JPS60205031A - Disc brake - Google Patents

Disc brake

Info

Publication number
JPS60205031A
JPS60205031A JP5992884A JP5992884A JPS60205031A JP S60205031 A JPS60205031 A JP S60205031A JP 5992884 A JP5992884 A JP 5992884A JP 5992884 A JP5992884 A JP 5992884A JP S60205031 A JPS60205031 A JP S60205031A
Authority
JP
Japan
Prior art keywords
disc brake
disc
aluminum
wear
brake according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5992884A
Other languages
Japanese (ja)
Inventor
Takeshi Yasui
安井 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5992884A priority Critical patent/JPS60205031A/en
Publication of JPS60205031A publication Critical patent/JPS60205031A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/132Structure layered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)

Abstract

PURPOSE:To enhance the wear-resistance of a disc brake to make the brake efficiency thereof satisfactory, by forming a wear-resistant layer on a disc- like metal base member. CONSTITUTION:On a disc-like metal base member in a disc brake, thereis formed a wear resistant layer which is a coating layer made of ceramics such as, for example, nitride, carbide, boride, silicide, etc. or which is a clad layer made of austenite group stainless steels or copper group iron alloy. With this arrangement the brake efficiency may be enhanced and as well it contributes to the improvement in the economy of fuel consumption.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、特に2輪車用のブレーキ装置に適したディス
クブレーキに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a disc brake particularly suitable for a brake device for two-wheeled vehicles.

[発明の技術的背望とその問題点] 従来から、2輪車用のブレーキ装置に用いるディスクブ
レーキとしては、マルテンサイト系ステンレス44(S
US420系)が使用されているが、近イ「、4輪車同
様に2輪車においても軽量化を兼ねたブレーキ効率のよ
い材料が望まれている。
[Technical aspirations of the invention and its problems] Conventionally, martensitic stainless steel 44 (S
US420 series) are currently being used, but in recent years there has been a demand for materials that are lightweight and have good braking efficiency for two-wheeled vehicles as well as four-wheeled vehicles.

[発明の目的] 本発明はかかる事情に対処してなされたもので、耐摩耗
Mが良好で、ブレーキ効率のよいディスクブレーキを提
供することを目的とする。
[Object of the Invention] The present invention was made in response to such circumstances, and an object of the present invention is to provide a disc brake with good wear resistance M and good braking efficiency.

[発明の概要] ツなわら本発明のディスクブレーキは、円板私金ff1
ll材上に、耐摩耗層を設けたことを特徴としている。
[Summary of the invention] The disc brake of the present invention has a disc brake of private money ff1.
It is characterized by a wear-resistant layer provided on the ll material.

耐摩耗層としては、例えばセラミックスによるコーティ
ング層および鉄合金によるクラッド層等がある。
Examples of the wear-resistant layer include a ceramic coating layer and an iron alloy cladding layer.

まず、セラミックスによるコーティング層について述べ
る。
First, the ceramic coating layer will be described.

円板状金属部材上に形成させるコーティング層の素材と
しては、IVa族、va族およびVia族の窒化物、炭
化物、ホウ化物、ケイ化物から選ばれたセラミックスが
あり、特にTi N、Si C1Ti BN、 Ti 
C1トIf N、 1−a c、 ’ri 82 、Z
rN等が適している。
The material for the coating layer formed on the disk-shaped metal member includes ceramics selected from nitrides, carbides, borides, and silicides of the IVa group, VA group, and Via group, especially TiN, SiC1TiBN, , Ti
C1 If N, 1-ac, 'ri 82, Z
rN etc. are suitable.

円板状金属基材上にコーティング層を形成させる方法と
しては、CVD法やPCVD法等の化学蒸着法やレーザ
コーティング法、スパッタリング法、イオンブレーティ
ング法等の物理蒸る法等の公知のコーティング法を用い
ることができるが、特にイオンブレーティング法が適し
ている。
Methods for forming the coating layer on the disc-shaped metal substrate include known coating methods such as chemical vapor deposition methods such as CVD and PCVD methods, physical vaporization methods such as laser coating methods, sputtering methods, and ion blasting methods. Although various methods can be used, the ion blating method is particularly suitable.

コーティング層の厚さとしては、2〜10μl程度が適
当である。
The appropriate thickness of the coating layer is about 2 to 10 μl.

次に鉄合金によるクラッド層について述べる。Next, we will discuss the cladding layer made of iron alloy.

円板状金属部材上にクラッドさせる鉄合金としては、オ
ーステナイト系ステンレス鋼が望ましい。
As the iron alloy to be clad on the disc-shaped metal member, austenitic stainless steel is desirable.

