JPS60205422A - Fabry-perot resonance type polarization plane rotating element - Google Patents

Fabry-perot resonance type polarization plane rotating element

Info

Publication number
JPS60205422A
JPS60205422A JP6227184A JP6227184A JPS60205422A JP S60205422 A JPS60205422 A JP S60205422A JP 6227184 A JP6227184 A JP 6227184A JP 6227184 A JP6227184 A JP 6227184A JP S60205422 A JPS60205422 A JP S60205422A
Authority
JP
Japan
Prior art keywords
magneto
optic medium
light
distance
reflecting films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6227184A
Other languages
Japanese (ja)
Inventor
Manabu Gomi
学 五味
Masanori Abe
正紀 阿部
Masaharu Moritsugu
森次 政春
Minoru Fujino
稔 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6227184A priority Critical patent/JPS60205422A/en
Publication of JPS60205422A publication Critical patent/JPS60205422A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain the small-sized polarization plane rotating element with high performance by controlling a temperature control means on the basis of the output of a transmitted light monitor, and specifying the distance between both reflecting films through the thermal expansion of a magneto-optic medium and increasing magneto-optic effect. CONSTITUTION:Linear polarized light 1 with wavelength lambda which is incident in a (z) direction is reflected several times between reflecting films 3 and 3' provided on both end surfaces of the magneto-optic medium 2' which induces an angle theta0 of Faraday rotation when light passes through the magneto-optic medium 2' in the presence of an impressed external magnetic field 5 while the plane of polarization is rotated, and the light is projected as the sum of respective reflected light electric field vectors. The distance l between the reflecting films is adjusted to an integral multiple of lambda/2 and then the angle theta of Faraday rotation increases the value that the magneto- optic medium 2' has originally. A heater is wound around a resonator so as to the work accuracy of the magneto-optic medium 2' nearly as high as the wavelength of the light, and the thermal expansion due to the temperature rise of the magneto-optic medium 2' is utilized to adjust the distance l between the reflecting films.

Description

【発明の詳細な説明】 (+1 発明の技術分野 本発明は偏光面回転素子に係り、特に磁気光学効果によ
る偏光面の回転角を光共振作用に基づいて大幅に増大す
る手段に関する。
DETAILED DESCRIPTION OF THE INVENTION (+1) Technical Field of the Invention The present invention relates to a polarization plane rotating element, and more particularly to a means for significantly increasing the rotation angle of a polarization plane due to the magneto-optic effect based on an optical resonance effect.

(b) 従来技術と問題点 光アイソレータ、光変調素子、光磁気メモリなど磁気光
学効果を利用した技術の研究が盛んに行なわれるのに伴
って、7アラデー効果を用いて大きな偏光面の回転角を
得る高性能な7アラデ一回転素子の開発が重要となって
きている。
(b) Prior art and problems As research into technologies that utilize the magneto-optic effect, such as optical isolators, optical modulators, and magneto-optical memories, has been actively conducted, it has become possible to develop large rotation angles of the plane of polarization using the 7Araday effect. It is becoming important to develop a high-performance 7-Alade single-turn element that obtains the following.

しかし従来用いられている磁気光学媒体の材料は、赤外
域で用いられている一部のもの(例えばY、I、O)を
除いて磁気光学性能指数が低く、そのtこめ大きな偏光
面の回転角を得るために、素子を大型化したり、多重反
射を利用して光路長を長くする必要があり、このことは
必然的に大きな光損失を伴なうという欠点があった。
However, conventionally used materials for magneto-optical media, except for some materials used in the infrared region (e.g. Y, I, O), have a low magneto-optical figure of merit, and therefore have a large rotation of the plane of polarization. In order to obtain the angle, it is necessary to increase the size of the element or to lengthen the optical path length by utilizing multiple reflections, which has the disadvantage of inevitably accompanied by large optical loss.

(C) 発明の目的 本発明は上記従来の欠点に鑑み、磁気光学媒体の有する
磁気光学効果を増大し、小型で高性能な偏光面回転素子
の提供を目的とする。
(C) Object of the Invention In view of the above-mentioned conventional drawbacks, it is an object of the present invention to increase the magneto-optic effect of a magneto-optic medium and provide a small and high-performance polarization plane rotation element.

