JPS60205245A - Measuring apparatus for content of organic acid - Google Patents

Measuring apparatus for content of organic acid

Info

Publication number
JPS60205245A
JPS60205245A JP6226184A JP6226184A JPS60205245A JP S60205245 A JPS60205245 A JP S60205245A JP 6226184 A JP6226184 A JP 6226184A JP 6226184 A JP6226184 A JP 6226184A JP S60205245 A JPS60205245 A JP S60205245A
Authority
JP
Japan
Prior art keywords
sample
liquid
solvent
organic acid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6226184A
Other languages
Japanese (ja)
Inventor
Yutaka Osajima
豊 筬島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fujihira Industry Co Ltd
Original Assignee
Fuji Electric Manufacturing Co Ltd
Fujihira Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Manufacturing Co Ltd, Fujihira Industry Co Ltd filed Critical Fuji Electric Manufacturing Co Ltd
Priority to JP6226184A priority Critical patent/JPS60205245A/en
Publication of JPS60205245A publication Critical patent/JPS60205245A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Abstract

PURPOSE:To enable a quick and accurate measurement of the content of organic acid continuously by mixing a diluting solvent and a sample liquid and flowing the mixture to a probe as diluted sample to measure the conductivity with a measurement processing circuit. CONSTITUTION:A diluting solvent and a sample liquid from a solvent tube port 1, a sample tube port 2 and an extrusion liquid tube port 3 are forced to a mixer 5 with a microtube pump 8 via a mixing point (MP)10 to be mixed uniformly as a diluted sample and flows to a flow-through type 4-electrode cell 6. When current is applied between a pair of electrodes in a measurement processing circuit 7 with a probe chamber through which the diluted sample in the electrode cell 6, the current flowing is proportional to the conductivity of the solution. So, the conductivity is collated with the calibration curve of the content of organic acid to measure the content of organic acid in the diluted sample. This enables the dilution of a sample liquid at a high rate thereby assuring an accurate measurement of the content of organic acid.

Description

【発明の詳細な説明】 本発明は、食品中に含まれる有P、酸yywt声の含M
を連続測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce the amount of P, acid, and M contained in foods.
This relates to a device that continuously measures .

本発明者らは、先に、食品試料中の有(幾酸含垂を測知
する方法として、試料を高純水で希釈し試料中の有機酸
および強電解質含量な10 モル/を以下としたのち、
この希釈試料を輝白金板電掃、を(、+Htえt電導度
測定セルに滴1−1又流微少定電流をMll主電極流し
て希釈試料のインピーダンスなit 1ll11L 、
このインピーダンスから希釈試料の比電導1銭をめ、こ
の比′nL導度に端づいて食品試料中の有4で>酸含量
をめることを特徴とする有rAI+?含量の測定方法を
Q:j前照50−144249号において提案した。そ
して、この抑1定方法に奸才しく用いられる測定装置と
して輝白金板τB、極を備えrc il(導度測定セル
と、01■記’+iL4傘に変流微少定電流を流す定1
1【波回路と、n11記′αL極間に生ずる電位差から
6111定試料の比ηi4度をめる変候回路と、(;I
らtまた比l′l!、導1n:とあらかじめ設定さすし
た9斂とからl1lQ定試料の有機酸含h1を演↑1.
する0算回路とを備えitことを特徴とする有機酸含世
の測定装置を同時Km案した、との測定方法および装置
は、以Ai+の有t<s nyの測定方法に比べ簡便で
正確な測定か行なえることから、多くの食品生産現場で
任用さtL、成(1さを上けている。
The present inventors first diluted the sample with high-purity water to reduce the organic acid and strong electrolyte content in the sample to 10 moles/min as a method of measuring the acid content in a food sample. ,
This diluted sample is electrically swept through a bright platinum plate, and a minute constant current is applied to the conductivity measuring cell (+Ht) to determine the impedance of the diluted sample.
The specific conductivity of the diluted sample is determined from this impedance, and the acid content in the food sample is determined based on this specific 'nL conductivity. A method for measuring the content was proposed in Q:j Maesho No. 50-144249. The measuring device cleverly used in this suppression method is equipped with a bright platinum plate τB and a pole, and is equipped with an rc il (conductivity measurement cell) and a constant 1 constant current that flows a variable current minute constant current through the conductivity measurement cell and the 01 mark '+iL4 umbrella.
1 [wave circuit, a variable circuit that calculates the ratio ηi4 degrees of the 6111 constant sample from the potential difference generated between the n11'αL poles, and (;I
Lat again comparison l'l! , lead 1n: and the preset 9 points to calculate the organic acid content h1 of the l1lQ constant sample ↑1.
At the same time, we have proposed an apparatus for measuring organic acid age, which is equipped with a zero arithmetic circuit and is characterized by the fact that it is simpler and more accurate than the measuring method for Ai+ when t<sny. Because it can perform accurate measurements, it has become popular at many food production sites.

1−かしながら、この+11Q定装置r佳r1各測定試
料をピペット等を用Vて個別に調整して希釈試料とした
後、このf+i釈11・(料を11−1次tILi、r
gJQ−all! 定セルに、 g4 L11111定
を行うパンチ式のものなので、測定試料が多い場合Ki
d、it’l+!定にかかる工数が膨大となるため、連
日製品チェックを多数行う工程管理分析を実施する生即
現力からは、1lll+定の迅速性の向上が仙望さtし
ていた。
1- However, after each measurement sample of this +11Q constant device is individually adjusted using a pipette etc. to make a diluted sample, this f+i dilution 11.
gJQ-all! Since it is a punch type that performs g4 L11111 constant in a constant cell, Ki
d, it'l+! Since the number of man-hours required for the process is enormous, it was hoped that the speed of production would be improved by 1ll+ from the ability to perform process control analysis that involves numerous product checks on a daily basis.

本発明d1上記事情に祉みてなさ九たもので、食品中の
有機酸含nを連続して迅速に測定できる測定装置を提供
することを目的とする。
The present invention (d1) has been made in view of the above circumstances, and an object of the present invention is to provide a measuring device that can continuously and quickly measure the organic acid content in foods.

以下、図面を参照してこの発明の有轡酸含9 fill
j定装置について説明する。
Hereinafter, with reference to the drawings, 9 fill containing borosemic acid of the present invention will be described.
The j-setting device will be explained.