これは、アルミニウムまたはアルミニウム合金を基材と
してクラッドする際、1000℃以下で熱処理eきる為
、これら基材とのクラツド材として適当Cある。
This is because when cladding aluminum or aluminum alloy as a base material, it can be heat-treated at 1000° C. or lower, so it is suitable as a cladding material with these base materials.

ま7C1クラツドされる鉄合金としては、加工硬化指数
が0.4以上さらには0.6以上のものが適しでいる。
Suitable iron alloys for 7C1 cladding are those having a work hardening index of 0.4 or more, particularly 0.6 or more.

ここで、加工硬化指数とは次式で表される値である。Here, the work hardening index is a value expressed by the following formula.

加工指数−3,7561o(1(P+ o /P2 o
 )+0.255 P2O:伸びが40%のときの加重 P20:伸びが20%のときの加重 りなわら、この指数が大きいほど、加工硬化しやすい。
Machining index -3,7561o (1(P+ o /P2 o
)+0.255 P2O: Load when the elongation is 40% P20: Load when the elongation is 20% The larger this index is, the easier it is to work harden.

次に円板状金属基材について述べる。Next, the disc-shaped metal base material will be described.

本発明に使用される円板状金属基材としては、アルミニ
ウム、アルミニウム合金が適しており、特にアルミニウ
ム合金としては、JIS2000系またはJIS500
0系が適している。
Aluminum and aluminum alloys are suitable as the disc-shaped metal base material used in the present invention. In particular, as aluminum alloys, JIS2000 series or JIS500 series
0 series is suitable.

この種のアルミニウムまたはアルミニウム合金を単独で
用いる場合には、予めその表面に岸さ10〜200μm
の窒化層または硬質アルマイト層からなる中間層を形成
しておくことが望ましく、一方、アルミニウムまたはア
ルミニウム合金と鉄合金とをクラッドする場合のの比率
は厚さの比率でアルミニウムまたはアルミニウム合金が
60〜80%程度とすることが望ましい。
When using this type of aluminum or aluminum alloy alone, the surface is coated with a thickness of 10 to 200 μm in advance.
It is desirable to form an intermediate layer consisting of a nitride layer or a hard alumite layer. On the other hand, when cladding aluminum or an aluminum alloy and an iron alloy, the ratio of aluminum or aluminum alloy is 60 to 60% in thickness ratio. It is desirable to set it to about 80%.

[発明の実施例] 次に本発明の一実施例についC説明ηる。[Embodiments of the invention] Next, an embodiment of the present invention will be explained.

実施例1 J 182000系のアルミ合金板の両面に0゜6の加
工硬化指数を有するオーステティ1−系ステンレス板を
クラッドしてkさ511(ノフルミニウム合金比率70
%[厚さ])のクラツド板をvlJ111シた。
Example 1 J A 182000 series aluminum alloy plate was clad with Austety 1-series stainless steel plates having a work hardening index of 0°6 on both sides to produce a material with a kness of 511 (nofluminium alloy ratio 70).
% [thickness]) of vlJ111.

次にこのクラツド板から直径250 nφの中心に回転
軸穴を有する円板を打抜き、ディスクブレーキを製造し
た。
Next, from this clad plate, a disk having a diameter of 250 nφ and having a rotating shaft hole at the center was punched out to manufacture a disk brake.

このようにして製造されたディスクブレーキは、従来の
マル゛jンサイト系ステンレス鋼によるものと比較しC
約1に8ffilが少なくなつCいる。また、イの表面
硬t(j 1,1 、従来の鉄合金によるものが、ごッ
カース1Ill!磨ぐ約400であるのに対して約50
0 (−あった。
Disc brakes manufactured in this way have a lower C
About 1 to 8ffil decreases. In addition, the surface hardness t (j 1,1 of A) is about 50, whereas that of conventional iron alloys is about 400.
0 (-there was.

次にこのディスクブレーキを100Or、I)。Next, install this disc brake at 100 Or, I).

mて゛回転させ、所定の憤性負拘をかけた状態C石綿系
シレーキシ−1−を用いてブレーキテストを行なったと
ころ、従来のマルデンサイト系ステンレス鋼をベースと
りるものに比べて優れたブレーキ効率を有することが認
められた。また、1万回の″I−スト1股にJ5いても
摩耗はほとんど認められなかった。
A brake test was conducted using C asbestos-based SILEX-1, which was rotated by 100 m and subjected to a predetermined load, and it was found that the brakes were superior to those based on conventional mardensite stainless steel. It was recognized that it has efficiency. Further, even when J5 was used for 10,000 times of "I-strike", almost no wear was observed.