Cd) 発明の構成 そしてこの目的は本発明によれば平行端面を有する磁気
光学媒体の両端面に反射膜を具備してなる7アブリペロ
ー共振器を利用した偏光面回転用磁気光学媒体であって
、該磁気光学媒体の温度を調整する温度調整手段を設け
ると共に、前記磁気光学媒体の透過光を監視する透過光
モニターを設け、該透過光モニターの出力によりて前記
温度調整手段を制御することにより前記両反射膜間の距
離を前記磁気光学媒体の熱膨張によって所要値にするこ
とを特徴とする7アブリペロ一共振型偏光面回転素子を
提供することにより達成される。
Cd) Structure and object of the invention According to the present invention, there is provided a magneto-optic medium for rotating the plane of polarization using a 7 Abry-Perot resonator comprising a magneto-optic medium having parallel end faces and reflective films on both end faces, A temperature adjusting means for adjusting the temperature of the magneto-optical medium is provided, a transmitted light monitor is provided for monitoring the transmitted light of the magneto-optical medium, and the temperature adjusting means is controlled by the output of the transmitted light monitor. This is achieved by providing a 7-Abry-Perot resonant polarization plane rotation element, which is characterized in that the distance between both reflective films is set to a desired value by thermal expansion of the magneto-optic medium.

(61発明の実施例 以下本発明の実施例を図面によって詳述する。(Examples of 61 inventions Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は7アブリペロー共振を利用しtこ7アラデ一回
転素子の原理図を示す。
FIG. 1 shows a principle diagram of a one-turn element using seven Abry-Perot resonances.

図においてlは直線偏光であって矢印は座標2方向を示
し、平行端面を有する光学媒体2の両端面に反射膜8.
3′を設け、反射膜8を透過して光学媒体2に入射した
直線偏光lは両反射膜3と8′にて多重反射を反復した
る後に透過光4に示すように出射する。この時雨反射膜
間の距離が直線偏光1の1/2波長の整数倍のとき1こ
、透過光4の光量が増大しこの現象を71ブリペローの
共振作用という。
In the figure, l indicates linearly polarized light, arrows indicate two coordinate directions, and reflective films 8.
3' is provided, and the linearly polarized light l transmitted through the reflective film 8 and incident on the optical medium 2 undergoes multiple reflections at both the reflective films 3 and 8', and then is emitted as shown in transmitted light 4. When the distance between the rain-reflecting films is an integral multiple of the 1/2 wavelength of the linearly polarized light 1, the amount of transmitted light 4 increases, and this phenomenon is called the 71 Briperot resonance effect.

次に光学媒体2を磁気光学媒体2′に置換し外部磁場5
を印加する。直線偏光lの電界ベクトル八を座標2方向
に直交する面に座標X軸とy軸を想定し、電界ベクトル
塩を第1図の左図に示すように0点を中心にX軸上を矢
印方向に変化する偏光面を有するものとした場合に、透
過光4の透過電界ベクトルEは1g1図の右図に示すよ
うにX軸に対して角度θだけ回転する。これは磁場の作
用による7アラデー効果によるものである。
Next, the optical medium 2 is replaced with a magneto-optic medium 2', and the external magnetic field 5 is
Apply. The electric field vector 8 of linearly polarized light l is assumed to have coordinates X and y axes on a plane perpendicular to the two coordinate directions, and the electric field vector salt is plotted as an arrow on the X axis centered on the 0 point as shown in the left diagram of Figure 1. In the case of having a plane of polarization that changes in the direction, the transmitted electric field vector E of the transmitted light 4 is rotated by an angle θ with respect to the X axis, as shown in the right figure of the 1g1 diagram. This is due to the 7 Alladay effect due to the action of the magnetic field.

すなわち本発明は光共振器の出力光ベクトルが光共振状
態では光共振器を多重反射した各光波ベクトル和で与え
られることから、平行端面を有する磁気光学媒体2′の
両端面に反射膜を設けて7アブリペσ−光共振器を構成
し、磁気光学媒体2′の有する7アラデ一回転能を増大
させるようにしたものである。
That is, in the present invention, since the output light vector of an optical resonator is given by the sum of each light wave vector obtained by multiple reflections of the optical resonator in an optical resonant state, reflective films are provided on both end faces of the magneto-optic medium 2' having parallel end faces. A 7-abripe σ-optical resonator is constructed by using the 7-abripe σ-optical resonator to increase the 7-arade rotational power of the magneto-optic medium 2'.