第7図は、第一の発明の有機酸含沿沖1定装置Jりの一
実施例を示すものである。この例に示した測定装置は、
希釈用溶媒を送液する溶媒管路lと、サンプル液を送液
するサンプル管路2と、サンプル押出液を送液する押出
液管路3と、上記サンプル管路2と押出液管路3とを切
替える切替弁4と、合流した上記希釈用溶媒とサンプル
液とを均一に混合するミキサー5と、このミキサー5で
混合さnfc希釈試料を流すフロースルー型’t’1f
L極セル6と、このフロースルー型グ電極セル6を流1
+、る希釈試料の導電率を唱!1111するRt611
+t理回路7とを有してなるもので、溶媒管路1および
押出液管路3における溶液の圧送にはマルチチャンネル
型のマイクロチューブポンプc以下ポンプと略記する)
8を用い、切替弁4に+−1六方弁を用いたものである
FIG. 7 shows an embodiment of the organic acid-containing off-shore fixed equipment according to the first invention. The measuring device shown in this example is
A solvent pipe line 1 for sending a dilution solvent, a sample pipe line 2 for sending a sample liquid, an extrudate pipe line 3 for sending a sample extrudate liquid, and the above-mentioned sample pipe line 2 and extrudate pipe line 3. a mixer 5 that uniformly mixes the combined dilution solvent and sample liquid, and a flow-through type 't'1f that flows the NFC diluted sample mixed by this mixer 5.
The L electrode cell 6 and this flow-through type G electrode cell 6 are connected to the flow 1.
+, recite the conductivity of the diluted sample! Rt611 to 1111
+t management circuit 7, and for pumping the solution in the solvent pipe 1 and the extruded liquid pipe 3, a multi-channel microtube pump (hereinafter abbreviated as pump) is used.
8, and a +-1 hexagonal valve is used as the switching valve 4.

図示しない希釈用溶媒槽から溶媒管路1へ送らt+ テ
<る4’l’+駅用++、’j b’l: (以下、/
f7 //’/:と略イどj、する)は、ガラスウール
4゛iがC′i体に光Jilさtしてなるフィルター(
1ゾ1示せず)+’cよって異物が除去さ11. rr
 14 、ポンプ8Vこ送らハ、る8この沼θ■として
は、弱酸であるイ1(:)酸がほぼ完全にh7離するよ
うに1水−ピリジン、水−イミダゾール、あるいは水−
アミノピリジン★qの混合σノ媒、または脱イオン水(
ljXi o −’ S−m −’ )などが好捷しく
用いられる。
The solvent is sent from a dilution solvent tank (not shown) to the solvent pipe line 1.
f7 //'/: Abbreviated as "Idj" is a filter (
Foreign matter is removed by 1 zo 1 (not shown) +'c 11. rr
14, Pump 8V to send, Ru8 This marsh θ■, 1 water-pyridine, water-imidazole, or water-pyridine so that the weak acid 1(:) acid is almost completely separated by h7.
Aminopyridine★q mixed σ medium or deionized water (
ljXio −' Sm −' ), etc. are preferably used.

ポンプ8は、IOチャンネルを有するマイクロチューブ
ポンプであり、この溶媒管路1には9チヤンネルが配分
され、残る/チャンネルハ後述するように押出液管路3
に配分されてふ・わ、溶媒管路lをDtffLる溶媒と
押出、液管路3を流量る押出液とをり:/の流量比で圧
送する。ポンプ8を出たWE lt、V:は、ダンパー
9に送られる。このダンパー9は、ポンプ8から送られ
てくる溶媒の脈動を解消するとともに、管路内の溶晶に
気胞が流入するのを防ぐエアートラップの役目を兼ねる
もので、第2図に示すように、中空円柱体からなるダン
パ一本体9aを1個、細径のチューブからなる抵抗管9
bによって連*、1+、たもので、こ:#’lクツバー
97?通過し7’(M tI¥は、ミャシンク7!イン
ド(以−F M Pと陥re= #る)10を(トてミ
キダー5へ送らt2る。
The pump 8 is a microtube pump with IO channels, in which nine channels are distributed in the solvent line 1, and the remaining /channels are connected to the extrudate line 3 as described below.
The solvent is distributed through the solvent pipe 1 and extruded with the solvent DtffL, and the extrusion liquid flowing through the liquid pipe 3 is pumped at a flow rate ratio of: /. WE lt,V: which has exited the pump 8 is sent to the damper 9. This damper 9 eliminates the pulsation of the solvent sent from the pump 8, and also serves as an air trap to prevent gas vesicles from flowing into the molten crystal in the pipe, as shown in Figure 2. , one damper body 9a made of a hollow cylindrical body, and a resistance tube 9 made of a small diameter tube.
By b, the series *, 1+, and this: #'lKutbah 97? It passes 7' (M tI\ is Myasink 7! India (re= #) and sends 10 to Mikider 5 and t2.

寸介、図示しlい押出沿槽からは、細氷などかC−なる
押出液が押出液管路3へ供給さnている。
An extrusion liquid such as thin ice or the like is supplied to the extrusion liquid pipe 3 from the illustrated extrusion tank.

この押出液管路3へ供給さnる押出液は、溶媒管路1と
回様のフィルターによってYz、物が除去さnt後水ポ
ンプ8よりダンパー9を介して切替弁4へ送られる。こ
の押出液管路3を流)する押出液と、上記溶媒管路を流
れる溶媒の流量の比は、上^Cポンプ80チャンネル配
分によシ定寸り、この例にあってけ/:りとなる。
The extruded liquid supplied to the extruded liquid pipe 3 is filtered through the solvent pipe 1 and the filter to remove substances, and then sent from the water pump 8 to the switching valve 4 via the damper 9. The ratio of the flow rate of the extrudate flowing through this extrudate pipe 3 and the flow rate of the solvent flowing through the solvent pipe is determined by the upper C pump 80 channel distribution, and should be suitable for this example. Become.

さらに1図示しないサンプル源からは、サンプル管路2
に食品試料、例えば果汁等のザンブル渚液が3M入する
。サンプル管路2にはポンプ11が設けられており、と
九によりサンプル液はフィルタイ図示せず)を介して切
替弁4へ送らnる。
In addition, from a sample source (not shown), a sample line 2 is connected.
3M of a food sample, such as fruit juice, is added to the container. A pump 11 is provided in the sample conduit 2, and the sample liquid is sent to the switching valve 4 via a filter (not shown).