次に木ブて明の他の実施例につい′C説明する。Next, another embodiment of the wooden block will be explained.

実施例2 JI32000系のアルミ合金板の両面に厚さ50μl
の窒化処理を施した。
Example 2 50 μl thick on both sides of JI32000 series aluminum alloy plate
Nitriding treatment was applied.

次にこの合金板から直径250 nφの中心に回転軸穴
を石する円板を壬]抜き、この円板を窒素ガスtm人し
たアルゴンガス雰囲気中でチタ:ノを電子ビームe金属
蒸気とし、高電圧r:放電させることにより、厚さ5μ
■の金色のTiNの居を形成さUた。
Next, a disk with a diameter of 250 nφ and a rotating shaft hole in the center was extracted from this alloy plate, and the disk was exposed to metal vapor using an electron beam in a nitrogen gas and argon gas atmosphere. High voltage r: By discharging, the thickness is 5μ
■A golden TiN layer was formed.

このようにして製造されたjイスクブレ−1−は、従来
の鉄合金によるものと比較し【約1 kg千〇が少なく
なっている。また、その表面硬石は、従来の鉄合金によ
るものが、ビッカース硬但ぐ約400であるのに対して
2000以上であった。
The Isukubrae 1 produced in this manner weighs approximately 1,000 kg less than that made of conventional iron alloys. In addition, the surface hardness was over 2000, compared to about 400 for Vickers hardstone for conventional iron alloys.

次にこのディスクブレーキを1000r、t+。Next, this disc brake is 1000r, t+.

lで回転させ、所定の慣性負伺をか1ノだ状態ぐイ」線
系ブレーキシューを用いてル−キテスi−を行なったと
ころ、従来の鉄合金をベースと覆るものに比べて優れた
ブレーキ効率をイJすることか認められた。また、1万
回のデスト後にa3い(も1!I耗はほとんど認められ
なかった。
When we conducted a test using a line-based brake shoe that rotated at a constant speed of 1 and maintained a predetermined inertia load of 1 degree, we found that it was superior to conventional iron alloy-based brake shoes. It was recognized that it improved brake efficiency. In addition, after 10,000 death cycles, almost no wear was observed.

したがつて、本実施例のディスクブレーキは、表面に硬
質のセラミックスコーティング層をイjしているので従
来品と比較しC耐17耗牲に侵れCおり、またセラミッ
クス固有の色彩を備えでいるので装篩性付与することも
できる。
Therefore, since the disc brake of this example has a hard ceramic coating layer on the surface, it has better wear resistance than conventional products, and also has a color unique to ceramics. It can also be used to impart sieving properties.

[発明の効果] 以」−の説明から明らかなにうに、本光明のディスクブ
レーキは、円板状金属基材上に、耐摩耗層をi;u I
J /こことにより、(幾械的強瓜を低下さぼることな
く軽(J1化を図ることがC゛き、燃費の向上に奇りす
ることがぐきる。
[Effects of the Invention] As is clear from the explanation below, the disc brake of the present invention has a wear-resistant layer formed on a disc-shaped metal base material.
J / This makes it possible to make the car lighter (J1) without sacrificing its mechanical strength, which will lead to a miraculous improvement in fuel efficiency.

代理人弁理士 須 山 佐 −Representative Patent Attorney Su Yamasa -

Claims (1)