これは外部磁場5の印加により光が磁気光学媒体2′を
1回通過したとき7アラデ一回転角らを誘起する磁気光
学媒体2′(長さ!(すなわち反射膜間圧1“直)、光
吸収係数α・屈折率n)と″、その両端面に設けられた
反射膜3と3′(反射率r)とにより直線偏光の二度長
人として2方向に入射した直線114光1は偏光面の回
転を受けながら反射膜3と霧 射される。
This means that when light passes through the magneto-optic medium 2' once due to the application of an external magnetic field 5, the magneto-optic medium 2' (length! (i.e., the inter-reflection film pressure 1" direct) induces 7 degrees of one rotation angle, etc. Due to the light absorption coefficient α, refractive index n) and the reflective films 3 and 3' (reflectance r) provided on both end faces, the straight line 114 light 1 incident in two directions as linearly polarized light is The light is atomized onto the reflective film 3 while undergoing rotation of the plane of polarization.

今入射11゛L線11.1光1の1に界ベクトルE0が
第1図のようにX軸方向にあると釘ると、透過lUL界
ベクトルIシは、 ” (I R) Re−”’/”・e−18J (eo
ssθ0−slnOo”)+1) l I’s+ 1u
rnθFl 66++776 ゝ()+・・・・・・・
・・ ・・・・・・・・・・・・(A) で表わされる。
Now, assuming that the field vector E0 of the incident 11゛L line 11.1 light 1 is in the X-axis direction as shown in Figure 1, the transmitted lUL field vector I is ``(I R) Re-'''/”・e-18J (eo
ssθ0−slnOo”)+1) l I's+ 1u
rnθFl 66++776 ゝ()+・・・・・・
・・・・・・・・・・・・・・・(A) Represented by:

ζ又で A=1/ (1−2Re−’e−”eos2θ
。+R2e−d・−4δ)・・・・・・・・・(B) δ−2πlrL/λ・・・・・・・・・・・・・・・ 
(C)である。これよりファラデー回転角θはとなり、
また透過率τは  E 12 TIEII+” となる。
A=1/ (1-2Re-'e-"eos2θ
. +R2e-d・-4δ)・・・・・・・・・(B) δ−2πlrL/λ・・・・・・・・・・・・・・・
(C). From this, the Faraday rotation angle θ becomes,
Further, the transmittance τ is E 12 TIEII+”.

今磁気光学媒体2′の光吸収率α=Oとすると、反射膜
3と3′との距i:ii Iがλ/2の整数倍すなわち
δ=mπ(但しmは正の整a)のとき透過率τ≠1とな
りファラデー回転角θは磁気光学媒体本来の(1+R)
/ (1−R)倍になる。又反射膜3と3′の距離lが
λ/4の奇数倍、すなわち、a = (m+ 1/2)
πの時、透過率τは(モ側)2・に且 ファラデー回転角θは 倍となる。
Now, assuming that the light absorption rate of the magneto-optic medium 2' is α=O, the distance between the reflective films 3 and 3' i:ii I is an integral multiple of λ/2, that is, δ=mπ (where m is a positive integer a). When the transmittance τ≠1, the Faraday rotation angle θ is (1+R) which is the original value of the magneto-optic medium.
/ (1-R) times. Also, the distance l between the reflective films 3 and 3' is an odd multiple of λ/4, that is, a = (m+ 1/2)
When π, the transmittance τ becomes 2. (Mo side) and the Faraday rotation angle θ becomes twice.

1+R 以上のことよりファブリペロ−共振型偏光面回転素子に
おいては反射膜間距離lをλ/2の整数倍に調整するこ
とにより71ラデ一回転角θは磁気光学媒体2′の本来
性する値の(l+K)/H−1t)倍に増倍することが
できる。
1+R From the above, in the Fabry-Perot-resonant polarization plane rotation element, by adjusting the distance l between the reflective films to an integral multiple of λ/2, the 71 rad one rotation angle θ can be adjusted to the original value of the magneto-optic medium 2'. It can be multiplied by (l+K)/H-1t) times.

しかし磁気光学媒体2′の加工精度において、光の波長
程度の精度を得ることは町成り困離なため本発明では7
アブリペロー共振器の周囲にヒータを巻回し、磁気光学
媒体2′の温度上昇による熱膨張を8−11用して反射
膜間距離lを調整する。
However, in terms of processing accuracy of the magneto-optic medium 2', it is difficult to obtain an accuracy comparable to the wavelength of light, so the present invention
A heater is wound around the Avry-Perot resonator, and the distance l between the reflective films is adjusted using thermal expansion due to temperature rise of the magneto-optic medium 2'.

