JPS6020555B2 - Steam or hydrothermal plants for offshore oil fields - Google Patents

Steam or hydrothermal plants for offshore oil fields

Info

Publication number
JPS6020555B2
JPS6020555B2 JP53135270A JP13527078A JPS6020555B2 JP S6020555 B2 JPS6020555 B2 JP S6020555B2 JP 53135270 A JP53135270 A JP 53135270A JP 13527078 A JP13527078 A JP 13527078A JP S6020555 B2 JPS6020555 B2 JP S6020555B2
Authority
JP
Japan
Prior art keywords
water
hot
steam
oil
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135270A
Other languages
Japanese (ja)
Other versions
JPS5561696A (en
Inventor
秀達 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP53135270A priority Critical patent/JPS6020555B2/en
Publication of JPS5561696A publication Critical patent/JPS5561696A/en
Publication of JPS6020555B2 publication Critical patent/JPS6020555B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は海底油田において原油孫収率向上のための一方
法である油田への蒸気または熱水の圧入を行う海底油田
用蒸気または熱水プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam or hot water plant for an undersea oil field that injects steam or hot water into an oil field, which is one method for improving the yield of crude oil in an undersea oil field.

蒸気または熱水圧入法は特に粘性の高い石油(通常AP
I度22斗下)を産する油田に用いて大きな効果があげ
ることができる。
Steam or hot water injection methods are particularly suitable for highly viscous petroleum (usually AP).
It can be used to great effect in oil fields that produce 1°C (22 to below).

このための油田用ポィラは一種の温水ポィラとして使用
される関係上「従来から貫通ボィラが実用されている。
また蒸気温度としては30000以下で十分に原油の流
動性は増加し、採油を容易にすることが可能である。た
だ、この方法の問題の一つはボィラ給水の確保にあり、
特に、海底油田においては如何にして大量のボィラ給水
を経済的に確保するかである。また別の問題として、採
油した原油から分離してなる廃水(大半は油田水)を公
害問題などに関係なく処理し得るかである。本発明は蒸
気または熱水圧入法における上記問題点を解決し得る海
底油田用蒸気または熱水プラントを提供するもので、以
下その−実施例を図面に基づいて説明する。
The oil field boiler for this purpose has been used as a kind of hot water boiler, so a through boiler has been in practical use for a long time.
Further, when the steam temperature is 30,000 or less, the fluidity of crude oil can be sufficiently increased and oil extraction can be facilitated. However, one of the problems with this method is securing the boiler water supply.
In particular, the issue is how to economically secure a large amount of boiler water supply in offshore oil fields. Another issue is whether wastewater separated from extracted crude oil (mostly oil field water) can be treated without regard to pollution problems. The present invention provides a steam or hot water plant for submarine oil fields that can solve the above-mentioned problems in the steam or hot water injection method, and embodiments thereof will be described below with reference to the drawings.

第1図において1はボィラで、給水タンク2から給水ポ
ンプ3により供給されたボイラ給水aを加熱して過熱蒸
気bを製造する。ボィラ燃料cとしては普通の油田4に
おいて極めて豊富に産出する天然ガスまたは原油が使用
され、バーナ5において燃焼される。6は温廃水加熱器
で、温廃水タンク7から温廃水加圧ポンプ8を通して供
給された温廃水dに対して、前記ボィラ1で発生した過
熱蒸気bを噴射して加熱する。
In FIG. 1, 1 is a boiler that heats boiler feed water a supplied from a water tank 2 by a water pump 3 to produce superheated steam b. Natural gas or crude oil, which is extremely abundantly produced in ordinary oil fields 4, is used as the boiler fuel c and is burned in the burner 5. Reference numeral 6 denotes a hot waste water heater, which injects superheated steam b generated in the boiler 1 to heat the hot waste water d supplied from the hot waste water tank 7 through the hot waste water pressurizing pump 8.

