果があ
る。
According to the present invention, the resistance of the gate electrode can be greatly reduced, the cutoff frequency of the MOSFET can be improved, and the threshold voltage can be reduced and the safe operation can be achieved by the pocket-like high concentration base region. Since a high-performance MOSFET can be provided by preventing the area from being reduced, the MOS
There is an effect that the high frequency characteristics of the FET are significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の半導体装置である。FIG. 1 is a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の半導体装置である。FIG. 2 is a semiconductor device according to a first embodiment of the present invention.

【図3】本発明の実施例の製造工程を示す半導体装置で
ある。
FIG. 3 is a semiconductor device illustrating a manufacturing process according to an embodiment of the present invention.

【図4】本発明の第1の実施例の特性説明図である。FIG. 4 is a characteristic explanatory diagram of the first embodiment of the present invention.

【図5】本発明の第1の実施例の特性説明図である。FIG. 5 is a characteristic explanatory diagram of the first embodiment of the present invention.

【図6】本発明の第2の実施例の半導体装置である。FIG. 6 shows a semiconductor device according to a second embodiment of the present invention.

【図7】本発明の第3の実施例の半導体装置である。FIG. 7 shows a semiconductor device according to a third embodiment of the present invention.

【図8】本発明の第4の実施例の半導体装置である。FIG. 8 shows a semiconductor device according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施例の半導体装置である。FIG. 9 shows a semiconductor device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…P型高濃度半導体基板、2…P型半導体領域、3…
P型ベース領域、4…N型ソース領域、5…N型低濃度
ドレイン領域、6…N型高濃度ドレイン領域、61…N
型多結晶ドレイン領域、7…P型ベース領域、7’…硼
素イオンビーム、70…絶縁膜、71…絶縁膜スペー
サ、8…ゲート絶縁膜、9…ゲート電極、10…ソース
電極、11…ソース裏面電極、12…ドレイン電極、1
3…取り出しドレイン電極、14…ベース基板電極。
DESCRIPTION OF SYMBOLS 1 ... P type high concentration semiconductor substrate, 2 ... P type semiconductor region, 3 ...
P-type base region, 4 ... N-type source region, 5 ... N-type low-concentration drain region, 6 ... N-type high-concentration drain region, 61 ... N
Type polycrystalline drain region, 7 P-type base region, 7 'boron ion beam, 70 insulating film, 71 insulating film spacer, 8 gate insulating film, 9 gate electrode, 10 source electrode, 11 source Back electrode, 12 ... Drain electrode, 1
3 ... take-out drain electrode, 14 ... base substrate electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−88773(JP,A) 特開 昭63−124572(JP,A) 特開 平3−11731(JP,A) 特開 平2−174169(JP,A) 特開 昭53−84484(JP,A) 特開 昭52−86777(JP,A) 特開 平1−98262(JP,A) 特開 平2−260449(JP,A) 実開 昭59−119045(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-88773 (JP, A) JP-A-63-124572 (JP, A) JP-A-3-11731 (JP, A) JP-A-2- 174169 (JP, A) JP-A-53-84484 (JP, A) JP-A-52-86777 (JP, A) JP-A-1-98262 (JP, A) JP-A-2-260449 (JP, A) (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 29/78