@2図は本発明による7アブリペロ一共振型偏光面回転
素子の要部断面図を示す。図において第1因との対応部
位には同一符号を付してその重複説明を省略する。
Figure @2 shows a cross-sectional view of essential parts of a 7 Abry-Perot resonant type polarization plane rotation element according to the present invention. In the figure, the same reference numerals are given to the parts corresponding to the first cause, and redundant explanation thereof will be omitted.

図において58 は外部磁界を印加するjこめのコイル
、6は磁気光学媒体2′(例えば(IJ(J・Ll’E
−tt−ネット膜等)の温度制御をするためのヒータで
ある。7アブリペロー共振器の反射膜間距離lがλ/2
の整数倍になった時、透過光の光量も最高となるから透
過光4をモニターして常に透過光の光量を最大値に維持
するようにヒータ6で温度制御をすればよい。
In the figure, 58 is a coil for applying an external magnetic field, and 6 is a magneto-optical medium 2' (for example, (IJ(J・Ll'E
-tt-net film, etc.). 7 The distance l between the reflective films of the Abry-Perot resonator is λ/2
When the amount of transmitted light becomes an integer multiple of , the amount of transmitted light reaches its maximum value, so it is sufficient to monitor the amount of transmitted light 4 and control the temperature with heater 6 so as to always maintain the amount of transmitted light at the maximum value.

第3図は第2図の制御系のブロック図を示す。FIG. 3 shows a block diagram of the control system of FIG. 2.

図においで7は7アブリペロー共振器、8は透過光モニ
タ、9は透過光のモニタ光量が最大となるようにヒータ
温度を制御する温度調整器を示す。
In the figure, 7 indicates an Abry-Perot resonator, 8 indicates a transmitted light monitor, and 9 indicates a temperature regulator that controls the heater temperature so that the amount of monitored transmitted light is maximized.

(f) 発明の効果 以上R細に説明したように本発明による7アフリペロ一
共振型偏光面回転素子によれば磁気光学媒体が有する7
アラテ一回転角度を本来の値より大幅1こ増大させるこ
とができ、かつ小型高性能な偏光面回転素子を提供する
ことがセきる。
(f) Effects of the Invention As explained in detail above, according to the 7 Afri-Perot resonant type polarization plane rotating element of the present invention, the magneto-optical medium has 7
It is possible to provide a small-sized, high-performance polarization plane rotation element that can significantly increase the rotation angle by 1 more than the original value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は7アブリペロー共振を利用した7アラデ一回転
素子の原理図、第2図は本発明による7アブリペロ一共
振型偏光面回転素子の要部断面図、第8図は同素子の制
御系のブロック図を示す。 図において1は直線偏光、2′は磁気光学媒体。 8と3′は反射膜、4は透過光、5は外部磁界。 5aはコイル、6はヒータ、7はファブリペロ−共振器
、8は透過光モニタ、9は温度調整器・θは7rラテ一
回転角を小ず。 第+ 1m 2、t12 宇 第31゛η
Fig. 1 is a principle diagram of a 7-Alade one-rotation element that utilizes 7-Avry-Perot resonance, Fig. 2 is a sectional view of a main part of a 7-Avry-Perot resonance type polarization plane rotation element according to the present invention, and Fig. 8 is a control system of the element. The block diagram is shown below. In the figure, 1 is linearly polarized light and 2' is a magneto-optic medium. 8 and 3' are reflective films, 4 is transmitted light, and 5 is an external magnetic field. 5a is a coil, 6 is a heater, 7 is a Fabry-Perot resonator, 8 is a transmitted light monitor, 9 is a temperature regulator, and θ is 7r, which is the rotation angle of one latte. + 1m 2, t12 U 31゛η

Claims (1)