切替弁4は六万弁からなるもので、との切替弁4には、
サンプル管路2と押出液管路3の他に、さらに1切眸弁
4に圧送されてきたサンプル液又tま押出液をAIPI
UK送る接続♀t12と、こnらを排出するJJ1出l
白13と、サンプル消液を4量するための所定容積を有
すサンプルループ14の両端末とが接続さitている。
The switching valve 4 consists of 60,000 valves, and the switching valve 4 has a
In addition to the sample pipe line 2 and the extrudate pipe line 3, the sample liquid or extrudate liquid that has been force-fed to the one-way valve 4 is transferred to the AIPI.
Connection ♀t12 to send UK and JJ1 output l to discharge these.
The white 13 is connected to both ends of a sample loop 14 having a predetermined volume for holding four volumes of sample quenching liquid.

この切軽弁4に圧送されてきたサンプル液と押出液とけ
、この切侶弁4を切替えることによって父互KMPIO
にr(E送される。まず、V、7図中実相で示した状態
に切替弁4を切替えた場合には、押出液が押出液’W路
3から接続[12を経てMPloに送られる。塘たサン
プル管路2から送られてく・5サンプル液は、サンプル
ループ14を軒て排出管13から排出される。次に、切
替弁4を妃/図中点線で示した状態に切替えた場合には
、サンプルループ14に在中1−たサンプル液が、押出
液管路3から送ら)1てくる押出液に押し出さtして、
M P l 13 lて送ら第1る1、M I) I 
Oでは、溶媒管路1から送らすtてくる溶媒と、υμ)
弁4を経て送らtしてくるサンプル酸もしくは押出液と
が合流して、ミキサー5へ送らtしる。このFlj、溶
媒と合流するサンプルViは、サンプルループ141C
在中したIyr定鍛が、押出液胃路3からポンプ8によ
って溶媒の//Pの流量で送られてくる押出液によって
所定流量で押し出されてくる。
The sample liquid and extrusion liquid that have been pressure-fed to this cut-off valve 4 are dissolved, and by switching this cut-off valve 4, the two-way KMPIO is released.
When the switching valve 4 is switched to the state shown in the solid phase in Figure 7, the extruded liquid is sent from the extruded liquid 'W path 3 to the connection [12] to MPlo. The sample liquid sent from the sample conduit 2 that has been removed passes through the sample loop 14 and is discharged from the discharge pipe 13.Next, the switching valve 4 is switched to the state shown by the dotted line in the figure. In this case, the sample liquid present in the sample loop 14 is extruded into the extrudate liquid sent from the extrudate line 3), and
M P l 13 l 1st l1, M I) I
At O, the solvent sent from solvent pipe 1 and υμ)
The sample acid or extrusion liquid sent via valve 4 is combined and sent to mixer 5. The sample Vi that merges with Flj and the solvent is connected to the sample loop 141C.
The Iyr fixed forging in the middle is extruded at a predetermined flow rate by the extrusion liquid sent from the extrusion liquid gas passage 3 by the pump 8 at a flow rate of //P of the solvent.

MPIOで合流した第8媒とサンプル液は、細管がコイ
ル状に巻かn、てなるミキサー5で混合される。こnに
よりサンプル液は所定の比率で希釈さnた希釈試料とな
り、フロースル型p’Fi極セル(以下、フローセルと
称す。)6に送られる。なお、各希釈試料間は、溶媒と
押出液との混合液によって区分されている。この希釈試
料の希釈率は、主に上記MPIOで溶媒と合流するサン
プル液の尾、c以下インジェクションボリュームと称す
。)っま勺サンプルループ14の容積で定する。第3図
に示すグラフは希釈率とインジェクションボリュームと
の関係を示すもので、このグラフからインジェクション
ボリュームを少なくすると希釈率が増大することがわか
る。
The eighth medium and the sample liquid that have been combined in the MPIO are mixed in a mixer 5 consisting of a thin tube wound into a coiled shape. As a result, the sample liquid is diluted at a predetermined ratio to become a diluted sample, which is sent to a flow cell type p'Fi electrode cell (hereinafter referred to as a flow cell) 6. Note that each diluted sample is separated by a mixed liquid of a solvent and an extrusion liquid. The dilution rate of this diluted sample is mainly referred to as the injection volume below c, the tail of the sample liquid that merges with the solvent at the MPIO. ) is determined by the volume of the sample loop 14. The graph shown in FIG. 3 shows the relationship between the dilution rate and the injection volume, and it can be seen from this graph that the dilution rate increases as the injection volume decreases.

そして、希釈率は、試料となる食品の種類や溶媒の種類
によっても嚢なるが、通常jo〜300倍KjQ定され
、上記インジェクションボリュームは、こIK合わせて
適宜法めらすlる。
The dilution rate varies depending on the type of food sample and the type of solvent, but is usually set at jo to 300 times KjQ, and the injection volume is adjusted as appropriate based on this IK.

フローセル6 it 、 dil’m液のlli樽度を
沖!定するためのもので、第ダ図および第5図に示すよ
うに1その本体6aはポリアセタール棺1脂等圧よって
略中9円柱状に成形さノ1.ている1、このフローセル
6の中望訃分は、希釈試料と混合液かがL通するプロー
ブ’1,6bである。このプローブ室6bには、グロー
ブ′−:ぐ6bの両輪部に配l?′+1さf’した一対
の通11?電極(ic、6c七、この)lT1電r(j
、4@6 c 、6 cの間に配置口さfl ?C−文
・Jのプローブ らn−cいる。こ力らJi74@6c、6cm6d,6
dけ、その先J,:4而がプローブ*6bの壁面に一致
するようし′CHむN)71ている。こブ1,らの11
1(耐6c,5c・6d、6dに4J1 白金’l’i
にメ11ソ白金が好1しく用いらilる。
Flow cell 6 it, lli barrel degree of dil'm liquid! As shown in Figs. 1. The middle part of this flow cell 6 is the probe 1, 6b through which the diluted sample and the mixed solution pass. In this probe chamber 6b, gloves are placed on both rings of the probe 6b. A pair of '+1 f' 11? Electrode (ic, 6c, this) lT1 electric r (j
, 4 @ 6 c , 6 c placed between fl ? C-Sentence/J's probe et al. n-c. Kotoriki et al. Ji74@6c, 6cm6d, 6
d, and the tip J:4 is made to coincide with the wall surface of the probe *6b. Kub 1, Ra no 11
1 (4J1 platinum 'l'i for 6c, 5c/6d, 6d
Platinum is preferably used.