【特許請求の範囲】 (1)金属基材上に、耐久摩耗層を設けたことを特1嘗
るディスクブレーキ。 (2)耐摩耗層は、IVa族、Va族およびVia族の
窒化物、炭化物、小つ化物、ケイ化物から選ばれたビラ
ミックスによるコーティング層である特i:’l 請求
の範囲第1項記載のディスクブレーキ。 (3)コーティング層の厚さが、2〜10μmである特
il’l請求の範囲第2項記載のディスクブレーキ。 (/l)金属基材が、アルミニウムまたはアルミニウム
合金からなる特許請求の範囲第1項ないし第3項記載の
ディスクブレーキ。 (5)アルミニウムまたはアルミニウム合金とセシミッ
クスによるコーティング層との中間に、窒化Nまたは硬
質アルマイト層からなる中間層が形成されている特許請
求の範囲第4項記載のディスクブレーキ。 (6)中間層の厚さが10〜200μmである1h許請
求の範囲第5項記載のディスクブレーキ。 (7)耐摩耗層は、鉄合金である特許請求の範囲第1項
記載のディスクシレー:1−0 (8)鉄合金は、オーステナイト系ステンレス鋼である
特許請求の範囲第7項記載のディスクブレーキ。 (9)金属基材が、アルミニウムまたはアルミニウム合
金である特許請求の範囲第7項または第8項記載のディ
スクブレーキ。 (10)アルミニウム合金は、JI82000系または
JIS5000系である特許請求の範囲第9項記載のデ
ィスクブレーキ。 (11)オーステナイト系ステンレス鋼は、加工硬化指
数が0.4以上である特許請求の範囲第8項記載のディ
スクブレーキ。 (12)アルミニウムまたはアルミニウムの比率が60
〜80%(厚さ)である特許請求の範[111第9 I
jiないし第11項のいずれかに記載のディスクブレー
キ。
[Claims] (1) A disc brake characterized in that a durable wear layer is provided on a metal base material. (2) The wear-resistant layer is a coating layer made of Viramix selected from nitrides, carbides, small silicides, and silicides of the IVa group, Va group, and Via group. Disc brakes as listed. (3) The disc brake according to claim 2, wherein the coating layer has a thickness of 2 to 10 μm. (/l) The disc brake according to any one of claims 1 to 3, wherein the metal base material is made of aluminum or an aluminum alloy. (5) The disc brake according to claim 4, wherein an intermediate layer made of N nitride or a hard alumite layer is formed between the aluminum or aluminum alloy and the Secimix coating layer. (6) The disc brake according to claim 5, wherein the intermediate layer has a thickness of 10 to 200 μm. (7) The disc according to claim 1, wherein the wear-resistant layer is an iron alloy: 1-0 (8) The disc according to claim 7, wherein the iron alloy is austenitic stainless steel. brake. (9) The disc brake according to claim 7 or 8, wherein the metal base material is aluminum or an aluminum alloy. (10) The disc brake according to claim 9, wherein the aluminum alloy is JI82000 series or JIS5000 series. (11) The disc brake according to claim 8, wherein the austenitic stainless steel has a work hardening index of 0.4 or more. (12) Aluminum or aluminum ratio is 60
~80% (thickness) [111 No. 9 I
The disc brake according to any one of Items ji to 11.
JP5992884A 1984-03-28 1984-03-28 Disc brake Pending JPS60205031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5992884A JPS60205031A (en) 1984-03-28 1984-03-28 Disc brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5992884A JPS60205031A (en) 1984-03-28 1984-03-28 Disc brake

Publications (1)

Publication Number Publication Date
JPS60205031A true JPS60205031A (en) 1985-10-16

Family

ID=13127275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5992884A Pending JPS60205031A (en) 1984-03-28 1984-03-28 Disc brake

Country Status (1)

Country Link
JP (1) JPS60205031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369718U (en) * 1989-11-14 1991-07-11
US5330036A (en) * 1991-10-31 1994-07-19 Elephant Chain Block Company Limited Mechanical brake for a hoist and traction machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369718U (en) * 1989-11-14 1991-07-11
US5330036A (en) * 1991-10-31 1994-07-19 Elephant Chain Block Company Limited Mechanical brake for a hoist and traction machine

Similar Documents

Publication Publication Date Title
US8017226B2 (en) Hard film-coated member and jig for molding
US4761346A (en) Erosion-resistant coating system
JP2017523353A (en) Brake disc for automobile
JP2004510059A (en) Surface treatment for improved hardness and corrosion resistance
JPH11166625A (en) Piston ring
DE602006009162D1 (en) Coated carbide cutting tool with a hard wear resistant layer for high speed cutting of high carbon steel
KR850003906A (en) Abrasion resistant coating composition and preparation method thereof
JP2000144376A (en) Film excellent in sliding characteristic
JP2017514992A (en) Brake disc coating comprising iron alloy composition and method for producing the same
KR20030091686A (en) TiBN coating
JPS6056061A (en) Wear resistant parts
JPS60205031A (en) Disc brake
JPH05195198A (en) Nonstoichiometrically nitrided titanium coating
Hsu et al. Characteristics of duplex surface coatings on austempered ductile iron substrates
JPH0931628A (en) Sliding member and its production
JP2646313B2 (en) Substoichiometric zirconium nitride coatings
RU2679318C1 (en) Products from the austenite steels diffusion saturation method
JP2773092B2 (en) Surface coated steel products
JP3154403B2 (en) Coating mold
Chang et al. Optimization of DLC films on oxynitriding-treated Vanadis 10 tool steel through the various duty cycles of DC-pulsed plasma-enhanced CVD.
JP4253184B2 (en) Hard coating with excellent adhesion and method for producing the same
JPS55164070A (en) Sliding parts for internal combustion engine
Alsaran et al. Structural, mechanical and tribological properties of duplex-treated AISI 5140 steel
JPH06307471A (en) Iron made friction rotor
JPH09143670A (en) Oxide base ceramics coating disk rotor