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体基板と、該半導体基板
と同一導電型であって、該半導体基板の主面上に形成さ
れたチャネル形成の第1の半導体領域と、上記第1の半
導体領域上にゲート絶縁膜を介して形成されたゲート電
極と、上記第1の半導体領域内に形成された第1導電型
とは反対の導電型を示す第2導電型のソース領域および
ドレイン領域と、上記第1の半導体領域表面より上記半
導体基板に到達する第1導電型の第2の半導体領域と、
上記ドレイン領域に接続されたドレイン電極と、上記ソ
ース領域と上記第2の半導体領域とに接続されたソース
電極と、上記半導体基板の裏面に接続された裏面のソー
ス電極と、上記ドレイン電極に接続された取り出しドレ
イン電極とから成り、上記ソース領域側においては、上
記ソース領域に接して上記ゲート電極下に位置して第1
導電型の第3の半導体領域が設けられ、上記ソース領域
と上記第3の半導体領域とでPN接合が構成され、上記
ドレイン領域側においては、上記ドレイン領域と上記第
1の半導体領域とでPN接合が構成され、上記ゲート電
極の膜厚がゲート長さより大きいことを特徴とする絶縁
ゲート半導体装置。
A semiconductor substrate of a first conductivity type; a first semiconductor region of the same conductivity type as the semiconductor substrate, the first semiconductor region having a channel formed on a main surface of the semiconductor substrate; A gate electrode formed on the semiconductor region via a gate insulating film, and a source region and a drain region of a second conductivity type formed in the first semiconductor region and having a conductivity type opposite to the first conductivity type. A second semiconductor region of a first conductivity type reaching the semiconductor substrate from the surface of the first semiconductor region;
A drain electrode connected to the drain region; a source electrode connected to the source region and the second semiconductor region; a source electrode on a back surface connected to the back surface of the semiconductor substrate; and a connection to the drain electrode. A drain electrode formed on the side of the source region, the first region being located below the gate electrode in contact with the source region on the side of the source region.
A third semiconductor region of conductivity type is provided, and a PN junction is formed by the source region and the third semiconductor region. On the drain region side, a PN junction is formed by the drain region and the first semiconductor region. An insulated gate semiconductor device, wherein a junction is formed, and a thickness of the gate electrode is larger than a gate length.
【請求項2】上記第1導電型はP型であり、上記第2導
電型はN型であることを特徴とする請求項1記載の絶縁
ゲート半導体装置。
2. The insulated gate semiconductor device according to claim 1, wherein said first conductivity type is P-type and said second conductivity type is N-type.
【請求項3】上記ドレイン領域は、別工程で形成された
低濃度領域と高濃度領域とから成り、該高濃度領域に上
記ドレイン電極が接続され、上記低濃度領域と上記第1
の半導体領域とでPN接合が構成されていることを特徴
とする請求項1または請求項2記載の絶縁ゲート半導体
装置。
3. The drain region includes a low-concentration region and a high-concentration region formed in separate steps, the drain electrode is connected to the high-concentration region, and the low-concentration region and the first
3. The insulated gate semiconductor device according to claim 1, wherein a PN junction is formed with said semiconductor region.
【請求項4】第1導電型の半導体基板と、該半導体基板
と同一導電型であって、該半導体基板の主面上に形成さ
れたチャネル形成の第1の半導体領域と、上記第1の半
導体領域上にゲート絶縁膜を介して形成されたゲート電
極と、上記第1の半導体領域内に形成された第1導電型
とは反対の導電型を示す第2導電型のソース領域および
ドレイン領域と、上記第1の半導体領域表面より上記半
導体基板に到達する第1導電型の第2の半導体領域と、
上記ドレイン領域に接続されたドレイン電極と、上記ソ
ース領域と上記第2の半導体領域とに接続されたソース
電極と、上記半導体基板の裏面に接続された裏面のソー
ス電極と、上記ドレイン電極に接続された取り出しドレ
イン電極とから成り、上記ソース領域側においては、上
記第1の半導体領域に接して上記ゲート電極下に位置し
て第1導電型の第3の半導体領域が設けられ、上記ソー
ス領域と上記第3の半導体領域とでPN接合が構成さ
れ、上記ドレイン領域側においては、上記ドレイン領域
と上記第1の半導体領域とでPN接合が構成されている
ことを特徴とする絶縁ゲート半導体装置。
4. A semiconductor substrate of a first conductivity type, a first semiconductor region of the same conductivity type as the semiconductor substrate, the first semiconductor region being formed on a main surface of the semiconductor substrate and having a channel formed therein; A gate electrode formed on the semiconductor region via a gate insulating film, and a source region and a drain region of a second conductivity type formed in the first semiconductor region and having a conductivity type opposite to the first conductivity type. A second semiconductor region of a first conductivity type reaching the semiconductor substrate from the surface of the first semiconductor region;
A drain electrode connected to the drain region; a source electrode connected to the source region and the second semiconductor region; a source electrode on a back surface connected to the back surface of the semiconductor substrate; and a connection to the drain electrode. A third semiconductor region of a first conductivity type is provided on the source region side in contact with the first semiconductor region and below the gate electrode, and a third semiconductor region of the first conductivity type is provided on the source region side. An insulated gate semiconductor device, wherein a PN junction is formed by the drain region and the third semiconductor region, and a PN junction is formed by the drain region and the first semiconductor region on the drain region side. .
JP24295092A 1992-09-11 1992-09-11 Insulated gate semiconductor device Expired - Lifetime JP3216258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24295092A JP3216258B2 (en) 1992-09-11 1992-09-11 Insulated gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24295092A JP3216258B2 (en) 1992-09-11 1992-09-11 Insulated gate semiconductor device

Publications (2)

Publication Number Publication Date
JPH0697447A JPH0697447A (en) 1994-04-08
JP3216258B2 true JP3216258B2 (en) 2001-10-09

Family

ID=17096640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24295092A Expired - Lifetime JP3216258B2 (en) 1992-09-11 1992-09-11 Insulated gate semiconductor device

Country Status (1)

Country Link
JP (1) JP3216258B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187220A3 (en) 2000-09-11 2007-10-10 Kabushiki Kaisha Toshiba MOS field effect transistor with reduced on-resistance
US6552389B2 (en) 2000-12-14 2003-04-22 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
TWI361490B (en) 2003-09-05 2012-04-01 Renesas Electronics Corp A semiconductor device and a method of manufacturing the same
JP2005116876A (en) 2003-10-09 2005-04-28 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0697447A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
US7709313B2 (en) High performance capacitors in planar back gates CMOS
US5872037A (en) Method for manufacturing a vertical mosfet including a back gate electrode
US4757032A (en) Method for DMOS semiconductor device fabrication
KR19980064498A (en) Semiconductor device and manufacturing method thereof
JP3520973B2 (en) Semiconductor device
US20040140517A1 (en) LDMOS transistor with high voltage source and drain terminals hideaki tsuchiko
EP0827202A2 (en) Semiconductor device including protection means and method of fabricating the same
KR100398164B1 (en) Insulated Gate Semiconductor Device
JPH01205470A (en) Semiconductor device and its manufacture
US6376870B1 (en) Low voltage transistors with increased breakdown voltage to substrate
US5451536A (en) Power MOSFET transistor
JP2002343960A (en) Semiconductor device
JP3216258B2 (en) Insulated gate semiconductor device
KR960001342B1 (en) Semiconductor memory device
KR19980023923A (en) Semiconductor device having MOS capacity and manufacturing method thereof
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
US6025239A (en) Method for fabricating an electrostatic discharge device
KR100247840B1 (en) Soi type semiconductor device
JP2926962B2 (en) Semiconductor device having MIS type field effect transistor
JP2005191031A (en) Lateral direction diffusion type field effect semiconductor device
JP2755247B2 (en) Semiconductor device
JPS63168050A (en) Semiconductor device
US6373110B2 (en) Semiconductor device having high breakdown voltage
JP3063051B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12