ミキサー5からこのフローセル6のプローブ室6bに送
ら)1tイ1(釈試料は1通C;1,電極tie,6c
およびグローブ電柄6d,l’idKよって111:導
度がiliQ 5i:さ)1、また、71(、合液は、
プローブ室6b自と各電極6c,6c・6d,6dの洗
浄を行ない、その後背圧コイル15を介1,て、排出口
16から排出される。この背圧コイル15は、核細のi
il ’f(Kよって形成さfしており、v1出口16
へ向う沼沿に抵抗を与え、こJlに上り流路内の圧力を
高めジ(泡の発生を防止する 次にフローセル6の通’llr, ’+4?,極6c,
6cおよびプローブ電極6d,fidK接村さf′lt
nt測処理回路7について説明する。計沖1処理回路7
f−i、70−十ル6をDIE 11.るrF4mの樽
電率をめるもので、第1図中符号17は発振器である。
The sample is sent from the mixer 5 to the probe chamber 6b of this flow cell 6.
And the glove electric handle 6d, l'idK 111: conductivity is iliQ 5i: ) 1, and 71 (, the combined liquid is
The probe chamber 6b itself and each of the electrodes 6c, 6c, 6d, and 6d are cleaned, and then discharged from the discharge port 16 via the back pressure coil 15. This back pressure coil 15 is
il 'f (formed by K, f, v1 exit 16
Apply resistance along the swamp toward this point and increase the pressure in the flow path to prevent the generation of bubbles.Next, the flow cell 6 is opened to
6c and probe electrode 6d, fidK contact field f'lt
The nt measurement processing circuit 7 will be explained. Keioki 1 processing circuit 7
DIE f-i, 70-106 11. The reference numeral 17 in FIG. 1 is an oscillator.

この発掘器17からは、所定の周波数の交流電流が自動
ゲインコントロールアンプ(AGCA)18に人nl−
Itt。
From this excavator 17, an alternating current of a predetermined frequency is applied to an automatic gain control amplifier (AGCA) 18.
Itt.

通1n1電極6c,6c間には交流1(4圧が印加さ1
する。
AC 1 (4 voltages are applied between the 1n1 electrodes 6c and 6c)
do.

この時プローブ電極6d,6d間の111、位降下を高
入力インピーダンス差動アンプ19で検知し、この検知
(21号を絶対蛸回路20をqfて.身分回路21へと
入れ、基準゛屯田22との叫差を積分し、自動ゲインコ
ントロールアンプ18へ負の帰還を行う。
At this time, the voltage drop 111 between the probe electrodes 6d and 6d is detected by the high input impedance differential amplifier 19, and this detection (no. The difference between the two signals is integrated and negative feedback is provided to the automatic gain control amplifier 18.

仁れによって、通電1L極5c,(’ic間の電圧は、
プローブ電極6d、6d iJ’lの童イIt降下が常
に一定&〔なるよ’) l1ill (illlさオL
ることになり、また1通iK用111、極1j c 、
 li c IIIIKが1れる11frWは、フロー
セル6をがげ1ろ4゛;液の2r!電率に比例すること
になる。そこで、通U@極(i e、6Cと向側に標章
抵抗23をttむす、この4j;Ii準抵抗23の両端
に生じるt位差を、怪動アンプ24により611(定す
る。この測定信号は絶灼値回路25を介して記録計26
へ送ら11.、ここでブローセル6を6i崗]るfE液
の導電率は表示+1己録さノ1 る。
Due to the bending, the voltage between the current-carrying 1L pole 5c, ('ic) is
The drop of the probe electrodes 6d, 6d iJ'l is always constant and
111 for iK, pole 1j c,
The 11frW where li c IIIK is 1 is removed from the flow cell 6 and the liquid is 2r! It will be proportional to the electric rate. Therefore, the t potential difference generated between the two ends of this 4j; The measurement signal is sent to the recorder 26 via the absolute value circuit 25.
Send to 11. , where the conductivity of the fE liquid passing through the blow cell 6 is expressed as +1.

希f<試料の導11率は、有機配合+Hiに比例するも
のなので、事O1Iにめた導■、率−有機配合jdの検
量線と1111定さ71 f’r、 J li率とをl
iQ シ会わすことにより、ツンブルの有機配合1なめ
ることができる。
Since the ratio of rare f< sample is proportional to the organic mixture + Hi, the calibration curve of the ratio - organic mixture jd and the 1111 constant 71 f'r, J li rate is
By meeting iQ Shi, you can taste Tumbul's organic formulation 1.

こC〕ように構成されたイ1槻配合−18の測定装置は
、明君・弁4の切替によって押出液とサンプル液とが焚
互に送られ、ミキシンクポイント (MP)10で希X
+<用浴媒と合流し、ミキサー5で均一に混合さfL混
合液と希釈試料とにさn、てフローセル6に送らノ1、
ここでFIt6111処理回路7により導電率が測定さ
れサンプル沿の冷機配合も;がめられるものなので、多
数の果汁などのサンプル液を簡単かつ迅速K)!l!続
して処理でき、しかも正確にその有機酸含量をめること
のできる装置i’?となる。
In the measuring device of A1 Tsutsuki Mixture-18 configured as shown in [C], the extrusion liquid and the sample liquid are sent alternately by switching the valve 4, and the diluted
The mixed liquid and the diluted sample are mixed uniformly with the mixer 5 and sent to the flow cell 6.
Here, the conductivity is measured by the FIt6111 processing circuit 7, and the cold mixture along the sample can be measured, so a large number of sample liquids such as fruit juice can be easily and quickly prepared. l! I'? becomes.

′1t1この有機酸含量のI!111定装置をイは、マ
イクロチューブポンプ8のIOチャンネル中中子チャン
ネル希釈用溶媒を送液する溶媒管路1に配分し、残、リ
ッチヤンネルをサンプル液を押し出す押出液を送液する
押出液管路3に配分したので、サンプル液は希釈用溶媒
中に徐々に注入される。こtlにより、サンプル液の希
釈率は高率となるので、この測定装置は有機酸含量の測
定に好適なものとなる− 第6図に示すものは、第コの発明の一集施例を示すもの
で、第1図ないし第6図に示した第1の発明の実施例と
同一構成部分には同一符号を付して、その説明を簡略化
する。
'1t1I of this organic acid content! The 111 constant device is distributed to the solvent pipe line 1 that sends the dilution solvent to the core channel in the IO channel of the microtube pump 8, and the remaining rich channel is used as the extrusion liquid that sends the extrusion liquid that pushes out the sample liquid. Having been distributed in line 3, the sample liquid is gradually injected into the dilution solvent. As a result of this, the dilution rate of the sample liquid becomes high, making this measuring device suitable for measuring the organic acid content. Components that are the same as those in the embodiment of the first invention shown in FIGS. 1 to 6 are given the same reference numerals, and the explanation thereof will be simplified.