これにより生じた熱水または蒸気eは減圧弁9を開放す
ることによってそのまま油田4に圧入され、また減圧弁
9で減圧して自己蒸発させ、圧入流体中の蒸気の割合を
増加させた状態で圧入される。なお熱水圧入の方が原油
探収上有利な場合は減圧弁9を省略し得る。一方ボイラ
ーからの過熱蒸気bはタービン10を駆動して発電機1
1を運転する。タービン10から排出される排気蒸気f
は造水装置12に送られ、その加熱用蒸気として使用さ
れる。造水装置12において海水ポンプ13を通して送
られてきた海水gから製造された生産水hは生産水移送
ポンプ14により給水タンク2に送られ、貯蔵される。
またタービン10の排出蒸気fは造水装置12で加熱用
蒸気として使用されて復水され、給水ポンプ3により再
びボィラ給水aとしてボイラ1に循環される。さらに造
水装置12において、海水gから生産水hを製造する際
に生じる約4ぴ0の温廃水d(濃縮廃水および冷却廃水
)は、その」一部をパージpして残り‘ま溢廃水タンク
7に送られ、貯蔵される。15は発電機11により駆動
される採油ポンプで、これにより汲み上げられた原油i
は油水分離器16に送られる。
The hot water or steam e generated by this is directly injected into the oil field 4 by opening the pressure reducing valve 9, and is also depressurized by the pressure reducing valve 9 to self-evaporate, increasing the proportion of steam in the injected fluid. Press-fitted. Note that if hot water injection is more advantageous for crude oil exploration, the pressure reducing valve 9 may be omitted. On the other hand, superheated steam b from the boiler drives a turbine 10 to generate a generator 1.
Drive 1. Exhaust steam f discharged from the turbine 10
is sent to the freshwater generator 12 and used as heating steam. Product water h produced from seawater g sent through the seawater pump 13 in the water generator 12 is sent to the water supply tank 2 by the product water transfer pump 14 and stored.
Further, the exhaust steam f of the turbine 10 is used as heating steam in the freshwater generator 12 and condensed, and is circulated to the boiler 1 again as boiler feed water a by the feed water pump 3. Furthermore, in the water production device 12, about 4000 g of hot wastewater d (concentrated wastewater and cooling wastewater) generated when producing water h from seawater g is partially purged and left as overflow wastewater. It is sent to tank 7 and stored. 15 is an oil extraction pump driven by the generator 11, and the crude oil i pumped up by this pump is
is sent to the oil-water separator 16.

この油水分離器16に分離された原油iは陸上のタンク
などに送られ、また温廃水d(分離水で、採油された原
油が80qo前後の温度を有することからかなりの高温
である。)は温廃水タンク7に送られ、貯蔵される。j
は排気、17〜22は夫々バルブを示す。次にその動作
について説明する。
The crude oil i separated by this oil-water separator 16 is sent to a tank on land, and the heated waste water d (separated water, which is quite high temperature since the extracted crude oil has a temperature of around 80 qo) is sent to a tank on land. The hot waste water is sent to the heated waste water tank 7 and stored. j
is an exhaust gas, and 17 to 22 are valves, respectively. Next, its operation will be explained.

本発明プラントはバルブ17〜22の操作により蒸気ま
たは熱水圧入の工程と、進水および採油の工程とが選択
され、先ず油田4への熱水または蒸気eの圧入を一定期
記、例えば10日程度行った後、付近の油井または蒸気
圧入井を利用して採油すると同時に造水装置12などに
よりボィラ給水aのための造水をするようになし、これ
ら2種の工程の繰返いこよって運転される。第2図は熱
水または蒸気圧入工程を示し、このときタービン10な
らびに造水装置12に対応するバルブ18,20,22
は閉じられ、残りの17,19,21は開けられている
In the plant of the present invention, the steam or hot water injection process and the launching and oil extraction process are selected by operating the valves 17 to 22. First, hot water or steam e is injected into the oil field 4 at a fixed period, e.g. After about a day, oil is extracted using a nearby oil well or steam injection well, and at the same time, water is generated for boiler water supply a using a water generation device 12, etc., and these two types of processes are repeated. be driven. FIG. 2 shows a hot water or steam injection process, in which valves 18, 20, 22 corresponding to the turbine 10 and the water generator 12 are shown.
is closed, and the remaining 17, 19, and 21 are open.