【特許請求の範囲】[Claims] 平行端面を有する磁気光学媒体の両端面に反射膜を具備
してなる7アブリペロー共振器を利用した偏光面回転用
磁気光学媒体であって、該磁気光学媒体の温度を調整す
る温度調整手段を設けると共に、前記磁気光学媒体の透
過光を監視する透過光モニタを設け、該透過光モニタの
出力によって前記温度調整手段を制御することにより前
記両反射膜間の距離を前記磁気光学媒体の熱膨張によっ
て191要値にすることを特徴とする7アブリペロ一共
振型偏光面回転素子。
A magneto-optic medium for rotating the plane of polarization using a 7-Abry-Perot resonator comprising a magneto-optic medium having parallel end surfaces and reflective films on both end surfaces, the magneto-optic medium having a temperature adjustment means for adjusting the temperature of the magneto-optic medium. At the same time, a transmitted light monitor is provided to monitor transmitted light of the magneto-optic medium, and the temperature adjustment means is controlled by the output of the transmitted light monitor, so that the distance between the two reflective films is adjusted by thermal expansion of the magneto-optic medium. A 7 Abry-Perot resonant type polarization plane rotation element characterized by having a value of 191 points.
JP6227184A 1984-03-29 1984-03-29 Fabry-perot resonance type polarization plane rotating element Pending JPS60205422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6227184A JPS60205422A (en) 1984-03-29 1984-03-29 Fabry-perot resonance type polarization plane rotating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6227184A JPS60205422A (en) 1984-03-29 1984-03-29 Fabry-perot resonance type polarization plane rotating element

Publications (1)

Publication Number Publication Date
JPS60205422A true JPS60205422A (en) 1985-10-17

Family

ID=13195313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6227184A Pending JPS60205422A (en) 1984-03-29 1984-03-29 Fabry-perot resonance type polarization plane rotating element

Country Status (1)

Country Link
JP (1) JPS60205422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286016A (en) * 1986-05-05 1987-12-11 ポラロイド コ−ポレ−シヨン Thermal control type optical device and optical apparatus
JPH01250834A (en) * 1988-03-31 1989-10-05 Canon Inc Interferometer
EP1347331A2 (en) * 2002-03-14 2003-09-24 Fujitsu Limited Optical control element for transmission wavelength characteristics and its use
CN108535893A (en) * 2018-03-26 2018-09-14 北京科技大学 A method of enhancing Kerr magnetooptical effect using optical resonator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286016A (en) * 1986-05-05 1987-12-11 ポラロイド コ−ポレ−シヨン Thermal control type optical device and optical apparatus
JPH01250834A (en) * 1988-03-31 1989-10-05 Canon Inc Interferometer
JP2749815B2 (en) * 1988-03-31 1998-05-13 キヤノン株式会社 Interferometer
EP1347331A2 (en) * 2002-03-14 2003-09-24 Fujitsu Limited Optical control element for transmission wavelength characteristics and its use
EP1347331A3 (en) * 2002-03-14 2005-12-14 Fujitsu Limited Optical control element for transmission wavelength characteristics and its use
CN108535893A (en) * 2018-03-26 2018-09-14 北京科技大学 A method of enhancing Kerr magnetooptical effect using optical resonator

Similar Documents

Publication Publication Date Title
US20070019179A1 (en) Polarization-modulating optical element
JPH05119364A (en) Compensation for pointing vector separation in ii-type phase matching
JPH02287421A (en) Quasi-achromatic optical isolator and circulator using prism with fresnel total internal reflection
Snetkov et al. Compensation of thermal effects in Faraday isolator for high average power lasers
JP2007012981A (en) Laser with high reflective coating on interior total reflection surface of optical element
CN105514786B (en) A kind of method and system of the adjustable half intracavitary generation vector beam of order
JPS60205422A (en) Fabry-perot resonance type polarization plane rotating element
US3179899A (en) Optical maser component
JPS60203914A (en) Variable wavelength filter
CN107317217B (en) Resonance enhanced cavity frequency doubling device based on class II non-critical phase matching
JP2721879B2 (en) Self-temperature compensated optical isolator
WO2023243473A1 (en) Optical element
JPH07281140A (en) Electro-optic modulator
JPS63205636A (en) Optical isolator
GB2259603A (en) Diode pumped solid-state laser
JPH06104508A (en) Solid state laser oscillator
JP2567697B2 (en) Faraday rotation device
JP2754991B2 (en) Wavelength converter
CN213022834U (en) Light path regulation and control device
JPH04320078A (en) Optical wavelength converter
JPH0792558B2 (en) Laser beam attenuator
JPS60198880A (en) Laser device
JPH05190962A (en) Polarization-controlled solid laser oscillating equipment
JPH05235456A (en) Laser apparatus
JPH04275475A (en) Second harmonic wave generator