この例の有機酸含量の測定装置にあっては、溶媒管路l
とサンプル管路2とが共通のマイクロチューブポンプ3
0によシ送液さ九ている。マイクロチューブポンプ30
0チヤンネル配分は、サンプル6゛路2に/チャンネル
、溶媒rrj路1に2チヤンネルとさ71ている。そし
て、CIIv:管路3から送面さtしてくる溶媒と、サ
ンプル6゛路2かも送渋さI1てくるサンプル液は冶流
さnl、合流管路31をi′tて切替弁4へ送らtLる
。この合流管路31KFi、予備ミキサー32が設けら
れており、合流管路31をji(iする溶媒とサンプル
液とは、切替弁4に送ら1する前にあらかじめ予備混合
される。
In the apparatus for measuring organic acid content in this example, the solvent pipe l
A microtube pump 3 with a common sample pipe line 2
The liquid is being pumped to 0. Micro tube pump 30
The zero channel distribution is 71 with sample 6/channel in path 2 and 2 channels in solvent rrj path 1. Then, CIIv: The solvent coming from the pipe 3 and the sample liquid coming from the sample 6 route 2 and the sample liquid coming from the pipe 2 are flowed through the converging pipe 31 to the switching valve 4. Send it. This confluence pipe 31KFi is provided with a preliminary mixer 32, and the solvent and sample liquid that flow through the confluence conduit 31 are premixed in advance before being sent to the switching valve 4.

この例の6111定装置r(゛にあっては、サンプル液
が切替弁4に送られる的に予め溶媒と合流さtするので
、サンプル液の分散が大きくなり、従って70−セル6
に送ら2Lる希釈試料の希釈率を大きくすることができ
ろっ寸t1合流管路31に予(Niiミキサー32を設
りtcので、サンプル液の希釈をよシ均一にる゛シイ!
)る。従ってこの測定装置日より正確にイ1杉′>酌旨
CIiLの+1fll定をなしイ11るものとなる。
In this example, in the 6111 constant device (2), the sample liquid is combined with the solvent before being sent to the switching valve 4, so the dispersion of the sample liquid becomes large, and therefore the 70-cell 6
The dilution ratio of the diluted sample sent to 2L can be increased by installing a mixer 32 in the confluence pipe 31 to make the dilution of the sample liquid more uniform.
). Therefore, from this measuring device, it is possible to more accurately determine that I1sugi'> CIiL +1fl1.

次&こ、実!L:+2例を示してこの発明の有様配合l
itの11111定’*” Il’+、をさらに詳しく
説明する。
Next & this, real! L:+2 Examples of specific formulations of this invention
The 11111 constant '*''Il'+ of it will be explained in more detail.

〔実lI4例〕 第7図に示す有機酸含量の1llQ定装置、’17を作
成した寸ず、この測定装置を用いて市販の温州ミカンの
導電率をめると共K、滴定法により有44.)配合耐(
クエン酸換n)をめ、こノ1らから導電率と有機酸含量
との相関をめ、回帰式を(!+ rc 0測定装置の仕
様を次に示す。
[4 Practical Examples] The organic acid content determination device shown in Figure 7 was created in '17. 44. ) Compound resistance (
Based on citric acid conversion n), the correlation between electrical conductivity and organic acid content was determined from Kono 1 et al., and the regression equation (! + rc 0) The specifications of the measuring device are shown below.

l ミキサー5KVi、内径/wmJさ100cmのテ
フロンチューブが半径/j++mのコイル状にさカれた
ものを用いた。
A 5KVi mixer was used, in which a Teflon tube with an inner diameter/wmJ of 100 cm was coiled into a coil with a radius/j++m.

ユ フローセル6には、直径2rm、長さ3cmの円柱
状のポリカーボネート#1厘製の本体6 a K、 i
ff径glllll+のプローブ室6bを設けたものを
用いた。電4Ii6c、6C・6d、6dには[径/闘
の白金線を用い、これら電極6c、6c・6d、fid
は先端がグローブ室6b内に突出しないように1 プロ
ーブ室6bの壁面と同一レベルで固定した。また、プロ
ーブ電極6d、6d間の距離はぐガ、通1(i Wtt
cC16C間の距1lilF′i/コ調に設定しt0木
実験に用いた装置は低導1!率(]〜/ j X / 
0=S−sn−’ )領域の限られた範囲内に適するよ
うにbJFltさtしているので、セル定数算出用標準
液として実用導’FL ’% g+定範囲に近い仙を示
す塩化カリウム溶液(IO″′3〜10−4M)を用い
てセル定数を算出したところ、セル定数θ−z−px7
02m−1を?1tた。
The flow cell 6 has a cylindrical main body 6 made of polycarbonate #1 with a diameter of 2 rm and a length of 3 cm.
A probe chamber 6b with a diameter of ff gllllll+ was used. For electrodes 4Ii6c, 6C, 6d, and 6d, [diameter/fighting platinum wire is used;
was fixed at the same level as the wall surface of the probe chamber 6b so that the tip would not protrude into the globe chamber 6b. In addition, the distance between the probe electrodes 6d and 6d is 1 (i Wtt
The device used in the t0 tree experiment with the distance between cC16C set to 1lilF′i/co has a low conductivity of 1! Rate (] ~ / j X /
0=S-sn-') Since bJFlt is set so as to be suitable within a limited range, it is used as a standard solution for calculating cell constants. When the cell constant was calculated using the solution (IO'''3 to 10-4M), the cell constant θ-z-px7
02m-1? It was 1t.

、7 I’ll 6111処理回路7の標準抵抗23K
Vi、20にΩのものを用いた。また発振器17の囚波
敷は/ K11zとし、70−セル6の通電電極6c、
6c間に印加する%lL圧は、プローブ電極6d、6d
間の電位1t、1下が溶液の抵抗の大小に関係なく常に
、200Her Vとなるように自重す訃“1節1−た
、。
, 7 I'll 6111 processing circuit 7 standard resistance 23K
Vi, 20 Ω was used. Further, the capacitor of the oscillator 17 is /K11z, and the current-carrying electrode 6c of the 70-cell 6,
%lL pressure applied between probe electrodes 6d, 6d
The potential between 1t and 1 below is always 200 Her V regardless of the resistance of the solution.