給水タンク2から給水ポンプ3を介して供給されたボイ
ラ給水aはボィラ1で過熱蒸気b変換され、該過熱蒸気
bは温廃水加熱器6に噴射される。この温廃水加熱器6
には、温廃水タンク7から温廃水加圧ポンプ8を介して
溢廃水dが供給されており、したがって温廃水dは過熱
蒸気bにより加熱され、熱水または蒸気eとなって油田
4に庄入される。第3図は造水および採油工程を示し、
このとき溢廃水加熱器6に対応するバルブ19,21は
閉じられ、残り17,18,20‘ま開けられている。
前工程において圧入された熱水または蒸気eにより粘度
の低下した油田亀内の原油iは採油ポンプ15により採
油され、独水分機器16に送られる。そして油水分鱗器
16において分離された原油iは陸上のタンクなどに送
られ、また温廃水dは温廃水タンク7に送られる。前述
した採油時に、ボィラ1で発生せしめられた過熱蒸気b
はタービン10を駆動し、発電機11を運転させる。こ
れにより採油ポンプ15やその他のポンプ用動力を得る
。さらに排気蒸気fは造水装置12の加熱用蒸気として
使用され、復水は給水ポンプ3を通して再びボィラ1に
循環される。また海水ポンプ13を通して造水装置12
に供給された海水gから得られた生産水h‘ま生産水移
送ポンプ14を通して給水タンク2に貯えられる。前記
した1〜22の機器は石油採掘用プラットホーム上に裾
付けられるが、給水タンク2および温廃水タンク7に大
容量のものが必要な場合は「これをプラットホーム上に
談涜せずに海上に浮かせる方が良い。
Boiler feed water a supplied from a water supply tank 2 via a water supply pump 3 is converted into superheated steam b in the boiler 1, and the superheated steam b is injected into a hot waste water heater 6. This hot waste water heater 6
Overflow water d is supplied from the hot waste water tank 7 via the hot waste water pressurizing pump 8. Therefore, the hot waste water d is heated by the superheated steam b, becomes hot water or steam e, and is sent to the oil field 4. entered. Figure 3 shows the water production and oil extraction process,
At this time, the valves 19, 21 corresponding to the overflow water heater 6 are closed, and the remaining valves 17, 18, 20' are opened.
Crude oil i in the Kamenai oil field, whose viscosity has been reduced by the hot water or steam e injected in the previous step, is extracted by an oil extraction pump 15 and sent to a water-hydration device 16 . The crude oil i separated in the oil-water scaler 16 is sent to a tank on land, and the heated wastewater d is sent to the heated wastewater tank 7. Superheated steam b generated in boiler 1 during oil extraction as described above
drives the turbine 10 and operates the generator 11. This provides power for the oil extraction pump 15 and other pumps. Further, the exhaust steam f is used as heating steam for the fresh water generator 12, and the condensate is circulated to the boiler 1 again through the water feed pump 3. In addition, the water generator 12 is passed through the seawater pump 13.
The produced water h' obtained from the seawater g supplied to the tank is stored in the water supply tank 2 through the produced water transfer pump 14. The above-mentioned equipment 1 to 22 can be installed on the platform for oil drilling, but if large capacity water tanks 2 and hot waste water tanks 7 are required, they can be installed at sea without being exposed on the platform. It's better to let it float.

上記実施例では、排気蒸気f円利用した蒸発式の造水装
置12をベースに説明したが、これは海水gを利用した
逆浸透膜式造水装置を採用してもよい。
Although the above embodiment has been described based on the evaporative water generation device 12 that uses exhaust steam f, a reverse osmosis membrane water generation device that uses seawater g may also be adopted.

この場合は、造水装置からの廃水は温度的にメリットは
ないが、その代りに10k9/仇G程度の残圧があり、
これを圧入用水の一部として利用できるメリットがある
。以上本発明によれば、次の如き利点を有する。
In this case, the wastewater from the fresh water generator has no advantage in terms of temperature, but instead has a residual pressure of about 10k9/g,
This has the advantage of being able to be used as part of the injection water. As described above, the present invention has the following advantages.

1 低質の水を、油田へ圧入する蒸気または熱水の用水
として使用可能である。
1. Low-quality water can be used for steam or hot water to be pumped into oil fields.