次に’c実験条件について説明する。Next, the 'c experimental conditions will be explained.

l インジェクションボリュームH,コOpt以下では
p+シi二梢Jf(が低くなり、1)Qにsoμを以上
では試料の適1n−な希釈率がイ:)らfLず、ベース
ラインへの復帰時間も大きくなる宿、の影響がJ、Il
、わ九るtめJ j /l lとしt。
l If the injection volume is less than H, ko Opt, p + si two branches Jf (1) will be lower, and if Q is more than soμ, the appropriate dilution rate of the sample will be 1 n - from fL, and the time to return to the baseline will be lower. The influence of the inn, which is also growing, is J, Il.
, Wakuru tmeJ j /l l and t.

λ 流速#1、低jji沖では1Ill! 5if 1
 +’+°IJ’lが低く、ベースラインへのイ)!帰
時間が大きい。vIC連が大きすぎると、ボンフによる
脈IA「が大きくなり測定鞘R「が低下することから、
測定時間と応答の再現性を考1.して流速な/デJ t
ge / m+に設定した。
λ Current velocity #1, 1Ill in low jji offshore! 5 if 1
+'+°IJ'l is low, and a) to the baseline! It takes a long time to get home. If the vIC series is too large, the pulse IA by Bonf will increase and the measurement sheath R will decrease.
Consider measurement time and response reproducibility 1. And flow speed / de J t
ge/m+.

3 希釈率は、インジエクションボリュームヲ33μt
K設定した結果、約100倍となっt0以上の条件によ
りrpQの柑橘果汁の測定を各グ回ずつ行なったところ
、第7図に示すチャートが得られた。第7図において縦
軸はまた電率横軸は時間を示し、ピークの上部に示す数
字は同一試料について滴定法によ請求めた有r虐配合景
である。
3 The dilution rate is injection volume 33 μt.
As a result of setting K, the value was about 100 times larger, and when the rpQ of citrus juice was measured each time under conditions of t0 or more, the chart shown in FIG. 7 was obtained. In FIG. 7, the vertical axis shows electric conductivity, and the horizontal axis shows time, and the numbers shown above the peaks are the brutal landscapes determined by the titration method for the same sample.

同一試料についてq回ずつめた導電率を比較したところ
、変動係数はaSチ以下であり、この装置の再現性は良
好であることが確認できた。
When the conductivities measured q times for the same sample were compared, the coefficient of variation was less than aS, confirming that the reproducibility of this device was good.

甘た、この811(定装置6を用いて上記φ件で沖!定
を行えば7時間で10サンプル4“■1の61す定が可
能であることがわかった。
By the way, I found out that if I use this 811 (determination device 6) to determine the above φ, I can make 61 samples of 10 samples 4"■1 in 7 hours.

次に、産地の異なる温州ミカン果汁の導?11.率を多
数測定すると共に、そ11らの有機重含に(クエン酸換
i)を適宜法によ請求めた結果、第を図中(a)で示す
回帰直線を得た。この回帰直線を回帰式%式% となり、こj−の相閂係&9.1r = 0タタλとな
り、J(好な直線が111らtした。
Next, what about unshu mandarin juice from different regions? 11. As a result of measuring a large number of ratios and requesting the organic content (converted to citric acid) using an appropriate method, a regression line was obtained, which is indicated by (a) in the figure. This regression line becomes the regression formula % formula %, and the correlation coefficient of j - &9.1r = 0 tata λ, and J (a good straight line is 111 et t).

寸な、温州ミカンシ1′、汁を3倍に希釈1−た鏝、サ
ンプル管路2に注入したところ第gし1中(blで示す
回帰直イ・・1が1()らiした。このもののlLi目
11)式tまy=31r、lu、2X+i、31i で
示さすL′IC9また、相1:’+l 4’p、AQ 
t、t r = 05)りjであり、さC−、K J’
S−好fx @mが?’lら7Ii’c、。
When I diluted the juice of Satsuma mandarin orange 1' to 3 times and injected it into the sample conduit 2, a regression straight line (indicated by BL) occurred. L'IC9 of this 11) Expression tmay=31r, lu, 2X+i, 31i Also, phase 1:'+l 4'p, AQ
t, t r = 05) ri j, and s C-, K J'
S-good fx @m? 'l et al. 7Ii'c,.

こfLらの結!1!:かc)、コノtill、’ 定!
−°Ir’t K ヨJ 果汁ノラク゛+1i率を辿1
ji〒゛ノ゛ることで果汁の有4(1#酸含邦を品昂゛
11’t’−C求ab?!l ル?ニー トカ(1(+
’X!テきた1、なす・、・!\全発明1lljl定装
置を用いることにより、食塩添加イ(品−やマーガリン
のように1食堝含Mが他の一11イft11.j’+’
l”j”Iに比べて十分に高い場合には、単に希釈Oo
o〜/30θ倍)あるいはエマルジョンを破νIするだ
けで、前述の有機G7’;含量測定法にfl/>して食
塩’−,,+、tをめることができる11本発明者C−
が、食品中の食塩濃バ(をめる方法として一般に広く用
いら)1ている鎖部定法によ請求められる食塩a度と、
本測定ゲ、1次によりに)らnる食塩0度とを比較;−
たところ、調温定法との(inl差はウスターソース類
(/soo倍希釈済)でO/チ、マーガリン(72倍M
の熱水を加えてエマルジョンを破壊後冷却して?与られ
た水相)で002憾であっt0マヨネーズなどのように
、醍含最の^°4い食品の場合には希釈用水の代りに水
−エタノール(/+、2)を用いてf1χの解離を抑制
すノtは精度良く測定し得る。甘た、末法によると食塩
含−と有4=jφ酸含量の同時分析も可能である、末法
ではナトリウムイメンと塩素イメンの合n1量を測定す
るので、正味の塩化す) IJウムハを与えることにな
る。また、末法での応答はナトリウムと塩素両イオンの
合計濃度に直接的に比例するので、測定精度が高い。し
かも、本発明の装置は、測定の自動化が容易なこと、f
it極の保守管理に特別の配慮な必賛とせず、汚染に対
しては強酸や洗剤による洗浄も可能などの利点があり、
この装置を用いた測定方法は食品製jl!場での管理分
析法として有用である。
KofL et al.’s conclusion! 1! :kac), Konotill,' Determined!
−°Ir't K YoJ Follow the fruit juice Noraku+1i rate 1
ji 〒゛ノ゛The presence of fruit juice 4 (1# acid-containing country)
'X! Tekitai 1, eggplant...! \By using the whole invention 1lljl constant device, salt addition (like products and margarine, one serving pot contains M is 111 ft11.j'+'
If it is sufficiently high compared to l"j"I, simply dilute Oo
o~/30θ times) or simply by breaking the emulsion, fl/> can be added to the above-mentioned organic G7' content measurement method to add salt'-,, +, t.
However, the salt concentration in food (generally widely used as a method of adding salt) 1 is the salt content claimed by the Kusaribe method,
This measurement is compared with 0 degrees of table salt;
As a result, the (inl difference with the temperature control method is O/CH for Worcestershire sauce (/soo times diluted), margarine (72 times M)
Add hot water to break the emulsion and then cool it? In the case of foods with the highest concentration, such as t0 mayonnaise, where f1χ is 002 (a given aqueous phase), water-ethanol (/+, 2) is used instead of dilution water. The amount of inhibition of dissociation can be measured with high accuracy. According to the final method, it is possible to simultaneously analyze the salt content and the acid content.The final method measures the total amount of sodium and chlorine, so the net chloride is given. It turns out. Furthermore, the response in the final method is directly proportional to the total concentration of both sodium and chloride ions, so the measurement accuracy is high. Moreover, the device of the present invention allows easy automation of measurement, f
It does not require special consideration for maintenance and management, and it has the advantage of being able to be cleaned with strong acids and detergents to prevent contamination.
The measurement method using this device is made by Food Products Inc. It is useful as a management analysis method in the field.

以上説明したように、この発明の811!定装置rjは
、泗11j W Piiから送らn、てくる希釈溶媒と
、サンプルや路から送らノしてくるサンプル液をミキサ
ーで均一に?J/、合し、希釈tb(Flとしブローセ
ルのグローブ室内をfA(シ、このフローセルにおいて
il++!定液の導1+を宇を測定し、有機酸含量など
をめるものである。従って、この発明の測定装(道は各
種の食品およびその原料から(1)企多数のサンプル液
を高率で希釈し得ると共に連続して簡単迅速に、かつ正
確に処J!ll測定し、そすLらの有機酸含量などを正
確にめることのできる装置となる。
As explained above, the 811! of this invention! The fixing device rj uses a mixer to uniformly mix the diluted solvent sent from the 11j W Pii and the sample liquid sent from the sample or path. J/, diluted tb (Fl), and inside the globe chamber of the blow cell fA (shi, il++! In this flow cell, the conduction 1+ of the constant solution is measured and the organic acid content etc. is calculated. The measuring device of the invention is capable of (1) diluting a large number of sample solutions from various foods and their raw materials at a high rate, and continuously measuring them simply, quickly, and accurately; This device allows you to accurately determine the organic acid content, etc.

4、し1面の(f、1単な散、明 第7図ilt第1の発明の一実施例を示すブロック図1
、第2図はダンパーを示す一部断面視1−fc正面図、
第3図はインジェクションボリュームと希釈率の1v1
係を示すグラフ、第弘図はフローセルを示す−m断面視
した斜視図、第5図はIQI断面図、第6図は第コの発
明の一実施例を示すブロック図、11r1.7図は実験
でイqられた導電率を示すチャート図、第を図は実験で
得らnた導電率と有機酸含量との回帰直線を示すグラフ
である。
4. A block diagram 1 showing an embodiment of the first invention.
, FIG. 2 is a partially sectional 1-fc front view showing the damper,
Figure 3 shows the injection volume and dilution rate of 1v1.
Fig. 5 is a cross-sectional view of IQI, Fig. 6 is a block diagram showing an embodiment of the invention of Fig. 11r1.7. The chart diagram showing the electrical conductivity obtained in the experiment, and the second figure is a graph showing the regression line between the electrical conductivity obtained in the experiment and the organic acid content.

1・・・・・・溶媒管路、2・・・・・・サンプル管路
、3・・・・・・押出液管路、4・・・・・・切替弁、
5・・・・・・ミキサー、6・・・・・・ブロースルー
型a 191 極セル(フローセル)、7・・・・・・
計6111旭理回路、31・・・・・・合流管路。
1... Solvent pipe line, 2... Sample pipe line, 3... Extruded liquid pipe line, 4... Switching valve,
5...Mixer, 6...Blow-through type a 191 Pole cell (flow cell), 7...
A total of 6111 Asahi circuits, 31...merging pipes.

出願人富士平工業株式会社 インジェ7シ3ンホ゛リューム(L12 )第4図 第5図 第7図 時間 第8図 儒r4醗含量 6/。Applicant Fujihei Kogyo Co., Ltd. Injector 7 cylinder volume (L12) Fig. 4 Figure 5 Figure 7 time Figure 8 Confucian r4 alcohol content 6/.

丁杭捕1]1Li(/)式)に代えたI−’Ij−+1
 、 =l (’lの表示 昭和59 (+ 1!I u’l Ill第62261
号2、発明の名称 イ11含lit Q) lll’l定装置べ31中を(
Jる名 ・li +’lとの1文11系 ’R1;+’l出願人
゛ 畠1平」−業株式会社(はか1名)4、代理人 11jl III ;)9イl’ 6 Jl 29日 
(発送日)61中の内容 本f]は、昭和59年3月30日イ・Jで・委1[状を
添付せずに出願手続をし、その後昭和59 s[6月9
日に富士平工業株式会桓J3よび右限会ン1 不−電鍬
製作所の分の委任状を添(4シlこ■続補1EiI!(
自発)を提出演で1゜ ところが、昭和595E6月261](=Jの丁続捕t
I命令書(方式)を頂きましたが、上記の経過を見れば
わかるとおり補正ずべき暇疵は冶白されて63りま1゜ よって、補i指令に応答演で1゜
I−'Ij−+1 in place of 1Li (/) expression)
, =l ('l display Showa 59 (+ 1! I u'l Ill No. 62261
No. 2, title of the invention (11 included)
1 sentence 11 series with J name・li +'l 'R1;+'l applicant ゛ Hatake Ippei' - Gyo Co., Ltd. (Haka 1 person) 4, agent 11jl III;) 9il' 6 Jl 29th
(Delivery date) Contents of 61 Book f] was filed on March 30, 1980, in I.J., without attaching the letter, and then filed in 1982, s [June 9, 1982]
Attach the power of attorney for Fujihira Kogyo Co., Ltd. J3 and Right Limited Association N1 Fuden Kuwa Manufacturing Co., Ltd.
However, 1985E June 261] (=J's subsequent arrest)
I received the I order (method), but as you can see from the above progress, 63 defects that should have been corrected have been repaired.