すなわち溢廃水加熱器中にボィラにて発生した過熱蒸気
を噴射し加熱しているため、低質の水を庄入用水として
使用できる。したがって油水分離器にて分離された温廃
水および造水装置から排出された温廃水を圧入用水とし
て利用できる。特に、公害問題などから河川、海洋など
への廃棄ができない油水分離器からの分離温廃水を全て
利用し「且つ処理できるため極めて有利である。0 廃
水の熱エネルギーと回収、利用できる。
That is, since superheated steam generated in a boiler is injected into the overflow water heater to heat it, low-quality water can be used as water for irrigation. Therefore, the hot wastewater separated by the oil-water separator and the hot wastewater discharged from the fresh water generator can be used as water for injection. In particular, it is extremely advantageous because it can fully utilize and process the separated hot wastewater from oil-water separators that cannot be disposed of into rivers, oceans, etc. due to pollution problems.0 Wastewater can be recovered and used as thermal energy.

すなわち蒸気圧入は粘度の高い車質油の油田を対象とし
て実施され、圧入蒸気により油の流動性を増加させて採
油を行う。したがって、採油された原油は8000前後
の温度を有し、故に分離水の温度も高い。また造水装置
から排出される濃縮廃水および冷却水の廃水も約40℃
ほどあり、かかる廃水を使用することにより熱的に有利
となる。m 前(ロ)項より、同り熱量を庄入する場合
、例えばボィラ発生蒸気を一部のボィラ給水にて減温す
る方法よりも本方式の方が、ボィラ、造水装置、給水タ
ンクなどの容量が小さくてすみ、極めて有利である。
In other words, steam injection is carried out in oil fields containing high-viscosity car oil, and oil is extracted by increasing the fluidity of the oil using the injection steam. Therefore, the extracted crude oil has a temperature of around 8000°C, and therefore the temperature of the separated water is also high. Also, the concentrated wastewater and cooling water discharged from the water production equipment are approximately 40°C.
The use of such wastewater is thermally advantageous. m From the previous paragraph (b), when the same amount of heat is injected, this method is better than the method of reducing the temperature of boiler-generated steam using some boiler feed water, for example, because the boiler, water production equipment, water supply tank, etc. This is extremely advantageous since it requires only a small capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体系統図、第2図は
熱水または蒸気圧入工程での系統図、第3図は造水およ
び採油工程での系統図である。 1・・・・・・ボイラ、2・・・給水タンク、4・・・
・・・油田、6・・・・・・温廃水加熱器、7・・・・
・・温廃水タンク、12・・・・・・造水装置、16・
・・油水分雛器、a・・・・・・ボィラ給水、b…過熱
蒸気、d・・・・・・温廃水、e・・・・・・熱水また
は蒸気、i・・・・・・原油。 第1図 第2図 第3図
FIG. 1 is an overall system diagram showing an embodiment of the present invention, FIG. 2 is a system diagram for the hot water or steam injection process, and FIG. 3 is a system diagram for the water generation and oil extraction processes. 1...Boiler, 2...Water tank, 4...
・・・Oil field, 6... Warm waste water heater, 7...
・・Warm wastewater tank, 12・・・・ Fresh water generator, 16・
・・Oil/water container, a・・Boiler feed water, b・Superheated steam, d・・Hot waste water, e・・Hot water or steam, i・・・・・·crude oil. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 給水タンクと、油田から得られた天然ガスまたは原
油を燃焼させて給水タンクから供給されたボイラ給水を
加熱して過熱蒸気を製造するボイラと、該ボイラから供
給された過熱蒸気により作動させられるパワープラント
と、該パワープラントから排出される排気蒸気により海
水を加熱して生産水を製造する装水装置と、該造水装置
により製造された生産水を上記給水タンクに移送する生
産水移送ポンプと、採油した原油から温廃水を分離する
油水分離器と、該油水分離器から分離された温廃水およ
び造水装置から排出された温廃水を貯蔵する温廃水タン
クと、該温廃水タンクから供給された温廃水に対して前
記ボイラで発生した過熱蒸気を噴射して加熱し、これに
よつて生じた熱水または蒸気を油田に圧入させる温廃水
加熱器とを有することを特徴とする海底油田用蒸気また
は熱水プラント。
1. A water supply tank, a boiler that burns natural gas or crude oil obtained from an oil field and heats the boiler feed water supplied from the water tank to produce superheated steam, and is operated by the superheated steam supplied from the boiler. A power plant, a water supply device that heats seawater with exhaust steam discharged from the power plant to produce produced water, and a produced water transfer pump that transfers the produced water produced by the water production device to the water supply tank. , an oil-water separator that separates hot wastewater from extracted crude oil, a hot wastewater tank that stores the hot wastewater separated from the oil-water separator and hot wastewater discharged from the water production equipment, and a hot wastewater tank supplied from the hot wastewater tank. An undersea oil field characterized by having a hot waste water heater that injects superheated steam generated in the boiler to heat the heated waste water and pressurizes the hot water or steam generated thereby into the oil field. steam or hot water plants.
JP53135270A 1978-11-01 1978-11-01 Steam or hydrothermal plants for offshore oil fields Expired JPS6020555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53135270A JPS6020555B2 (en) 1978-11-01 1978-11-01 Steam or hydrothermal plants for offshore oil fields