Claims (1)

【特許請求の範囲】[Claims] (1)希釈用溶媒を送液する溶媒管路と、サンプル液 
3゜を送液するサンプル管路と、サンプル押出液を送油
する押出液管路と、上記サンプルに路と押出液’i>’
路とを切・鉾える切替弁と、上記希釈用61Wとサンプ
ル液とを均一に混合するミキサーと、上記ミキサーで混
合さ1また希釈試料を流すフロースルー型弘’l!+、
(Aセルと、このフロースルー型ヶ電極セルをjlr 
flる希釈試ネ・1の汚119率をF+l測するi+r
a+u処伸回路とをJl偏する有機nχ含fitの測定
装置1、(2)希釈用溶媒を送液する溶媒管路と、サン
プル液を送液する・す゛ンブル′1τド:1とN rf
jMi管路からの希釈j1順llzへ1とサンプルt“
?i’iiからのサンプル液とが合流して1Atnる合
θi(!H;路と、上記サンプル’f’f路と合bIC
″i路とを切片える切替弁と、切、竹弁を、τ(て送液
さ〕1.てくる上記q’i’r 1<Jl打+i痺とサ
ンプル1)ンとを均一に混合するミキサーと、上記ミキ
サーで混合さtl、た希釈試料を流すフロースルー型グ
電極セルと、このフロースルー型弘il!極セルを流れ
る希釈試料のN9電率をH1側する計測処理回路とをJ
l、俯する有機酸含量の測定装置。
(1) Solvent pipe for delivering dilution solvent and sample liquid
3°, an extrudate pipe to send the sample extrudate, and a pipe to the sample and an extrudate 'i>'.
A switching valve that can be used to switch off and on from the flow, a mixer that uniformly mixes the dilution 61W and the sample liquid, and a flow-through type that allows the diluted sample to flow through the mixer. +,
(A cell and this flow-through type electrode cell are jlr
I + r to measure the dirt 119 rate of fl dilution test 1
(2) A solvent pipe line for feeding the dilution solvent, and a swarm '1τ mode for feeding the sample liquid: 1 and N rf.
Dilute j1 from jMi line to llz1 and sample t“
? The sample liquid from i'ii merges with 1 Atn;
``The switching valve that cuts off the i path, and the bamboo valve are used to uniformly mix the above q'i'r 1 < Jl stroke + i numb and sample 1). a flow-through type electrode cell through which the diluted sample mixed in the mixer flows, and a measurement processing circuit that measures the N9 electric rate of the diluted sample flowing through this flow-through type electrode cell on the H1 side. J
l. Measuring device for organic acid content.
JP6226184A 1984-03-30 1984-03-30 Measuring apparatus for content of organic acid Pending JPS60205245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6226184A JPS60205245A (en) 1984-03-30 1984-03-30 Measuring apparatus for content of organic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6226184A JPS60205245A (en) 1984-03-30 1984-03-30 Measuring apparatus for content of organic acid

Publications (1)

Publication Number Publication Date
JPS60205245A true JPS60205245A (en) 1985-10-16

Family

ID=13195025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6226184A Pending JPS60205245A (en) 1984-03-30 1984-03-30 Measuring apparatus for content of organic acid

Country Status (1)

Country Link
JP (1) JPS60205245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234576A (en) * 2006-02-27 2007-09-13 Korea Inst Of Science & Technology Direct formic acid fuel cell and its operation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267699A (en) * 1975-12-03 1977-06-04 Fujihira Kougiyou Kk Measuring method and apparatus for organic acid contents
JPS5410279A (en) * 1977-06-27 1979-01-25 Tokuyama Soda Co Ltd Cathode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267699A (en) * 1975-12-03 1977-06-04 Fujihira Kougiyou Kk Measuring method and apparatus for organic acid contents
JPS5410279A (en) * 1977-06-27 1979-01-25 Tokuyama Soda Co Ltd Cathode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234576A (en) * 2006-02-27 2007-09-13 Korea Inst Of Science & Technology Direct formic acid fuel cell and its operation method

Similar Documents

Publication Publication Date Title
CN106047678B (en) A kind of cytoactive detection method and apparatus based on Measured By Impedance Spectroscopy
US4751466A (en) Instrument for on-line measurement of the absolute electrical conductivity of a liquid
CN104863581B (en) Circumferential conducting probe sensor and system for the full water number measurement of horizontal well performance
Chakraborty et al. Limit of detection for five common adulterants in milk: A study with different fat percent
Chaneam et al. Green analytical method for simultaneous determination of salinity, carbonate and ammoniacal nitrogen in waters using flow injection coupled dual-channel C4D
AU2003231191A1 (en) Electroosmotic flow systems
DE69735473T2 (en) METHOD AND DEVICE FOR MEASURING AN ELECTRICAL PARAMETER OF A FLUID
Shashikanth et al. Electrophysiologic analysis of tight junction size and charge selectivity
ATE6310T1 (en) DEVICE FOR COUNTING PARTICLES SUSPENDED IN ELECTRICALLY CONDUCTIVE SAMPLE LIQUIDS.
JPS60205245A (en) Measuring apparatus for content of organic acid
Henríquez et al. Conductometric determination of ammonium by a multisyringe flow injection system applying gas diffusion
CN106932444B (en) A kind of batching interface test experience device and experimental method based on conductivity
CN106908485A (en) A kind of method that Non-Destructive Testing separates membrane flux
Taylor et al. Flow-injection coulometric titrations
Ferrara et al. Optimal frequency range for the measurement of AC conductivity in aqueous solutions
CN104865114A (en) Preparation method of standard sodium solution
DE10047708C2 (en) Sensor for measuring O¶2¶ concentrations in liquids
CN212872279U (en) Pure water conductivity meter electrode calibrating device
Kakabadse et al. On-line direct potentiometry of residual water in organic solvents using the proton isoconcentration technique
CN219532996U (en) Experimental device for measure NaCl solution concentration
Malmstadt et al. Determination of chloride by precision null-point potentiometry
Nagar et al. An Approach of ion selective electrode for human body, cells and biomedical researches
Mansor et al. Microfluidic Device with Removable Electrodes for Single Cell Electrical Characterization
CN117929481A (en) Flow-through electrolyte solution conductivity cell based on absolute measurement method
Richardson et al. A novel and low cost probe for monitoring dispersed solids concentrations in liquids