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53135270A JPS6020555B2 (en) 1978-11-01 1978-11-01 Steam or hydrothermal plants for offshore oil fields

Publications (2)

Publication Number Publication Date
JPS5561696A JPS5561696A (en) 1980-05-09
JPS6020555B2 true JPS6020555B2 (en) 1985-05-22

Family

ID=15147768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53135270A Expired JPS6020555B2 (en) 1978-11-01 1978-11-01 Steam or hydrothermal plants for offshore oil fields

Country Status (1)

Country Link
JP (1) JPS6020555B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420302A (en) * 1967-04-11 1969-01-07 Guy G Edwards Oil processing system
US3844349A (en) * 1973-01-26 1974-10-29 Mobil Oil Corp Petroleum production by steam injection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420302A (en) * 1967-04-11 1969-01-07 Guy G Edwards Oil processing system
US3844349A (en) * 1973-01-26 1974-10-29 Mobil Oil Corp Petroleum production by steam injection

Also Published As

Publication number Publication date
JPS5561696A (en) 1980-05-09

Similar Documents

Publication Publication Date Title
US7891188B2 (en) Apparatus for producing power using geothermal liquid
US3470943A (en) Geothermal exchange system
CN102365495B (en) Method of direct steam generation using an oxyfuel combustor
CN101708871B (en) Gradient preheating multistage evaporation-type seawater desalination power generation system
CA2668243A1 (en) System and method for producing power from thermal energy stored in a fluid produced during heavy oil extraction
EA015957B1 (en) A method and an apparatus for producing liquid flow in a pipeline
JP2015206360A (en) System and method of distillation process and turbine engine intercooler
JPH09502233A (en) Geothermal / fossil fuel combined use power plant
US20090107143A1 (en) Apparatus and method for producing power using geothermal fluid
KR101526220B1 (en) Adjustment device of condenser effluent from power plant, and salinity gradient power generation system using this adjustment device
JPS6020555B2 (en) Steam or hydrothermal plants for offshore oil fields
KR20160054981A (en) Multi-effect distillator utilizing waste heat of stack gas from power plant, and desalination method using the same
JP6896137B1 (en) Heat exchanger used for geothermal power generation and geothermal power generation system using this
JPH0985059A (en) Seawater desalting apparatus by reverse osmosis membrane
Uehara The present status and future of ocean thermal energy conversion
Meegahapola et al. The ocean thermal energy conversion strategies and analysis of current challenges
Alkhasov et al. Evaluating the effect from constructing binary geothermal power units based on spent petroleum and gas boreholes in the south regions of Russia
JP6844880B1 (en) Geothermal exchanger and geothermal power generator
Kong Engineering problems of a new thermal seawater desalination technology
RU2181158C1 (en) Process of development of oil fields
US20220364440A1 (en) Water Processing System and Method
JPS5512221A (en) Waste heat retrieving method from combustion exhaust
JPS5853163B2 (en) Steam plant for offshore oil fields
JPS5847000B2 (en) Steam plant for offshore oil fields
JPS5820359B2 (en) Oil field hot water and steam plants